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Dynamic wetting of a droplet on lyophilic pillars was explored using a multiscale
combination method of experiments and molecular dynamics simulations. The excess
lyophilic area not only provided excess driving force, but also pinned the liquid around
the pillars, which kept the moving contact line in a dynamic balance state every period
of the pillars. The flow pattern and the flow field of the droplet on the pillar-arrayed
surface, influenced by the concerted effect of the liquid–solid interactions and the
surface roughness, were revealed from the continuum to the atomic level. Then, the
scaling analysis was carried out employing molecular kinetic theory. Controlled by the
droplet size, the density of roughness and the pillar height, two extreme regimes were
distinguished, i.e. R ∼ t1/3 for the rough surface and R ∼ t1/7 for the smooth surface.
The scaling laws were validated by both the experiments and the simulations. Our
results may help in understanding the dynamic wetting of a droplet on a pillar-arrayed
lyophilic substrate and assisting the future design of pillar-arrayed lyophilic surfaces in
practical applications.
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1. Introduction
Dynamic wetting of a droplet on a lyophilic pillar-arrayed substrate is of significant

interest in a broad range of applications, such as biomedicine (Nagrath et al. 2007),
microfluidics (Skelley et al. 2009), lab-on-a-chip (Fu, Mao & Han 2009) and fog-
harvesting (Parker & Lawrence 2001). To utilize these phenomena in practical
applications (Quéré 2008), it is essential to explore and understand the dynamic
wetting behaviours influenced by the combined effect of wetting properties and the
surface roughness ro, which is the ratio between the actual and projected surface areas.
The liquid–solid interactions at the interface become rather complicated (Karniadakis,
Beşkök & Aluru 2005). The forest of pillars seems to introduce obstacles in the flow
and increases the active area. In fact, owing to the excess solid surface, the topology
enhances the wettability and the flow velocity (McHale et al. 2004), causing the initial
lyophilic surface to become superlyophilic. As illustrated in figure 1, ro = 1 + 4dh/p2

for pillars, where d, h and p are the pillar size, the pillar height and the period of the
pillars.
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FIGURE 1. (Colour online) (a) Snapshot of a droplet on the pillar-arrayed lyophilic surface.
Inset: scanning electron micrograph (SEM) of the pillar arrays. The samples are listed in
table 1. Illustration of a droplet wetting (b) on a smooth lyophilic surface, and (c) on a
pillar-arrayed lyophilic surface. Rb, Hb and Rf are the radius and height of the bulk droplet,
and the average fringe radius, respectively; d, h and p are the pillar size, the pillar height and
the period of the pillars, respectively.

The dynamic wetting of a droplet on a lyophilic smooth solid surface has been
studied intensely for decades. Since a liquid droplet is much smaller than the capillary
length lCA = √γLV/ρg (γLV , ρ and g are the liquid–vapour interfacial tension, liquid
density and the acceleration of gravity, respectively), gravity is ignored. Hence, the
driving force is the interfacial tension, while energy dissipation occurs around the
moving contact line (MCL). There are essentially two theoretical models to interpret
the physics of the wetting behaviours (Bonn et al. 2009; Ren, Hu & E 2010), known
as the hydrodynamic model and molecular kinetic theory (MKT).

(i) Within the framework of the hydrodynamic model, three length scales are
distinguished (Dussan 1979). The macroscopic region is on the scale of the droplet
radius, in which the apparent contact angle θa is defined; the mesoscopic region is
on the scale of 3Ca R/θa (the capillary number Ca= µU/γLV , and µ, U and R are
the viscosity, velocity and droplet radius, respectively) around the three-phase zone,
in which the interface is bent by the competition between surface tension and
viscosity, resulting in a rapid change of interface slope; the microscopic region is
on the scale of nanometres around the contact line, where the microscopic contact
angle θm is governed by the short-range intermolecular forces, i.e. the disjoining
pressure (Derjaguin, Churaev & Muller 1987). By solving the Navier–Stokes
equation with no-slip boundary, Tanner (1979) first obtained the scaling law of
R ∼ t1/10. However, Huh & Scriven (1971) noted a paradox and pointed out that
the no-slip boundary condition would lead to stress singularity at the MCL. One
solution is to use a slip boundary instead (Dussan 1976; Ren & E 2007). Cox
(1986) carried out an asymptotic analysis to relate quasi-static macroscale and
microscale via rapid mesoscale viscous bending. The other solution is to take
into account nano/microstructures, which are neglected in ideal models, such as
the precursor film (PF) proposed by de Gennes (1985) or the roughness of the
solid surface (Hocking 1976). These surface structures, i.e. PF and the surface
roughness, are of great importance in the dynamic wetting of a droplet on the
lyophilic pillar-arrayed surface, as discussed in §§ 2 and 3.
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(ii) Within the framework of the MKT model, two length scales are distinguished
(Blake 2006). On the molecular scale, the forward and backward frequencies of
the liquid molecules in the three-phase zone are modified by the driving force; on
the macroscale, the motion of the MCL is determined by the statistical dynamics
of the molecules. The energy dissipation is caused by the adsorption–desorption of
the liquid molecules on the solid surface, and represented by the effective dynamic
friction occurred at the MCL. The MKT model is a bottom-up model, obtaining
statistic effects based on information from the atomic level. The scaling law for a
droplet on a smooth surface is R∼ t1/7 (Blake 1993), and validated by experiments
(Fetzer, Ramiasa & Ralston 2009). In § 4 we will discuss MKT in detail and
analyse the dynamic wetting of a droplet on the pillar-arrayed surface using MKT.

However, the dynamic wetting of a droplet on a lyophilic pillar-arrayed surface is
far from well understood. Previous studies made an effort to determine the scaling law
Rf ∼ tn of the fringe film in the wicking process by employing the continuum theory,
where Rf and n are the propagation radius and the scaling exponent, respectively. The
pioneering work of Hasimoto (1959) estimated the viscous resistance of the pillars
to the fluid by idealizing the pillar arrays as infinitely long cylinders. Taking account
of both the viscous resistance from the pillars and the substrate, Ishino et al. did an
elegant scaling analysis based on the Washburn law to obtain two extreme regimes for
short and tall posts, respectively (Ishino et al. 2007). Then, Srivastava et al. (2010)
and Xiao, Enright & Wang (2010) developed this model to be more accurate. However,
while these studies all averaged the MCL to be a straight line (two-dimensional
problem) or a circle (three-dimensional problem), the MCL is actually a complex
curve (Courbin et al. 2007) and requires a multiscale study. Also, the previous studies
focused on the wicking process of a fringe film, i.e. a thin liquid film wetting the solid
surface, while a droplet is preferred in practical applications. Kim et al. proposed a
scaling law of Rf ∼ t1/4 in the early stage of a droplet spreading on the pillar array
using the hydrodynamic model (Kim et al. 2011), but the results could not degenerate
to a droplet on a smooth surface when ro approaches 1. There is a lack of a systematic
and multiscale study of the dynamic wetting of a droplet on the rough surface.

The dynamic wetting of a droplet on lyophilic pillars is essentially a multiscale
process. When a droplet is deposited on a lyophilic pillar array, the fringe penetrates
into the space among the pillars, while the bulk water spreads on the base of the
fringe. At the nanoscopic level as shown in figure 1(b), a thin liquid precursor film
propagating ahead of the nominal contact line is a crucial part of the dynamic wetting
process (de Gennes 1985; Teletzke, Davis & Scriven 1987; Yuan & Zhao 2010).
Within the forest of lyophilic pillars, driven by the microscopic disjoining pressure,
the PF propagates rapidly and forms a liquid molecular layer on the pillar surface.
At the microscopic level, driven by the hydrodynamic pressure, the fringe advances
on the base of the PF and fills the space among the pillars, as shown in figure 1(c).
On one hand, the grooves between the pillars provide excess driving force to the
PF and the fringe (Yuan & Zhao 2012); on the other hand, the pillars bring extra
potential barriers to the PF and excess resistance to the fringe. How could these two
opposite effects brought by the pillars achieve a balance in the fast advancing MCL?
On the macroscopic level, the radius expansion of the droplet could be observed
and measured when the liquid super-wets the surface. To understand the complex
liquid–solid interactions of a droplet on a pillar-arrayed lyophilic surface from the
atomic to the continuum level, a multiscale study is required.
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Sample 1 2 3 4 5 6

d (µm) 11.66 8.84 20.29 9.11 8.82 9.18
p (µm) 17.71 15.69 26.56 20.0 24.7 29.94
h (µm) 10.18 10.35 10.18 10.35 10.35 10.35

φs = d2

p2
0.4335 0.3174 0.5836 0.2075 0.1275 0.0940

ro= 1+ 4dh

p2
2.51 2.49 2.17 1.94 1.60 1.42

TABLE 1. Substrates of with different roughness used in the experiments.

In this article, the dynamic wetting process of a non-volatile droplet on lyophilic
pillars was studied employing multiscale experiments and molecular dynamic (MD)
simulations. Under a low-magnification microscope, the MCL seemed to be smooth
and circular. Under a high-magnification microscope and a high-speed camera, the
details of the MCL were revealed. The pillars accelerated the slow flow, while also
resisting or pinning the fast flow. To reach a balance in the propagating velocity, the
fringe advanced in a complex pattern repeated during every period of the pillars. The
flow pattern and the flow field of the droplet on the pillar-arrayed surface, influenced
by the combined effect of the liquid–solid interactions and the surface roughness, were
revealed from the continuum (experiments) to the atomic level (MD simulations).
Based on the results from the multiscale experiments and MD simulations, the
dynamic process and the physical mechanisms were analysed using molecular kinetic
theory (MKT). Controlled by the droplet size, the density of roughness and the
pillar height, the scaling laws for two regimes were obtained: R ∼ t1/3 for the rough
surface and R ∼ t1/7 for the smooth surface. Both the experiments and the simulations
validated the scaling laws from MKT. Our results may help in understanding the
dynamic wetting of the droplet on a pillar-arrayed lyophilic substrate and assisting the
future design of pillar-arrayed lyophilic surfaces in practical applications.

2. Multiscale experiments
The micropillar arrays were fabricated on a silicon wafer at the Institute

of Microelectronics, Peking University. The Si (100) surface was etched using
conventional photolithography followed by a deep reactive ion etching process. The
inset in figure 1(a) shows the pillar-arrayed surface (sample 5, table 1). The
topological parameters [d, p, h] for experimental samples were varied, as listed in
table 1. Since the fringe of the droplet is a thin liquid film, the evaporation of
the liquid would greatly affect the wetting process. Hence the liquid was chosen
to be non-volatile silicone oil, so that the evaporation effect on the wetting process
could be eliminated. We used silicone oil with density ρ = 980 kg m−3, viscosity
µ = 0.091 Pa s and surface tension γLV = 0.021 N m−1, which completely wets the
smooth silicon surface. According to Wenzel’s relation (Wenzel 1936), the silicone oil
would superwet the micropillar-arrayed silicon surface. Since the capillary length for
silicone oil is lCA = √γLV/(ρg) ≈ 1.48 mm, the ratio R0/lCA is less than 17 % (the
droplet radius R0 is about 0.25 mm), which makes the surface tension take priority
over gravity in the wetting process. The droplet was deposited on the micropillar-
arrayed surface using a micropipette. The liquid motion was captured using a high-
magnification microscope (DZ3, Union) and a high-speed camera (HotShot 512 sc,
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FIGURE 2. A schematic of the experimental setup.
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FIGURE 3. (Colour online) (a) Snapshots of the whole droplet under an optical microscope,
1t = 0.5 s. (b–d) Snapshots of different parts of the droplet labelled in (a), under a high-
magnification microscope and high-speed camera, (b) 1t = 50 ms, ro = 1.42 (sample 6,
table 1); (c) 1t = 80 ms, ro = 2.49 (sample 2, table 1); (d) 1t = 8 ms, ro = 1.94 (sample
4, table 1).

NAC) at a frame rate up to 5000 fps. A schematic of the experimental setup is shown
in figure 2.

When the droplet was deposited on the pillar-arrayed lyophilic surface, the
droplet rapidly spread and could be divided into two parts: the bulk and the
fringe (figures 1 and 3). The MCL advanced with a characteristic capillary velocity
of UCA ∼ γLV/µ ∼ 0.1 m s−1. The fringe propagated much faster than the bulk
(Rf > Rb) due to the driving force induced by the excess lyophilic surface. Under
low-magnification observation, the outline of the fringe was a circle, as shown in
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FIGURE 4. (Colour online) Experiments. (a) Propagation of the fringe radius with respect to
time on different rough substrates, as listed in table 1. The dotted red and dashed black lines
represent the scaling laws R ∼ t1/7 and R ∼ t1/3, respectively. (b–d) Propagation of the fringe
radius with respect to time corresponding to figure 2(b–d), respectively. In (b), the red line is
a fitted line using the power law, while the dashed blue line is a differential to the red line.

figure 3(a). The corresponding Rf –t plots for different samples (table 1) are shown
in figure 4(a). Obviously, the propagation of the droplet on a rough surface (colour
points) and a smooth surface (black points) followed different scaling laws. Although
with different speeds depending on ro (>1), the fringe approximately obeyed a scaling
law of Rf ∼ t1/3. Meanwhile, the radius of a droplet on a smooth surface (ro = 1)
obeyed a scaling law of R ∼ t1/7, which was in agreement with previous experiments
(Fetzer et al. 2009) and simulations (De Coninck & Blake 2008). The micropillar
array accelerated the wetting process, causing the lyophilic solid surface to become
superlyophilic. Observed under the microscope, the dark area means there is an
interface inclined with the substrate, while the bright area means the interface is
parallel to the substrate.

Under a high-magnification microscope, the propagation of different parts of the
fringe was quite different. In figure 3(b), the fringe advanced in the x direction.
The MCL was initially (1t = 0.47 s, figure 3b) linear on the substrate at a velocity
U ∼ 0.01 mm s−1 (dashed blue line, figure 4b). Once the MCL reached the pillars
(1t = 0.52 s, figure 3b), the excess driving force forced the MCL to accelerate,
making the liquid propagate much faster at the interior corner between the pillar
and the substrate, known as the Concus–Finn effect (Concus & Finn 1969). In an
interior corner with opening angle 2α, the equilibrium velocity could be calculated as
U = fUCA = fγLV/µ (Weislogel & Lichter 1998), where f = sinα(cos θ0 − sinα)/S
is the topological coefficient for capillary flow at the interior corner. θ0 is the
equilibrium contact angle. S is the slenderness ratio of the interior corner, i.e. the
ratio of the length to the height of the liquid in the interior corner (L/H in
Weislogel & Lichter (1998, figure 3)). So, the initial excess velocity could be
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estimated as

Uex = γLV

Sµ
[sinα1 (cos θ0 − sinα1)− sinα2 (cos θ0 − sinα2)] . (2.1)

Substituting the experimental parameters into (2.1) (α1 = 45◦ is the interior angle
between the pillars and the substrate, α1 = 90◦ for the flat substrate, θ0 = 0◦, S ∼ 10),
the initial excess Uex is of the order of 1 mm s−1. Because the slow flow on the flat
substrate restrained the fast flow at the interior corner, the average velocity was about
0.1 mm s−1, as shown in figure 4(b). The fast and slow part of the fringe reached
a dynamic balance (1t = 0.57 s). Then, the liquid was pinned around the pillars
(1t = 0.62 s in figure 3b) and did not advance until the liquid between the two pillars
caught up. After the MCL passed the pillars (1t = 0.67 s in figure 3b), the top of
the pillars became blurry, which implied that the fringe climbed up the pillars and
covered the top. The front of the fringe is dark owing to the inclined liquid–vapour
interface. The MCL gradually decelerated to U ∼ 0.01 mm s−1 and spread again in a
straight line (1t = 0.72 s in figure 3b) on the substrate driven only by the interface
energy. In this process, the area between the first and second rows of micropillars
gradually became brighter, implying that the liquid had filled the space between
the pillars and gradually made the liquid–vapour interface parallel to the substrate.
Figure 3(b) corresponds to the black points during 1t ∈ [0.47, 0.72] s in figure 4(b).
This process repeated during every period of the pillars. And the average velocity of
the fringe gradually decreased because of the energy dissipations in the flow and in the
three-phase zone, in accordance with that in figure 4(a), as will be discussed in § 4.

In figures 3(c) and 4(c) the angle between the fringe velocity and the x direction
was about 12◦, while in figures 3(d) and 4(d) it is about 44◦. So unlike figure 3(b),
the liquid encountered the pillars in sequence. The fringe would also be accelerated
(Seemann et al. 2005) and pinned around the pillar one after another, making the MCL
a complex ‘zipping’ line (Courbin et al. 2007). The progress was also periodically
repeated. The zigzag lines at microscopic length scales formed a circle when observed
in low magnification. The high-magnification microscope and high-speed camera
provide us with more details of the propagation of the fringe and MCL. However,
to observe how the PF develops into a fringe and obtain the flow fields at atomic
level, MD simulations would not only provide us with a powerful tool to obtain
detailed information in the entire wetting process, but also be a good supplement to
the experiments to assist us in understanding the dynamic wetting process.

In the dynamic spreading process of a droplet on the pillar-arrayed surface, the
surface tension γLV , the viscosity µ and the inertia govern the liquid motions. For the
liquid, the ratio of viscous dissipation to surface tension and inertia is characterized
by a dimensionless number, the Ohnesorge number Oh = µ/√ργLVL, where ρ and L
are the density and characteristic length scale (we adopt L to be the period of the
pillars p), respectively. In the experiments, Oh ∼ 1 (ρ = 980 kg m−3, µ = 0.091 Pa s,
γLV = 0.021 N m−1 and L ∼ 10 µm for the silicone oil droplet at 20◦ and 1 bar), the
fringe advanced L∼ 1 mm during several seconds. In order to execute MD simulations
that are geometrically and physically similar to the experiments, a liquid–solid pair
should be carefully chosen so that the fringe propagates L ∼ 1 nm during several
nanoseconds. We choose the liquid to be water using the extended simple point charge
(SPC/E) water model (Berendsen, Grigera & Straatsma 1987) with µ = 0.729 mPa s
(González & Abascal 2010), ρ = 994 kg m−3, γLV = 0.0636 N m−1, (Vega & De
Miguel 2007), and L ∼ 1 nm for the SPC/E water droplet at 300 K and 1 bar.
Consequently Oh∼ 1 in the MD simulations, the same order as Oh in the experiments.
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FIGURE 5. (Colour online) (a–h) MD simulations of a droplet on the pillar-arrayed
hydrophilic surface (ro = 1.63, sample 3, table 2) from 0.0–2.8 ns; (1–8) side views of (a–h).
The dark grey and light grey balls are atoms of the substrate and the pillars, respectively. The
surface of the droplets is shown in cyan.

In this way, the dynamic motion of the liquid is physically similar in the experiments
and MD simulations. For the solid substrate, the roughness of the substrate ranges
from 1.00 to 2.51 in both the experiments and MD simulations. The topologies of
the pillar arrays were chosen to be geometrically similar in the experiments and MD
simulations.

3. Molecular dynamics simulations
Large-scale MD simulations implemented in LAMMPS (Plimpton 1995) were

carried out under a constant temperature of 300 K to explore the dynamic wetting
process of a droplet on a nanopillar-arrayed lyophilic surface at the atomic level. The
simulation domain is shown in figure 5(a): the simulation box is 16.3 nm× 16.3 nm×
20.0 nm. The rough substrate is a hydrophilic solid surface with a topography
based on pillars. In the SPC/E water model, the oxygen atoms were modelled
as charged Lennard-Jones (LJ) particles (σO–O = 0.3166 nm, εO–O = 0.650 kJ mol−1,
qO = −0.8476 e), while the hydrogen atoms were charged but without considering
LJ interactions between them (σH–H = 0.0 nm, εH−H = 0.0 kJ mol−1, qH = 0.4238 e).
The SPC/E model is a slight reparametrization of the simple point charge (SPC)
model, with a modified value of qO (charge on oxygen atoms) and qH (charge on
hydrogen atoms), in order to add an average polarization correction to the potential
energy function. The properties of the SPC/E water model have been well studied with
µ = 0.729 mPa s (González & Abascal 2010), ρ = 994 kg m−3, γLV = 0.0636 N m−1,
(Vega & De Miguel 2007) at 300 K and 1 bar, which are very close to those of
the real bulk water. The solid atoms were modelled as uncharged LJ particles with
σS–S = 0.2637 nm and εS–S = 42.5723 kJ mol−1, which were chosen to be hydrophilic
to the SPC/E water. The values of σ and ε between them were calculated according
to the Lorentz–Berthelot rule, σx−y = (σx−x + σy−y)/2 and εx−y = (εx−x × εy−y)

1/2,
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Sample 1 2 3 4 5 6 Smooth
d (nm) 1.0195 2.0390 1.6312 2.0390 2.4468 3.0585
p (nm) 2.0390 3.0585 3.2624 4.0480 4.8936 6.1170
h (nm) 1.0195 1.0195 1.0195 1.0195 1.0195 1.0195

ϕs = d2

p2
0.2500 0.4444 0.2500 0.2537 0.2500 0.2500

ro= 1+ 4dh

p2
2.00 1.89 1.63 1.50 1.42 1.33 1.0000

TABLE 2. Substrates of different roughness used in the MD simulations.

where the subscripts x and y represent the types of atoms. So σO–H = 0.1583 nm,
σS−H = 0.1319 nm, σS–O = 0.2902 nm and εO–H = 0.0 kJ mol−1, εS−H = 0.0 kJ mol−1,
εS–O = 5.2604 kJ mol−1. The LJ interactions between hydrogen and oxygen atoms, as
well as between hydrogen and solid atoms, were ignored. The total potential energy Eij

between two atoms i and j separated by rij is the sum of the LJ potential energy and
Coulombic pairwise interaction,

Eij = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+ ke

qiqj

rij
, (3.1)

where ε is the depth of the potential well, σ is the zero-crossing distance for the
potential, ke = 8.988 × 109 N m2 C−2 is the Coulomb constant, and q is the charge
on the atom. The cut-off length for both LJ potential and Coulombic interaction is
1 nm. The NVT ensemble (constant number of atoms, volume and temperature) was
used. The Nosé–Hoover thermostat, acting as a heat reservoir, with a time step of
1 fs was employed to regulate the temperature at 300 K. The water droplet with
diameter of 6 nm was placed on a hydrophilic surface with pillars of different sizes.
The topological parameters [d, p, h] for simulated samples are listed in table 2. The
evaporated water molecules quickly saturate the simulation box, so the evaporation
effect on the wetting process can be ignored.

In the MD simulations, the PF was defined to be a single layer of water molecules
in the leading edge of the droplet. As shown in figure 5, when the droplet was placed
on the substrate, both the PF and the bulk droplet propagated (Wang et al. 2009). The
PF advanced more quickly than the bulk droplet, as illustrated in figure 6(a). Once the
PF came into contact with the pillars, it accelerated, especially at the interior corner
between the pillar and the substrate, shown in figure 6(d). Because of the confinement,
the potential surface at the interior corner is lower and smoother than that on the solid
surface (Yuan & Zhao 2012). Hence a confined liquid molecule chain propagating
ahead of the bulk droplet, i.e. a precursor chain, at the interior corner are more stable,
possess less friction, and propagate faster than the PF with respect to the interior angle.
Moreover, owing to the lower potential at the interior corner, the liquid molecules
were pinned around the pillars (figure 6e), the PF climbed up to the top of the pillars
(figure 6b), and covered the pillar surface. Then, the fringe of the droplet advanced,
based on the PF, and filled the space between pillars, as illustrated in figures 5 and 6.
The bulk droplet propagated on the base of the PF and the fringe. The radius of the
wet area expanded.

The variations of average Rf , Rb and contact angle θ of the bulk droplet with
respect to t for different ro are plotted in figure 7. Obviously, the propagation of
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FIGURE 6. (Colour online) Schematic of (a) the precursor film (PF) reaching the pillars, (b)
the PF climbing up the pillars, (c) the fringe filling the space between pillars, (d) the precursor
chain (PC) along the interior corner, (e) the PC being pinned around the pillars, (f ) the fringe
filling the space between pillars. (a–c) Side view, (d–f ) top view. The dark (blue) and light
(grey) regions represent the liquid and the solid, respectively.

the droplet on a smooth surface (black squares) and a pillar-arrayed surface (colour
squares) followed different scaling laws. The radius of a droplet on a smooth surface
(ro = 1) obeyed a scaling law of R ∼ t1/7, in agreement with previous experiments
(Fetzer et al. 2009) and simulations (De Coninck & Blake 2008). Meanwhile, although
with different speed depending on ro (>1), the fringe approximately obeyed a scaling
law of Rf ∼ t1/3. The propagation velocity increased with the increase in roughness, as
discussed in § 4 below. If the smooth surface changed to a pillar-arrayed surface, the
scaling exponent would greatly change from about 1/7 to about 1/3. The topology
enhances the wettability, accelerates the propagation, and causes the initial hydrophilic
surface to become superhydrophilic. What is the physical mechanism of this transition?
In figure 7(a,b) we can find that although Rb expanded more slowly than Rf , they
scaled similarly, which is also validated by the experiments (Kim et al. 2011).
According to the MD simulations, we would assume αRb ∼ Rf ∼ tn in the next section.

4. Scaling analysis using molecular kinetic theory
We adopted MKT, which was proposed by Glasstone, Laidler & Eyring (1941) and

developed by Blake & De Coninck (2002), to obtain the scaling law when a droplet
propagates on a lyophilic rough surface (figure 8). According to the viewpoint of
MKT, the wetting process is a stress-modified molecular rate process. The motion
of the MCL is determined by the statistical dynamics of the molecules at the MCL.
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FIGURE 7. (Colour online) Simulations. Propagation of (a) the fringe radius and (b) the
bulk-droplet radius with respect to time. The dotted red and dashed black lines represent the
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Solid

Driving work w
Energy
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FIGURE 8. (Colour online) Schematic representation of the molecular kinetic model of
wetting.

In fact, when the liquid moves across a solid surface, the solid adsorbs and tends
to immobilize the liquid molecules, while the liquid molecules desorb and tend to
advance. Considering the equilibrium liquid molecules in the vicinity of a solid, their
advancing frequency κ+ and receding frequency κ− are the same: κ+ = κ− = κ0,
where κ0 is the equilibrium frequency and can be expressed in terms of the activation
energy 1G,

κ0 = kBT

h
exp

(
− 1G

NAkBT

)
, (4.1)
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where kB, T , h and NA are the Boltzmann constant, absolute temperature, the Planck
constant and Avogadro number, respectively. In the case of liquid molecules adsorbing
on a solid substrate, the activation energy 1G is related to the work of adhesion
between the solid and the liquid Wa and the spacing between surface sites λ. Hence,
we could obtain κ0 = (kBT/µvm) exp(−λ2Wa/kBT), where vm and µ are the molecular
flow volume and fluid viscosity, respectively (Blake & De Coninck 2002). Once the
materials and topology of the liquid–solid interface are confirmed, κ0 is a constant.

When a driving force is applied to the liquid molecules, the equilibrium is disturbed.
The advancing and receding frequencies are no longer in balance, and the contact line
moves relative to the solid. Under the driving work per unit area w, the corresponding
frequencies are

κ+ = κ0 exp
(

wλ2

2kBT

)
, (4.2)

κ− = κ0 exp
(
− wλ2

2kBT

)
. (4.3)

The driving force tilts the potential surface and makes it more difficult for molecules
to move in the opposite direction (figure 8). The resulting velocity of the MCL can be
expressed by

U = (κ+ − κ−) λ= 2
kBTλ

µvm
exp

(
−λ

2Wa

kBT

)
sinh

wλ2

2kBT
. (4.4)

In our case, the ratio of the driving work wλ2 to the thermal energy kBT is of the order
of 0.1–1; sinh wλ2/2kBT ∼ wλ2/2kBT would be a good approximation to simplify (4.4)
to U ∼ (wλ3/µvm) exp(−λ2Wa/kBT). Once the liquid–solid pair and the topology of
the substrate are fixed, µ, λ, vm, Wa are all constant, U ∼ w/µ.

The driving work per unit area w is equal to the total change of interface energy
when the droplet propagates, w= (γSV −γSL) ·ro−γLV cos θ , where γSL, γSV and γLV are
the solid–liquid, solid–vapour and liquid–vapour interface energies, respectively, and θ
is the instant contact angle. Taking account of Young’s equation (γSV − γSL = γLV cos θ0,
θ0 is the static contact angle) (Young 1805), (γLV/µ)ro · cos θ0 − U ∼ (γLV/µ) cos θ .
Considering the lubrication approximation (Hb � Rb, θ ∼ Hb/Rb ∼ 0) (Greenspan
1978), U ∼ γLVθ

2/µ. The droplet spreads at the characteristic capillary velocity
(γLV/µ), until it reaches an equilibrium state (U→ 0). In the equilibrium state, for
a rough surface (ro > 1) we obtain Wenzel’s relation, cos θ = ro · cos θ0 (θ < θ0)
(Wenzel 1936); for a smooth surface (ro= 1) we get Young’s equation (Young 1805).

When the droplet wets the substrate, the initial spherical droplet with radius R0

evolves into the bulk droplet and the fringe. Since the liquid is a non-volatile liquid,
the volume remains constant, V0 = Vbulk + Vfringe, i.e. 4πR3

0/3 = (πHb(3R2
b + H2

b) +
π(1 − ϕs)hR2

f )/6, where Rf is the average radius of the fringe and ϕs is the density of
roughness (ϕs = d2/p2 for pillars). In the spreading process, αRb ∼ Rf ∼ R is validated
by Kim et al. (2011) and our MD simulations, where α (α 6 1) is independent of time.
So θ ∼ Hb/Rb ∼ (8R3

0 − 6(1− ϕs)hR2
f )/3R3

b ∼ (8R3
0 − 6(1− ϕs)hR2)/3R3. This leads to

U = dR

dt
∼ γLV

µ

(
4R3

0

R3
− 3h

R

)2

, (4.5)

where h = (1 − ϕs)h is the effective height of the pillars. According to (4.5), we
can define a characteristic length L =√(4πR3

0/3)/(π(1− ϕs)h) ∼ R0

√
R0/h, which
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represents the maximum propagation radius of the fringe and also determines whether
the effect of surface roughness should be considered. Hence, two extreme regimes can
be distinguished. One is for the smooth surface and the other is for the rough surface.

(i) When L� Rf , i.e. relatively large droplet, short or sparse pillars, the effect of
surface roughness can be neglected. Here U ∼ γLVR6

0/µR6. The dimensionless
solution is R/R0 ∼ (t/τc)

1/7. The characteristic time τc = µR0/γLV for the droplet
to spread by R0 with capillary velocity UCA = γLV/µ is only controlled by the
characteristic properties of the bulk liquid, i.e. γLV/µ and R0. The scaling law of a
droplet spreading on a smooth solid surface is R/R0 ∼ (t/τc)

1/7, which is confirmed
by previous references (Blake 2006; Yuan & Zhao 2010), our experiments (black
squares in figure 4a) and our simulations (black squares in figure 7a). The contact
angle θ ∼ (R0/R)

3 ∼ t−3/7, which is validated in figure 7(c).
(ii) When L� Rf , i.e. relatively small droplet, long or dense pillars, the effect of

surface roughness dominates the dynamic wetting process. Here U ∼ γLVh
2
/µR2.

The dimensionless solution is R/R0 ∼ (t/τc)
1/3, where the characteristic time

τc = µR3
0/γLVh

2
is controlled not only by properties of the bulk water, but also

by the topological parameters of the rough surface: ϕs and h. The contact angle
θ of a droplet on a pillar-arrayed substrate θ ∼ (8R3

0 − 6hR2)/3R3 ∼ Ct−1 − t−1/3

(C is independent of time) decreased much faster than θ ∼ (R0/R)
3 ∼ t−3/7 for a

droplet on a smooth substrate. When θ finally approaches 0◦, t ∼ µR9/2
0 /γLV h̄7/2 is

of the order of 10 s in experiments or 1 ns in MD simulations, which is validated
by experiments and simulations.

Expand the expression of velocity for case (ii), U ∼ [γLV (1− ϕs)
2 h2/µt2]1/3. In our

experiments and MD simulations, the pillar heights for different samples are nearly
the same, so only the density of roughness ϕs determines the time evolution of the
radius and velocity. The smaller ϕs is, the faster the liquid spreads on the substrate.
In the experiments shown in figure 4(a), the orange points with the smallest ϕs have
the fastest velocity (steepest slope), while the blue points with the largest ϕs have the
slowest velocity (gentlest slope).

In our experiments, R0 ∼ 0.5 mm, h ∼ 10 µm, and ϕs = d2/p2 ∼ 10−1, so L =
R0

√
R0/h∼ 10−3 m< Rf ∼ 10−2 m. In our MD simulations, R0 ∼ 6 nm, h∼ 1 nm, and

ϕs = d2/p2 ∼ 10−1, so L= R0

√
R0/h∼ 10−8 m< Rf ∼ 10−7 m. According to the above

derivation, the scaling exponent of droplet on pillar-arrayed surfaces is approximately
1/3, while the scaling exponent of droplet on a smooth surface is about 1/7. Our
scaling laws could be a starting point in understanding the behaviours and mechanisms
of a droplet on lyophilic pillars. The regime between the two extreme regimes is
complicated and requires further studies.

5. Flow patterns and flow fields
The above statistics in MD simulations and derivation of MKT are averaged for

all directions of the droplet. However, the pillar-arrayed surface is anisotropic, and its
wettability depends on the direction. In this section the main focus is the direction-
dependence of the evolution of Rf . So, the flow density and flow patterns for ro = 2
and ro = 1.5 are visualized in figure 9. The origin is put in the centre of the droplet.
Because the centre of the droplet keeps moving, the figures are not symmetric with
each other. Because the pillars are symmetric in the horizontal and vertical directions,
the average outline of the fringe is almost a circle, labelled by the red lines in
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FIGURE 9. Flow densities and flow fields in MD simulations for different roughnesses: (a–d)
ro = 2.0 (sample 1, table 2); (e–h) ro = 1.5 (sample 4, table 2). The blue squares represent
the size and shape of the pillars. (a–c,e–g) Sequence of snapshots of the propagation of the
relative flow density ρ/ρ0 in a top view, where ρ0 = 1000 kg m−3 is the density of bulk water.
The inset colour legends in (a,e) are for flow density. (d,h) Propagation of the fringe radius
with respect to time in polar coordinates. The origin O is put in the centre of the droplet.
The right-hand colour legend is for (d,h). The radial coordinate represents time evolution, the
angular coordinate represents the direction and the colour represents the distance between the
origin and the fringe front. The total statistical time is 2.5 ns.

figure 9(a–c, e–g). The average density is about of that of bulk water ∼103 kg m−3.
But still there are fluctuations in the liquid density, owing to the fluctuations of
thermal energy at an instant moment.

However, owing to the topology of the pillars, the flow velocity depends on the
direction, and there exist fast and slow directions for the liquid flow. Figure 9(d, h) is
plotted in polar coordinates, in which the radial coordinate represents time evolution,
the angular coordinate represents the direction and the colour represents the distance
between the origin and the fringe front labelled by the right-hand colour legend. In
figure 10(a), point A (1.5 ns, 20◦, yellow) represents the fringe at 20◦ propagating
about 48–56 Å in 1.5 ns. The line at 45◦ in figure 10(a) represents propagation
of the fringe at 45◦ with respect to time in figure 10(b). So do the lines at 75◦

and corresponding figure 10(c). Comparing figures 10(b) and 10(c), we find that the
evolution of Rf at 45◦ is faster than that at 75◦. However, the scaling law for Rf at
both 45 and 75◦ is about Rf ∼ t1/3. As shown in figure 9(d,h), the fringe flowed faster
in directions that are more hydrophilic (red colour), while the fringe flowed more
slowly in directions that are less hydrophilic (green colour). The direction-dependence
of the velocity creates a unique pattern for each given roughness. For ro= 2.0, the fast
directions were approximately 10, 45, and 80◦, while the slow directions were about
30 and 60◦. For ro = 1.5, the fast directions were approximately 0, 45 and 90◦, while
the slow directions were about 15 and 75◦. For reasons of symmetric topology, the
flow patterns were approximately symmetric about 45◦. The fast and slow directions
influenced each other, eventually reaching a dynamic balance, and made the outline
of the fringe almost a circle. With the increase in roughness, the expanding velocity
increased. The roughness in figure 9(a–d) was larger than that in figure 9(e–h), which
made the pillar-arrayed surface more hydrophilic (more red colour).
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FIGURE 10. (a) Propagation of the fringe with respect to time in polar coordinates (ro= 1.5).
(b–c) Propagation of fringe at 45 and 75◦ labelled in (a) with respect to time, respectively.

The pillars are square and ro was the same in both horizontal and vertical directions
in figure 9. If rectangular pillars are used, i.e. ro = 1.5 in the horizontal direction
and ro = 2 in the vertical direction, as shown in figure 11(a–d), the flow field will
no longer be symmetric about 45◦. In the vertical direction the flow field kept the
characteristics in figure 9(d), while in the horizontal direction the flow field kept
the characteristics in figure 9(h). Between the two directions, the flow field gradually
changed, exhibiting a transition of wettability in figure 11(d). The rectangular pillars
also drove the flow faster in the vertical direction than in the horizontal direction,
which made the outline of the fringe an ellipse.

The flow patterns of liquid on different pillars are plotted together in figure 11(e).
The transition of the flow pattern from ro = 2.0 to ro = 1.5 can be clearly observed.
First, with the decrease in roughness, the area of red colour decreases and that of
the green colour increases, which implies decrease in the average propagation velocity.
The direction-dependence of the velocity gradually changed with the change of the
roughness.

6. Conclusions
In this article, multiscale experiments and MD simulations have been used to

explore the dynamic wetting process of a droplet on a pillar-arrayed lyophilic surface.
The macroscopic radial expansion and the microscopic wetting of individual pillars
have been investigated. Under a high-magnification microscope and a high-speed
camera, the originally smooth and circular MCL has been found to propagate in a
complex ‘zipping’ pattern depending on the propagation direction. The excess area of
the rough surface imposes an excess driving force when the liquid reaches the pillars,
and also pins the MCL until the slow part of the fringe catches up. The flow patterns
and the flow fields of the droplet on the pillar-arrayed surface, influenced by the
concerted effect of the liquid–solid interactions and the surface roughness, have been
revealed from the continuum (experiments) to the atomic level (MD simulations).
Based on results from multiscale experiments and MD simulations, the dynamic
process and the physical mechanisms have been analysed theoretically using MKT.
Controlled by the characteristic length scale L, the scaling laws for two regimes have
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FIGURE 11. (a–d) Flow densities and flow fields in MD simulations for rectangular pillars
(ro = 1.75). The blue rectangles represent the size and shape of the pillars. (a–c) Sequence
of snapshots of the propagation of the relative flow density ρ/ρ0 in a top view, where
ρ0 = 1000 kg m−3 is the density of bulk water. The inset colour legend in (a) is for flow
density. (d) Propagation of the fringe radius with respect to time in polar coordinates. (e)
Transition of flow patterns from ro = 2.0 to ro = 1.5. The origin O is put in the centre of
the droplet. The right-hand colour legend is for (d) and (e). The radial coordinate represents
time evolution, the angular coordinate represents the direction and the colour represents the
distance between the origin and the fringe front. The total statistical time is 2.5 ns.

been obtained, one for the rough surface and the other for the smooth surface. Both
experiments and simulations agree with the scaling law from MKT. Our results may
help in understanding the dynamic wetting of the droplet on a pillar-arrayed lyophilic
substrate and assisting the future design of pillar-arrayed lyophilic surfaces in practical
applications.
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