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Abstract A time domain model is presented to study the vi-
brations of long slender cylinders placed in shear flow. Long
slender cylinders such as risers and tension legs are widely
used in the field of ocean engineering. They are subjected
to vortex-induced vibrations (VIV) when placed within a
transverse incident flow. A three dimensional model coupled
with wake oscillators is formulated to describe the response
of the slender cylinder in cross-flow and in-line directions.
The wake oscillators are distributed along the cylinder and
the vortex-shedding frequency is derived from the local cur-
rent velocity. A non-linear fluid force model is accounted
for the coupled effect between cross-flow and in-line vibra-
tions. The comparisons with the published experimental data
show that the dynamic features of VIV of long slender cylin-
der placed in shear flow can be obtained by the proposed
model, such as the spanwise average displacement, vibration
frequency, dominant mode and the combination of standing
and traveling waves. The simulation in a uniform flow is also
conducted and the result is compared with the case of non-
uniform flow. It is concluded that the flow shear characteris-
tic has significantly changed the cylinder vibration behavior.
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1 Introduction

Long slender cylinders, such as marine risers, tension-leg
platform tendons and mooring or towing cables are subjected
to vortex-induced vibrations (VIV) when placed within a
transverse oncoming flow. The most undesirable form of
VIV for the offshore structures is termed lock-in, which de-
scribes the ability of an elastic structure to control the shed-
ding process in a bandwidth around its resonant frequency.
Associated with lock-in is large amplitude excitation which
has the potential to cause damaging fatigue failure. Lock-
in may occur at certain velocities of uniform flow condi-
tions. However, for spatially sheared flow conditions, the
occurrence of lock-in is more complicated [1]. In the ocean,
cylinders are generally exposed to a shear current profile over
their depth and hence the prediction of those VIV is an im-
portant subject of research especially for cylinders with very
large aspect ratio (Length/Diameter∼103), which have been
widely used in oil fields of deep waters.

A number of methods for predicting the dynamic be-
havior of structures subjected to VIV are available in litera-
ture, most of which are discussed in the comprehensive re-
views due to Sarpkaya [2], Williamson and Govardhan [3],
Gabbai and Benaroya [4] and Chaplin et al. [5]. Models
based on Navier-Stocks equations use the method of com-
putational fluid dynamics (CFD) to determine the fluid mo-
tions and pressures, and hence to determine the hydrody-
namic forces acting on the cylinder. Such models need to
be coupled to a structure model which computes structural
displacements and hence the new fluid boundary conditions.
This approach is extremely computationally demanding and
has not so far been applied for practical problems. Another
method is to model the principle features of vortex shed-
ding in the cylinder wake using a dynamical system. The
main difference between this phenomenological approach
and CFD is that the dynamic behavior of fluid in the cylinder
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wake is modeled instead of being computed. Facchinetti et
al. [6] verified the effect of cylinder movement on the lift
fluctuation via different types of coupling terms (displace-
ment, velocity and acceleration). They came up with a for-
mulation of the wake oscillator model that was qualitatively
and, to some extent, quantitatively able to reproduce aspects
of VIV observed experimentally for rigid cylinders elasti-
cally supported and for flexible cylinders. Some parameters
in wake oscillator model, however, have to be derived from
tests.

Most attention of related researches has been put on
cylinder VIV in cross-flow (CF). The main reasons for not
considering in-line (IL) vibrations are the lack of test data
with combined IL and CF response, and that CF response
is regarded to cause more effect on fatigue failure than IL.
Baarholm et al. [7] indicates, however, that fatigue damage
due to IL vibrations may become significant for long cylin-
der structures.

The purpose of present work is to develop a model, fol-
lowing Wang et al. [8], Furnes and Sorensen [9], Violette et
al. [10] and Ge et al. [11], to calculate IL and CF responses
of the long tensioned cylinder under linearly shear flow con-
ditions. In Sect. 2 of this paper, the model based on van
der Pol oscillators in linearly shear flow is summarized. The
coupling between IL and CF vibration and the structural ge-
ometric nonlinearity are accounted for. In Sect. 3, the results
from wake oscillator model are verified with experimentally
observed riser behavior [12]. The 4th section contains the
comparison of results for uniform flow case and non-uniform
flow case.

2 Model formulation

A Cartesian right-hand coordinate system is defined with
x and y in the horizontal plane andz vertically upwards.
Consider a free-span circular cylinder with uniform material
properties and constant diameterD, which follows thez-axis
and is pinned at two ends (Fig. 1).

Fig. 1 Sketch of the cylinder with coordinate system

The related dynamic equations are
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wherem̄ is the sum of structure massms and added fluid mass
mf , per unit length. Lacking a formulation ofmf varying with
cylinder deflection, it is assumed thatmf is independent of
time,m̄ is hence given by

m̄= ms +
π

4
CaρD2, (2)

whereCa is the added mass coefficient, ρ is the density of
fluid and D is the diameter of cylinder. In Eq. (1),C and
C′ are the damping coefficients associated with structure and
hydrodynamic forces, respectively.C′ is related with vortex
shedding frequencyΩf and given by

C′ = γΩfρD2, (3)

whereγ is a parameter determined by experiment. In Eq. (1),
EI is the bending stiffness of cylinder,T is the axial tension
in cylinder which can be expressed by

T = T0 + EA
S − L

L
, (4)

whereL andS are the initial length and instantaneous length
of cylinder, respectively,T0 is the initial value whenS = L,
E is Young’s modulus of elasticity,A is the wall cross section
area (stress area), and the elongationS−L of the cylinder due
to the deflections is computed from
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Axial tension T is assumed to be independent ofz,
which is based on that the variation ofT along the cylinder
axis is much smaller than the variation due to the cylinder
deflection [9].

In Eq. (1), Fx and Fy are the external hydrodynamic
excitation forces due to the wake dynamics, which are ex-
pressed as

Fx =
1
2

CDρDU2, Fy =
1
2

CLρDU2, (6)

whereU is the current velocity acting normal to the cylin-
der andCD andCL are non-dimensional coefficients, which
represent in-line drag and cross flow lift respectively. For
a stationary cylinder these coefficients are fairly well docu-
mented as functions of Reynolds number, but as the cylinder
starts to oscillate the structure deflection will affect the fluid
and therefore the lift and drag coefficients. It has been found
in experiment [13] that the drag coefficient increases with
increasing cross flow amplitude, and the drag coefficient is

CD = C̄D + C̃D = CD0

(
1+ K

ay

D

)
+CDi , (7)
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whereCD is the average drag coefficient,C̃D is the pulsatory
drag coefficient,CD0 is the drag coefficient for a cylinder at
rest,K is a constant of magnitude 2,ay is the amplitude of
cross flow vibration andCDi is a drag term as a function of
time. CDi andCL are modeled by wake oscillator satisfying
the van der Pol equation as done by Furnes and Sorensen [9],
for which, a set of non-dimensional variablesqx andqy are
introduced
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whereqx is in-line variable,qy is cross flow variable, and the
vortex induced drag and lift coefficients are correspondingly
modeled by

CDi = CDi0
qx

2
, CL = CL0

qy

2
, (9)

whereCDi0,CL0 are vortex shedding drag and lift coefficients
for a fixed rigid cylinder subjected to vortex shedding. In
Eq. (8), εx, εy,Ax and Ay are non-dimensional parameters
estimated by experiment andΩf is the Strouhal frequency

Ωf = 2πSt
U
D
, (10)

whereSt is the Strouhal number which is dependent on the
Reynolds number.

By considering the spatial variation of the current, the
cylinder is divided intoN intervals which are bounded by
coordinatesz0, z1, · · · , zN wherez0 is at the location ofz= 0
andzN is at z = L. The current velocity varied linearly in
each interval and for the intervalzk < z < zk+1 the mean
current velocity is then given by

V̄k =
1
∆Lk

∫ zk+1

zk

(bz+ c)dz=
b
2

(zk+1 + zk) + ck, (11)

where we assume that the current profile is linear shear.
Since the current is allowed to vary in the axial direction,
the vortex-shedding frequency will also vary inN line seg-
ments. This frequency is computed by Eq. (10). Although

the current velocity varies linearly in each segment, the cur-
rent velocity in Eq. (10) adopts the mean velocity of each
segment.

The right-hand sides of Eq. (8) express the effects of
cylinder motion on near wake. An acceleration coupling
term is chosen as recommended by Faccinetti et al. [6].

For a cylinder at rest, the drag and lift forces coincide
with the x- andy-axis, respectively, as shown in Fig. 2a.fD
is the average drag force acting on the cylinder with the av-
erage drag coefficientC̄D. f ′D, fL are the vortex induced drag
and lift force, respectively, and contains the pulsatory drag
coefficient C̃D (or CDi) and the lift coefficient CL individu-
ally in its expression as Eq. (6). When the cylinder starts to
vibrate as a result of vortex shedding, the drag and lift forces
do not coincide with thex- andy-axis any more, which is
shown in Fig. 2b. The corresponding forces exerted on the
cylinder can thus be expressed as

Fx = fD + f ′D cosθ − fL sinθ,

Fy = fL cosθ + f ′D sinθ,
(12)

whereθ is the angle betweenx-axis and the instantaneous
velocity of the cylinder, such that

θ(t) = arctan
( ẏ(t)
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)
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( Ẏ(t)
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)
, (13)

where the dot denotes differentiation with respect to time,
Ẋ, Ẏ are non-dimensional velocities. Since, in general,Ẋ, Ẏ
are smaller than 1, the angleθ is very small and

sinθ(t) =
Ẏ(t)√

Ẏ2(t) + (1− Ẋ(t))2
≈ Ẏ(t),

cosθ(t) =
1− Ẋ(t)√
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≈ 1.

(14)

Substituting Eq. (14) into Eq. (12), we get the formulation
of the right-hand sides in Eq. (1)

Fx = fD + f ′D − fLẎ(t),

Fy = fL + f ′DẎ(t).
(15)

Fig. 2 Illustration of one cross-section of a cylinder in a cross flow and the fluid forces exerted on it.a Stationary cylinder;b Vibrating
cylinder



Shear flow induced vibrations of long slender cylinders with a wake oscillator model 333

3 Comparison with experimental results

In this section, the focus is on evaluating the capability of
the wake oscillator model to predict some experimentally
observed results on long flexible structures. Baarholm et
al. [7] and Lie and Kaasen [12] presented a summary of a
large experimental campaign, where a tensioned large-scale
riser model was tested at Hanøytangen outside Bergen on the
west coast of Norway in 1997. Figure 3 shows a simplified
illustration of their experimental setup.

Fig. 3 Test set-up at Hanøytangen [12]

As seen in Fig. 3, by moving the vehicle at a constant
velocity, the riser was exposed to a triangular current profile.
In this way, a well-defined current profile was obtained. The
characteristics of the riser are listed in Table 1. The riser
model has a mass ratio (mass/mass of displaced water) of
3.13 and a length diameter ratio of 3 000.

Table 1 Riser characteristics

Structural properties Value

Length L = 90 m

Outer diameter D = 0.03 m

Inner diameter t = 0.026 m

Structure mass ms = 2.27 kg/m

Young’s modulus E = 2.1× 1011 N/m2

Axial tension T = 3.7 kN

Although the Strouhal number is dependent on
Reynolds number, it is here taken as constant, which is as-
sumed to be a fairly reasonable approximation for the sub-
critical range. For a cylinder undergoing vibration, the
Strouhal number is set as 0.17. This value is lower than the
usually quoted 0.2, but has been found to apply for mov-

ing cylinders [12]. The added mass coefficientCa is depen-
dent on current velocity, vibration amplitude and frequency.
Since there is no efficient way for estimating the variations,
for a cylinder, the value ofCa is taken of 1.0.

The values ofCD0, CDi0 and CL0 all depend on
Reynolds number, which are given asCD0 = 1.2,CDi0 = 0.1
andCL0 = 0.3, respectively, for a rigid cylinder at the sub-
critical range [9]. Values for the coefficients in Eq. (8) were
recommended by Facchinetti et al. [6] asεx = 0.3, εy = 0.3,
Ax = 12 andAy = 12. Due to the relation of these parameters
to intrinsic wake dynamics, the recommended values must
be verified since they are deduced from experimental data on
forced oscillation vortex shedding only. Through tuning of
the model the sameε value was obtained, whileAx = 12 and
Ay = 36 was chosen for the best fit with the experimental
results.

This system is numerically integrated with respect to
time and space using a standard centered finite differential
method of the second order in both domains. The riser is
divided into segments with the length of 0.5 m, which is suf-
ficient to describe the largest excited mode of riser vibration.
The time step used in the calculation is chosen much smaller
than the minimum vibration period of riser considered in this
case and the calculation convergence was checked. The ini-
tial conditions of the system are expressed by

x(z,0) = y(z,0) = 0,
∂x(z,0)
∂t

=
∂y(z,0)
∂t

= 0, (16)

qx = qy = 2,
∂qx

∂t
=
∂qy

∂t
= 0. (17)

Equation (16) means zero displacement and velocity of
initial conditions are applied to the riser. As for wake oscil-
lator, it is assumed that the initial values of fluid variables
are equal to 2.0, and the first derivatives with respect to time
are set to zero. Pin end conditions are employed at either
end of the riser, which means the displacements and bending
moments are equal to zero atz= 0 andz= L.

To verify the results computed with the wake oscillator
model, we make comparisons with experimental data [12],
where the constant speed at upper riser end varies between
0.16–2 m/s. The same conditions are used in numerical sim-
ulation. As an example, Fig. 4 shows the root mean square
(RMS) values of the CF displacement along the riser when
the towing speed is equal to 0.54 m/s. Solid line represents
the wake oscillator simulation, and it generally fits the ex-
perimental data of dotted curve. Both simulation and test
result indicate the presence of the 11th mode, and the riser
response is a combination of traveling and standing waves,
which is also shown in Fig. 5 that presents the time evolu-
tion of riser CF displacement at every span computed by the
wake oscillator model. We observe that the traveling wave
appears away from the riser ends and the standing wave is
dominant near the ends due to the boundary conditions.
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Fig. 4 Comparison of CF RMS of displacement when towing speed
is 0.54 m/s

Fig. 5 Evolution of riser CF displacement with time and space
when towing speed is 0.54 m/s

Figure 6 shows the results of IL VIV, which deviates
from the experimental data. The test result shows that riser
response is also a combination of traveling and standing
waves. For small size ripples, the response mainly consists
of traveling waves. The dominant mode is number 23 and
its frequency is 5.4 Hz [12]. Nevertheless the wake oscillator
simulation shows that traveling wave is dominating. In Fig. 7
one can observe that the excitation takes place in the upper
region, where the current velocity has the maximum value
and the energy is transferred from fluid to the riser. Then
the downward traveling wave is damped quickly before it ar-
rives at the bottom end. It is clear that once the wave has
propagated away from the location where it is generated, the
energy is transferred back to the fluid which actually offers
the damping effect. The traveling wave has a frequency of
approximately twice of local Strouhal frequency based on
the upper region current velocity and the frequency remains
constant when the wave travels along the riser.

Fig. 6 Comparison of IL RMS of displacement when towing speed
is 0.54 m/s

Fig. 7 Evolution of riser IL displacement with time and space when
towing speed is 0.54 m/s

Figures 8–10 show some key parameters as functions
of the towing speed, which varied from 0.16–1.14 m/s. One
measure of the magnitude of the VIV is the average RMS
taken over the length of the riser. Figure 8 presents this for
CF and IL responses. Solid square and circular symbols rep-
resent experimental data, hollow square and circular symbols
represent computed data by wake oscillator model. The com-
parison shows that the wake oscillator simulation fits with
the test data for both CF and IL VIVs. The average RMS
values of IL and CF displacements vary only a little with the
towing speed.

Figure 9 shows how the vibration frequency of CF and
IL VIVs varies with the towing speed. Vibration frequency
here means the dominant frequency taken from the spectrum
of displacement at the riser midspan. The symbol definitions
are the same with Fig. 8. It is clear that both test and simula-
tion results show an increasing trend with the towing speed.
The lower straight line is the Strouhal frequency, based on
the towing speed and a Strouhal number of 0.17. The upper
segment line represents twice the Strouhal frequency. The



Shear flow induced vibrations of long slender cylinders with a wake oscillator model 335

two straight lines approximately fit both the test and simu-
lation data. This means that the IL vibration frequency is
almost twice the CF vibration frequency.

Fig. 8 Comparison of average RMS values of displacement at dif-
ferent towing speeds

Fig. 9 Comparison of vibration frequencies at different towing
speeds

Fig. 10 Comparison of dominant mode numbers at different towing
speeds

Figure 10 presents the comparison of the number of
dominating mode with respect to displacement in both CF
and IL vibrations. The numerical results for IL response are
not included here, because traveling waves are dominating
in IL vibration, hence the mode shape of the standing wave
is hard to be identified. Nevertheless it appears from the fig-
ure that the number of dominating mode for CF vibration fits
the experimental data and increases linearly with the towing
speed.

In this case, the average values of IL amplitude are only
about one quarter of values of CF. It means that the frequency
of vibration in the IL possibly does not align with any natu-
ral frequency of riser therefore the riser responds with small
amplitude. As we know, the riser with axial tension has two
main regimes of natural frequencies. One regime is domi-
nated by the axial tension where it is like a tensioned string
and the other is dominated by the bending stiffness where it is
similar to a beam. Figure 11 presents the natural frequencies
of a string, beam and riser which have the same mass and
boundary conditions. For modes up to the 8th, the natural
frequency of the tensioned string and the riser are virtually
identical and it is proportional to the mode number. From
the 11th mode and higher, the natural frequency is seen to
follow the same trend as the beam then it is proportional to
the mode number squared. As referred to Swithenbank and
Larsen [14], if the mode number of CF is higher than 4th,
there may be an available natural frequency at twice the CF
frequency, but that is not guaranteed. Therefore if the fre-
quency of IL is not on or near a natural frequency of the
riser, the amplitude of the IL vibration will significantly de-
crease. It is seen from Fig. 10 that the mode number of CF
during the tests is always higher than 5th. Considering the
small energy transferred from the wake and the fluid damp-
ing effect, we are convinced that when the frequency of IL
vibration does not align with a natural frequency, the stand-
ing wave is hard to be persistent. It may be the reason that
the characteristics of standing wave in IL are not available to
be identified in this simulation with wake oscillator.

Fig. 11 Natural frequencies of three different systems



336 F. Ge, et al.

On the other hand, the added mass is assumed to be
constant in the simulation. However the added mass is
frequency dependent. This allows for the different added
masses for the IL and CF vibrations, respectively, which will
influence the natural frequency and has a potential to align it
with the frequency of vibration. Therefore in the model test,
the standing wave is possible to be identified in some cases
as shown in Fig. 10.

4 Vibrations in uniform flow

In non-uniform flows, the excitation bandwidth and the ex-
tent of lock-in are strongly influenced by the type and the
magnitude of shear characteristics [15]. If the incident flow
is steady in time and linearly sheared as shown in Fig. 1, the
flow velocity is

U(z) = Uref

[
1+ β

( z
L
−

1
2

)]
, (18)

whereUref is the velocity at the mid-span of structure andβ is
the incident flow shear parameter which is non-dimensional.
To understand the effect of flow shear characteristics on the
riser VIV, we consider an extremity case, where the incident
flow is uniform along the span and hence the shear param-
eter reaches its minimum value. Here we set the velocity
of uniform flow as the value ofUref. Therefore when the
towing speed is 0.54 m/s in the preceding case, the corre-
sponding uniform flow velocity is 0.27 m/s. The simulation
of riser VIV is also performed with the same wake oscillator
model and the results are made comparison with the associ-
ated shear flow case.

Figures 12 and 13 show the RMS values of the CF and
IL displacements along the riser, respectively. The RMS val-
ues in linearly shear flow are also presented in both figures.
It is clear that the riser response in uniform flow is a com-
bination of traveling wave and standing wave in IL or CF
direction. Comparing with the CF response in linearly shear
flow, one notices that the excited riser modes are different. In
uniform flow the excited mode number is 7th, while in shear
flow the dominant mode number is 11th. Moreover the am-
plitude in uniform flow is larger than it in shear flow, which
may be interpreted by considering the varied size of lock-in
region as the different flow shear parameters. As the flow
shear parameter increases the extent of local lock-in along
the span of riser reduces [16], which means the energy trans-
ferred from the wake into the riser reduces, so that the am-
plitude of riser vibration decreases.

In Fig. 13, the riser response in linearly shear flow
shows that the traveling wave is dominant. The wave is ex-
cited at the upper part of the riser and gets damped as it prop-
agates downwards. It means that energy is inputted to the
riser in a certain location where the fluid coefficient in phase
with velocity is positive, and then the energy is transferred to

adjacent areas where the velocity of the current is different
and the same coefficient is negative. Hence the propagating
energy is dissipated at these adjacent areas. Shear flow ex-
hibits this phenomenon, while uniform flow does not.

Fig. 12 Comparison of CF displacement RMS under uniform and
shear flow conditions

Fig. 13 Comparison of IL displacement RMS under uniform and
shear flow conditions

Figure 14 shows the effect of the flow shear character-
istics on the number of modes contributing to the response
of the riser. A single dominant peak is presented in Fig.
14a. This means that for uniform flow case the riser response
is dominated by a single frequency and characterized by a
single vibration mode. Nevertheless there are multiple fre-
quency peaks in linearly shear flow case as show in Fig. 14b.
Multiple peaks suggest that the riser response in shear flow
is a multi-mode response. It was also reproduced by Violette
et al. [10] and Lucor and Triantafyllou [15] that the transi-
tion from multimode to single-mode response is due to the
variation of flow shear parameter.
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Fig. 14 PSD of CF displacement at midspan of riser.aUniform flow case andU = 0.27 m/s;b Linearly shear flow case andUtow = 0.54 m/s

5 Conclusions

A three dimensional model is presented to formulate the
vortex-induced vibrations of a long circular cylinder placed
in shear flow, similar to the type of riser or tension leg. Wake
oscillator model based on van del Pol equation is used to sim-
ulate the wake dynamics in the CF direction and extended to
the IL direction. The oscillators are distributed along the
cylinder. The vortex shedding frequency is derived from
local current velocity. Correlation effect between adjacent
oscillators along the span is ignored. Coupling effect due
to cylinder vibration on the wake oscillator is modeled by
the acceleration of cylinder. Moreover the coupling term be-
tween IL and CF fluid forces is introduced to reflect the rel-
ative motion of cylinder to current.

Validations of the simulation against experimental data
show that the presented model can simulate some dynamic
features of long slender cylinder VIV in shear flow. The
spanwise average RMS displacement does not increase with
towing speed. The vibration frequency of CF or IL approx-
imately fit the Strouhal frequency and increases with tow-
ing speed. A principle feature of riser modes of CF is that
they are combination of standing and traveling waves while
in IL direction the traveling wave is dominant in most cases.
The difference of vibration mode of IL between simulation
and experiment is related with whether the influence of var-
ied added mass is considered or not. Comparing with uni-
form flow case, we draw a conclusion that the incident flow
profile has significantly influenced the vibration characteris-
tics of riser including the vibration amplitude, extent of fre-
quency range, excited mode number and so on. The pre-
sented model also reproduces the transition from multimode
to single-mode response due to the variation of current ve-
locity profile.

In addition, because of the simplicity of the model, all
the results presented in this paper require only a few hours of
CPU time on a PC. This means that the present model is ef-

ficient to undertake comprehensive parametrical studies for
VIV of long cylinders.
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