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a b s t r a c t

We present experiments on transition to chaos in thermocapillary convection in a rectangular pool of
silicone oil. The applied temperature difference between the two sidewalls is adjusted in the range of
0–43 �C to observe various dynamic states. The applied temperature gradient along the fluid–gas inter-
face drives shear flow along the free surface from hot to cold and a back flow in the underlying layer. With
the increase of the temperature gradient, the thermocapillary convection will transit from steady flow to
regularly oscillatory flow, and finally to chaos. A temperature measurement system, which consists of
thermocouple, voltmeter and data-acquiring computer, is used to record the temperature of the liquid
dynamically. In order to identify the different dynamic regimes from steady flow to chaos, fast Fourier
transform and fractal theory are used to analyze the experimental data. The critical conditions for tran-
sition have been obtained and discussed by non-dimensional analysis. The quasi-periodic route and Fei-
genbaum route were observed for different experimental conditions, and the relationship between
oscillatory frequency and Marangoni number Ma has been discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Thermocapillary convection is driven through the surface ten-
sion gradient, which is produced by a temperature gradient along
the free surface. When the applied temperature gradient is in-
creased, the convection will transit from steady flow to a sequence
of instabilities, and finally to chaos or turbulence. The transition to
chaos in thermocapillary convection has been of interest for its
practical and theoretical value [1,2]. Critical conditions and transi-
tion routes are two important aspects of transition to chaos.

A large amount of researches has been done on the critical con-
ditions and instabilities at threshold. Smith and Davis [3,4] per-
formed a linear stability analysis of thermocapillary instability.
When the free surface is assumed to be flat and non-deformable,
they found two types of thermocapillary instabilities: stationary
longitudinal rolls and hydrothermal waves. When the free surface
is thought to be deformable, the instability of surface wave was ob-
tained. And then the theoretical analysis of the thermocapillary
instabilities have been made up by Parmentier [5] for the consider-
ation of buoyant effect, Mercier and Normand [6] for the introduc-
tion of heat exchange to the atmosphere and Kuhlmann [7] for
three-dimensional flow. Experiments on thermocapillary instabil-
ity have been conducted by Riley and Neitzel [8]. They have ob-
served two kinds of instabilities through instantaneous
thermograph in a rectangular pool. For small Bond number, the ori-
ll rights reserved.
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ginal steady unicellular flow transits to hydrothermal waves. For
large Bond number, it transits to steady multicellular flow first,
and then to oscillating multicellular flow, which features steady
multicellular structures near the hot wall and a pair of oblique
waves near the cold wall. Not only the hydrothermal waves, but
Burguete [9] has also observed the instability of stationary rolls
for deep liquid layer by means of shadowgraph images. Critical
temperature differences for several aspect ratios have been
collected.

Transition routes from laminar to turbulence regime in
Rayleigh–Benard convection [10–13] and Benard–Marangoni con-
vection [14] have been studied extensively both experimentally
and numerically. While the temperature-gradient directions in
the convections mentioned above are in vertical, transition routes
in thermocapillary convection applied with horizontal tempera-
ture-gradient have been much less investigated. Bucchignani and
Mansutti [15,16] reported the numerical results of bifurcation pat-
tern of thermocapillary convection. They used the Rayleigh num-
ber Ra as the bifurcation parameter. When Ra = 4.25e8, an
unsteady periodic flow with a fundamental frequency was ob-
tained. Then an increase of Ra at 4.3e8 leads to the second Hopf
bifurcation from the periodic flow to a quasi-periodic regime with
two incommensurate frequencies. At Ra = 5e8, the presence of a
quasi-periodic regime with three incommensurate frequencies
has been observed. And then it develops into chaotic flow.
This kind of bifurcation sequence with the characteristic of
quasi-periodic bifurcation is named Ruelle–Takens–Newhouse
route, which is one of three well-known routes to chaos. [2]
Besides the Ruelle–Takens–Newhouse route, the Feigenbaum
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Nomenclature

h depth of the liquid layer, m
t time, s
v dynamic viscosity, Pa s
c kinetic viscosity, m2 s�1

Lx stream-wise domain length, m
g gravitational acceleration, m s�2

T temperature of the measurement point, �C
4T applied temperature difference between the two

sidewalls, �C

f1 the first fundamental frequency, Hz
f2 the second fundamental frequency, Hz

Greek symbols
b thermal expansion coefficient, 1/�C
j thermal diffusivity, m2 s�1

q density, kg m�3

r surface tension, N m�1

458 P. Zhu et al. / International Journal of Heat and Mass Transfer 57 (2013) 457–464
route is characterized by period-doubling bifurcation, and the
Pomeau–Manneville route by intermittent appearance of periodic
and chaotic phases. The other two transition routes were not
reported in Mansutti’s study. There is also a lack of experimental
results of transition routes in thermocapillary convection in
rectangular pool.

Study on transition to chaos in thermocapillary convection is
beneficial to explore the mechanism of thermocapillary instability.
And experiments on transition routes of thermocapillary convec-
tion in rectangular pool need to be studied to make up the lack.
The aim of the present research work is to obtain critical conditions
for the transition, and to identify transition routes to chaos. To
achieve the goal, we designed a temperature measurement system
with high resolution to record the temperature of the liquid
dynamically. In order to identify the transition routes from steady
flow to chaos, fast Fourier transform and fractal theory are used to
analyze the experimental data.

The paper is organized as follows: Section 2 gives a brief
description of the thermocapillary problem and the analysis meth-
od to investigate it. In Section 3, we first study the critical condi-
tions for the transition; our results are discussed and compared
with others. Then, transition routes to chaos are studied for two
experimental conditions; transitions in the two conditions follow
the quasi-periodic route and Feigenbaum route, which is identified
experimentally in thermocapillary convection in rectangular pool
for the first time. Finally, the main findings are summarized in Sec-
tion 4.

2. Experimental setup and procedure

In order to research on evolvement of temperature oscillation in
our laboratory, we have constructed a buoyancy–thermocapillary
convection system as shown in Fig. 1. The rectangle pool is made
up of a right hot end with the thickness of 6 mm made of copper
heated by an electrothermal film and a left cold end with the same
thickness. The horizontal cross-section of the pool is 52 � 36 mm,
and the height of the pool is 6 mm. The front, rear and bottom side
of the pool is made of optical glass K9 with the thickness of 6 mm.
Fig. 1. Controlling system for buoyan
In our experiment, the working fluid is silicone oil of 0.65, 1, and
1.5 cSt whose Prandtl numbers are equal to 10, 16, and 25 respec-
tively. The horizontal temperature gradient in the fluid layer will
be established between the two copper walls. A DC electrical
power is controlled by a temperature controller to work the elec-
trothermal film to heat the hot end. The temperatures of the two
copper walls are measured through two T-type thermocouples.
With the increase of the temperature difference between the two
copper walls, the convection in the fluid layer in the rectangle pool
will transit from stable to unstable. The working fluid used in our
experiments is silicone oil 0.65, 1, and 1.5 cSt, whose physical
properties are given in Table 1.

To record the temperature evolvement in the fluid layer in a
period of time, we have designed a temperature measurement sys-
tem, which consists of a thermocouple, a voltmeter, and a personal
computer. The sensor in the system is thermocouple, the diameter
of whose wire is about 60 lm. The operating principle is shown in
Fig. 2. Thermocouple transfers the temperature signal to voltage
signal, which will be measured by the voltmeter. Finally, the tem-
perature is calculated and is recorded by personal computer. Dur-
ing our experiment, the temperature magnitudes are recorded
with the sampling rate of 5 Hz.

To identify the different dynamic regimes during the transition
to chaos, the fast Fourier transform is used to calculate the power
spectrum of a dynamic variable. Periodic, quasi-periodic and peri-
od-doubling flows can be recognized from the power spectra. Cha-
otic flow is considered to occur, when a signal broadband develops
in the power spectrum.

Fractal theory becomes more and more popular in the applica-
tion of chaotic dynamic analysis. Chaotic time series can be
represented with a fractal through reconstruction technique,
which stems from the embedding theorem developed by Takens
[17] and Sauer [18]. Fractal dimension D, one of the important
and internal characteristics of a fractal, is usually estimated by
calculating correlation dimension Dm. GP algorithm proposed by
Grassberger and Procaccis [19] is a simple and reliable method
to determine Dm. In the method, a correlation integral Cm(r) is
defined as
cy-thermocappilary convection.



Table 1
Physical properties of silicone oil 0.65, 1 and 1.5 cSt at 25 �C.

Silicone oil (cSt) c (m2 s�1) q (kg m�3) b (�C�1) j (m2 s�1) r (N m�1) @r=@T (N m�1 �C�1) Pr = v/j

0.65 6.5e�7 760 1.35e�3 6.67e�8 1.59e�2 �8.36e�5 10
1 1e�6 818 1.29e�3 6.19e�8 1.69e�2 �7.55e�5 16
1.5 1.5e�6 852 1.27e�3 5.95e�8 1.77e�2 �7.35e�5 25

Fig. 2. Diagnostics techniques diagram of temperature measurement system.
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CmðrÞ ¼
1

l2

Xl

i¼1

Xl

j¼1

hðr � jjXi � XjjjÞ;
where h is the Heaviside function, Xi and Xj are a pair of points in the
reconstructed space of dimension m, and l is the total number of
data points. Then the correlation dimension Dm is defined as
Dm ¼ lim
r!0

ln CmðrÞ
ln r

So, to obtain the correlation dimension Dm, one should first plot
the lnCm(r)–lnr curve through increasing the value of m until the
slope of the linear variation part is almost invariable. Then the con-
vergent slope is regarded as the correlation dimension Dm. For
deterministic chaos, there always exists a convergent slope as
Dm, which is a real number larger than 2. While it is random, the
slope is always growing with m. Therefore deterministic chaos
and random signal can be distinguished through the existence of
correlation dimension.
Fig. 3. Temperature evolution at one point of fluid layer in rect
3. Results and discussions

A typical evolvement of transition to chaos is shown in Fig. 3,
which is indicated by the temperature evolution in fluid layer. Dur-
ing the experimental process corresponding to Fig. 3, the applied
temperature difference is controlled to be 11 �C first, then it is in-
creased to 30 �C gradually from t = 600 s to t = 1600 s, and then it is
kept until 2350 s. The added stable periodic state was measured
with the same condition when the applied temperature difference
is controlled to be 16 �C which is during transition process. When
the fluid layer is applied with the small temperature difference
4T = 11 �C, the temperature at the measurement position in the
fluid layer maintains a certain value; at this moment the flow in
the rectangular pool is laminar. When the temperature difference
reaches a critical value 4Tc, the temperature begins to oscillate
periodically. When the temperature difference4T is increased fur-
ther, the temperature oscillation will become more and more non-
periodic, and finally transit to chaos; meanwhile, the state of the
convection becomes turbulent. In this study, our focuses are the
critical conditions for temperature oscillation and the transition
routes from the first threshold to chaos.

3.1. Critical conditions

The state of the flow in the rectangular pool can be reflected by
the time history of the temperature at one measurement point in
the fluid layer. Fig. 4(a) shows the time history of temperature
when the fluid layer is applied with the temperature difference
4T = 6.3 �C. As we can see, the temperature varies randomly in a
small range of ±0.002 �C. These temperature variations in the small
range are just caused by environmental disturbance and measure-
ment error. So the state of the flow is laminar, and it is below
threshold. In Fig. 4(b), while the temperature difference reaches
9.9 �C, the measurement temperature oscillates periodically with
the amplitude of 0.11 �C. So the convection has become oscillated,
and it is above the first threshold.

Since the time histories of temperature below and above
threshold can be measured as shown in Fig. 4, the critical
angular pool for silicone oil 1 cSt with the depth of 3 mm.
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Fig. 4. Time history of temperature for silicone oil 1cSt with the depth of 2 mm:
(a) 4T = 6.3 �C (b) 4T = 9.9 �C.
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Fig. 6. Effect of Bond number and aspect ratio on the critical Marangoni number.
(+,4) are experimental results obtained by Burguete [9]; (}) are experimental
results obtained in this study.
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temperature difference can be obtained by narrowing the range
between the two different 4T. The critical temperature differences
of oscillatory flow for different fluid depths are collected in Fig. 5.
We have observed the temperature oscillation just for a certain
range of layer depth; it is from 1.15 mm to 3.9 mm for silicone
oil 0.65 cSt, and from 1.6 mm to 3.8 mm for silicone oil 1 cSt. For
the fluid layer which is too thin, the mechanism of the destabiliza-
tion is different because of the complication of the basic flow.
Owing to the good immersion of experimental fluid with the wall
of the rectangular pool, the fluid layer with larger depth is harder
to be established. The dependence of the critical temperature dif-
ference on the depth of the fluid layer is consistent with the results
obtained by Burguete [9]. The non-monotonic variation of4Tc with
depth is thought to be caused by the different oscillation modes,
which is of interest in our next step work. And the details of the
critical conditions for oscillatory flow will be discussed below.

As we all known, the thermocapillary instability is basically dri-
ven by the tension gradient along the surface. So the incipience of
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Fig. 5. Critical temperature differences vs
the oscillatory flow can be indicated by the critical Marangoni
number Mac, defined as
Mac ¼ ð@r=@TÞDTh2
=ðqcLjÞ

In our experiment on the ground, the effect of the buoyancy
cannot be neglected. And the relative strength of buoyant forces
to thermocapillary forces is measured by the Bond number, defined
as
Bo ¼ qgbh2
=ð@r=@TÞ

In Fig. 6 the critical Marangoni numbers for liquid layer of
0.65 cSt are shown. The results drawn in solid line are obtained in
our study. The critical Marangoni numbers become larger with the
increase of the Bond number. According to the definition of the Bond
number, the effect of the buoyancy becomes larger with the increase
of the Bond number. So we can infer that the enhancement of the
buoyant effect in the whole flow can stabilize the convection; the
inference is in agreement with the conclusion deduced from the
experimental results measured by Schwabe and Scharmann [20].
Moreover, the results drawn in dashed line were collected by
Burguete [9]. With comparison of the three groups of critical
Marangoni numbers, the dependence of the critical condition on
the aspect ratio C ¼ Lx=h is shown obviously. For larger aspect ratio
of the fluid layer, thermocapillary convection in the rectangular pool
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. fluid depths: (a) Pr = 10, (b) Pr = 16.



Fig. 7. Time history of temperature(left)and power spectra(right):(a) 4T = 15 �C; (b) 4T = 17.8 �C; (c) 4T = 19.8 �C; (d) 4T = 23.5 �C; (e) 4T = 29.3 �C.
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is easier to destabilize to oscillatory flow. This conclusion is
consistent with the results of experimental results for different
aspect ratios by Burguete [9].

3.2. Transition routes

A sequence of temperature records and corresponding power
spectra for various temperature differences is shown in Fig. 7. The
evidence is obtained for silicone oil 1 cSt with the depth of 3 mm.
Above the first threshold, thermocapillary flow first destabilizes
to oscillate periodically, as can be seen from the time history
of temperature and power spectra when 4T = 15 �C in Fig. 7(a).
In the power spectrum, besides fundamental frequency
f1 = 0.163 Hz, there are also several harmonics at integral multiples
of the fundamental. The flow becomes quasi-periodic when the
temperature difference is increased to 17.8 �C, as shown in
Fig. 7(b). A second fundamental frequency f2 = 0.226 Hz appears,
and the former one slightly changes to f1 = 0.187 Hz. And all the
other peaks can be expressed by the linear combination of the
two fundamental frequencies. When the temperature difference is
increased to 19.8 �C, a third fundamental frequency appears, as
can be seen in Fig. 7(c). In the power spectrum, all the peaks can
be expressed by the linear combination of three incommensurate
frequencies: f1 = 0.204 Hz, f2 = 0.246 Hz, f3 = 0.130 Hz. As the



Fig. 8. Time history of temperature(left)and power spectra(right): (a) 4T = 28.1 �C; (b) 4T = 31.4 �C; (c) 4T = 32.3 �C; (d) 4T = 34.7 �C; (e) 4T = 43 �C.
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temperature difference is increased further to 23.5 �C (in Fig. 7(d)),
the peaks in the power spectrum will become more; because of the
overlap of the peaks, some broaden peaks will appear in local. Final-
ly, the broaden peaks will develop to a broadband, as can be seen in
Fig. 7(e). Rather than the broadband caused by the environmental
noises, the signal broadband with the power of 3 order larger is
due to the evolvement of flow oscillation. The appearance of the sig-
nal broadband reveals that the flow becomes chaotic. So we can
summarize that, after the first threshold, the thermocapillary flow
experience periodic state, quasi-periodic state, and finally become
chaotic. During the quasi-periodic route, the temperature oscilla-
tion experiences quasi-periodic state with three incommensurate
frequencies, which is necessary in the Ruelle–Takens–Newhouse
route. But different from the Ruelle–Takens–Newhouse route, the
oscillation doesn’t transit to chaos immediately. When the
temperature difference is increased further, the number of
frequency increases gradually. With the development of the signal
broadband, the temperature oscillation transits to chaos.

Besides the quasi-periodic route, we have also observed the Fei-
genbaum route for silicone oil 1.5 cSt with the depth of 2 mm,
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which is characterized by period-doubling bifurcation. After the
incipience of the oscillation, the flow still first becomes periodic
state, whose power spectrum consists of a fundamental frequency
f1, and several harmonics, as we can see in Fig. 8(a). The first per-
iod-doubling bifurcation appears when the temperature difference
is increased to 31.4 �C, as shown in Fig. 8(b). In the power spec-
trum, peaks at 1/2 f1 and its harmonics are produced. The second
period-doubling bifurcation occurs when 4T = 32.3 �C, producing
peaks at 1/4 f1 and its harmonics in the power spectrum, as we
can see in Fig. 8(c). The broadband is developing when
4T = 34.7 �C (in Fig. 8(d)), and it is developed when4T is increased
to 43 �C (in Fig. 8(e)). The flow leads to chaos finally. Through ana-
lyzing the quasi-periodic route and Feigenbaum route, they are
two different methods of increasing frequency peaks to produce
the signal broadband, which is gradually developed from finite fre-
quency peaks to infinite.

During the transition to chaos, the thermocapillary convection
destabilizes from steady flow to oscillatory flow, and the oscilla-
tory frequency changes with the increase of Ma. Fig. 9 shows the
relationship of oscillatory frequencies with Ma for two different
experiment conditions. For the silicone oil 1 cSt with the depth of
3 mm, oscillatory frequency varies approximately linearly with
Ma, as shown in Fig. 9(a). While for the silicone oil 1.5 cSt with
the depth of 2 mm, oscillatory frequency first increases with Ma
gently, and then grows with Ma sharply. The proportional relation-
ship between oscillatory frequency and Ma displayed in our
experimental study is in agreement with numerical results simu-
lated by Yok-Sheung Li et al. [21,22].

The correlation dimension calculation presented in Fig. 10 re-
veals that the slope of the linear variation part of the lnC(r)–lnr
curve becomes independent of m quickly; it gives Dm = 6.86 at
m = 15 for silicone oil 1 cSt, and Dm = 10.56 at m = 23 for silicone
oil 1.5 cSt. The corresponding time history of temperature and
power spectrum are displayed in Figs. 7 and 8(e). Since the exis-
tence of correlation dimension is an important sign to distinguish
chaotic signal from random signal, we can prove again that, the
thermocapillary flow leads to chaos finally.

4. Conclusions

Transition to chaos in thermocapillary convection for different
conditions is studied experimentally in the present work. The crit-
ical temperature differences of the transition for different fluid
depths of silicone oil 0.65 cSt and 1 cSt are collected. The analysis
of non-dimensional parameters reveals that the enhancement of
buoyant convection and the reduction of aspect ratio can stabilize
the flow driven by temperature gradient; this conclusion is consis-
tent with the results by Schwabe [20] and Burguete [9]. Transition
for silicone oil 1 cSt with the depth of 3 mm follows the quasi-
periodic route to chaos, and it experiences periodic state, quasi-
periodic state, and finally become chaotic. Thermocapillary flow
for silicone oil 1.5 cSt with the depth of 2 mm follows the



464 P. Zhu et al. / International Journal of Heat and Mass Transfer 57 (2013) 457–464
Feigenbaum route, which undergoes 2 period-doubling bifurca-
tions. The proportional relationship between oscillatory frequency
and Ma obtained in our experimental study is in agreement with
numerical results by Yok-Sheung Li et al. [21,22].
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