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Abstract: Nonlinear wave-body interactions for a stationary surface-piercing body in water of finite depth with flat and sloping 
bottoms are simulated in a two-dimensional numerical wave tank, which is constructed mainly based on the spatially averaged 
Navier-Stokes equations with the k  model for simulating the turbulence. The equations are discretized based on the finite 
volume method and the scheme of the pressure implicit splitting of operators is employed to solve the Navier-Stokes equations. By 
using the force time histories, the mean and higher-harmonic force components are calculated. The computational results are shown
to be in good agreement with experimental and numerical results of other researchers. Then, the horizontal force, the vertical force 
and the moment on the surface-piercing body under nonlinear regular waves with flat and sloping bottoms are obtained. The results
indicate that the bottom topographies have a significant influence on the wave loads on the surface-piercing body. 
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1. Introduction

Many types of surface-piercing structures, such 
as jacket platforms and man-made islands, have been 
used in coastal engineering in the offshore oil and gas 
development. Usually the structures are subjected to 
strong nonlinear water wave impacts and are 
precarious under the extreme ocean situations. 
Therefore, it is important to investigate the wave 
forces on surface-piercing structures in water of finite 
depth. 

There are many studies of the interactions 
between the water waves and structures of various 
immerged types, for example, the fully submerged 
structures[1-3], vertical bodies reposed on seabed[4-6]

and the surface-piercing bodies[7-10]. Among them, the 
problems of surface-piercing bodies have attracted 
much attention recently. Tanizawa and Minami[7]

developed a two dimensional numerical wave tank to 
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simulate the radiation and diffraction of a single 
surface-piercing body. Bai et al.[8] investigated the 
nonlinear hydrodynamic forces on a surface-piercing 
body of arbitrary shape in three dimensions by a time 
domain second-order method. Koo and Kim[9]

considered the single and double bodies based on 
potential theory and Boundary Element Method 
(BEM). Wang et al.[10] developed a three dimensional 
time-domain coupled numerical model to obtain the 
nonlinear wave forces acting on a box-shaped body. In 
these studies, the effects of the water depth are 
neglected.  

In the present article, the wave forces and the 
rotational moments are investigated for a fixed 
structure under the finite water depth condition. First, 
a 2-D numerical wave tank is built and verified. The 
simulated results are compared with the experimental 
results of Nojiri and Murayama[11], the analytical 
solution of Maruo[12] and the numerical results of Koo 
and Kim[9]. Second, the nonlinear wave-body 
interactions with a flat bottom are simulated in this 
tank. The mean wave force, the harmonic force 
components and the rotational moments on the body 
are calculated and the results are compared with those 
under the condition of deep water. Finally, the wave 
loads on a fixed body with sloping topography is 
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studied.

2. Mathematical formulation 
2.1 Governing equations 

The governing equations are the Reynolds 
averaged Navier-Stokes equations 
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pressure,
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gravity, and iD  is the damping coefficient and the 
damping term i iD u  is added to the momentum 
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where k  and are the turbulent Schmidt 

numbers. The constants in Eqs.(3)-(5) take the 
following values: , , , 

 and .
= 0.09C 1 = 1.44C 2 = 1.92C

= 1.0k = 1.33
In order to capture the water-air free surface, an 

Eulerian method named the Volume Of Fluid (VOF) 
method is adopted. The equation for the volume 
fraction is 
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where  is the volume fraction of water and 1
represents the volume fraction of air. The volume 
fraction of each liquid is used as the weighting factor 
to get the mixture properties, such as density and 
viscosity, i.e., 

= + 1w a               
       

(7)

where w  and a  represent the density of water 
and air, respectively. 
2.2 Numerical scheme 

The equations are discretized based on the Finite 
Volume Method (FVM). In order to guarantee the 
computational precision, the central difference scheme 
with second-order accuracy and the Quadratic Upwind 
Interpolation of Convective Kinematics (QUICK) 
scheme with third-order accuracy are employed to 
represent the diffusion term and convection term, 
respectively. The Preconditioning Conjugate Gradient 
(PCG) method is employed for solving the algebraic 
equations. For solving the Navier-Stokes equation of 
incompressible fluid flow, one will encounter a 
problem of the pressure-velocity coupling. Here, the 
Pressure Implicit Splitting of Operators (PISO) 
scheme is employed to treat the coupling.  and k
equations are coupled in the scheme and solved by a 
segregated approach. For the sake of computational 
stability, the Courant number is used to obtain the 
time step at every beginning of the calculation cycle 
( for wave cases), defined as= 0.1nC

= i
n

i
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where t  is the time step and ix  represents the 
mesh size. 

When the solution in the fluid domain is obtained, 
the time history of the wave force on the bodies can be 
obtained by integrating the pressure and the viscous 
force. The flow chart for the simulation process is 
plotted in Fig.1, where “tnow” is the current time in 
calculation and “tend” is the total calculation time. 
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For a free surface simulation, generally, the 
divergence is an issue, because of the sharp interface 
between water and air. In this work, a Compressive 
Interface Capturing Scheme for Arbitary Meshes 
(CICSAM) is used to capture the fluid interfaces with 
meshes of arbitrary topology. Details about the 
CICSAM can be found in Ubbink and Issa[13].

Fig.1 Computation flow chart 

The entire computational domain with the bottom 
topography is shown in Fig.2 and there are basically 
five types of boundary associated with the governing 
equation: inlet, outlet, structure wall, bed, and 
atmosphere. 

Fig.2 Sketch of the fluid domain with the bottom topography 

Boundary conditions associated with regular 
waves are prescribed along the inlet of the 
computational domain. The pressure and the 
turbulence quantities including  and k  are set to 
be of zero normal gradient and the velocity vector is 
specified by Stokes and Cnoidal regular waves. The 
theoretical velocity of second-order Stokes regular 
waves can be expressed by 
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where A ,  and  are the wave amplitude, 
frequency, wave number, and water depth, 
respectively. 

a d

x  is the distance from the origin to the 
wave making point. 

At the outlet, the pressure and the turbulence 
quantities are also specified as of zero normal 
gradients and the velocity is specified by Sommerfeld 
radiation condition, expressed by 

1+ =u u
x c t
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where  is the wave propagation velocity at the end 
point of the damping zone. 

c

At the surfaces of the structure, no slip wall 
boundary condition is used. The velocity vector at the 
bed is set to be zero and the zero normal gradient 
condition is chosen for other quantities. 

For the atmosphere boundary, the total pressure 
is set to zero and  and k  are set with zero normal 
gradient. The bottom boundary of the domain is the 
bed. No slip wall boundary condition and the wall 
function are used. The wall function can be 
summarized as follows[14] 
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where  represents the mixing length, ml 0  is a 
constant, ,0 = 0.005  is  the Karman constant,  

= 0.4 , u  is  the  friction velocity, is the 
characteristic length, which is the  distance  of  the  

L
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centre of the near-wall grid to the bottom wall. 
2.3 Numerical implementation

The programming is based on the open source 
computational fluid dynamics code named Open Field 
Operation And Manipulation (OpenFOAM), of the 
version 1.5, which can be downloaded freely through 
the internet (OpenCFD 2008). OpenFOAM provides a 
fundamental platform to write new solvers for 
different problems and the tensorial approach and the 
object oriented techniques are used. Xu[15] studied the 
numerical wave tank with OpenFOAM, but with the 
damping zone being ignored.  

In the present work, the solution for the 
computational domain is carried out by the adoption 
of the turbulence solver for incompressible two-phase 
flow. Based on Eqs.(12)-(14), the default wall 
function in OpenFOAM is modified. The inflow 
boundary and two damping zones are added to the 
original OpenFOAM solver. As for the inlet location, 
according to Eq.(9) and Eq.(10), a new wave making 
boundary named “wavetimevaring” is programmed 
with C++ language. Correspondingly, in order to 
absorb the wave energy reflection from the end-wall 
and the re-reflection from the input boundary, 
artificial damping zones are allocated at the two ends 
of the domain. In this paper, for the right end damping 
zone, the damping term i iD u  is added to the 
momentum equation of OpenFOAM solver, as shown 
in Eq.(2). iD  is expressed as 

0= +1
n
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where  is the length of the damping zone, l 0x  is 
the distance from the origin to the starting point of the 
damping zone.  and n i  are the damping 
coefficients, , . Similar methods were 
used by Dong and Zhan

= 2n = 0.6i
[16]. For the left damping zone, 

it is also a wave making region and the velocity in this 
area is modified by  at the 

end of each time step. 
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In addition, the interface capturing scheme in 
OpenFOAM for two-phase flow is improved. In the 
course of using this scheme, it is found that the 
scheme is indeed easy to use and can capture the 
surface well except that it is very slow. The time step 
becomes very small and the computation always takes 
a long time. The reason for this is the large Courant 

number of the air phase in the surface domain. In 
order to solve this problem, a modified scheme is 
proposed. In the computational domain, if the region 
is occupied by the air phase, the velocity and the 
pressure of this zone are set to zero. This will not alter 
the numerical results because w  is much larger than 

a .

3. Numerical results 
3.1 Model validation 

Firstly, we investigate the characteristics of the 
flow field in the numerical wave tank. In the present 
case, , , , where T
is the wave period. When the calculation becomes 
stable, the time series of the wave profile at 

 indicate that the damping schemes 
presented in the present paper work well, as shown in 
Fig.3. In addition, the calculated horizontal and 
vertical velocities at the point  and 

 are compared with the theoretical results, 
which shows a good agreement. It is shown that the 
two-dimensional wave numerical tank performs well 
for regular waves. 

= 5.0 md = 4.5 sT / = 0.1A d

= 78.9 mx

= 78.9 mx
= 0 my

Fig.3 Comparisons of time series for wave profile and 
velocities 

Secondly, for the verification of the simulated 
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wave forces, the calculation results are compared with 
Nojiri and Murayama[11], Maruo[12], and Koo[9],
respectively. The computational domain is shown in 
Fig.4, where  is the wave length. A surface- 
piercing body is fixed in the middle of the domain and 
the radius of the round corner is 0.064 m. The input 
wave properties are listed in Table 1. The incident 
wave height is 0.07 m. Figure 5 shows the 
computational meshes used for the simulations. In 
order to accurately capture the wave surface and 
calculate the wave forces, the meshes in surface zones 
and zones along body are refined. 

Fig.4 Sketch of the domain for verification 

Table 1 Incident wave inputs
Case /T g d /A d  (m)

1 0.20 2.50 0.009 7.85
2 0.50 2.50 0.022 3.14
3 0.75 2.50 0.033 2.10
4 1.00 2.50 0.044 1.57
5 1.50 2.50 0.067 1.05
6 1.75 2.50 0.078 0.90

Fig.5 Computational meshes used for the simulation 

Fig.6 Comparison of drift force 

Figure 6 shows the comparison of the drift force 
with Nojiri’s experimental results, Maruo’s analytical 

results and Koo’s numerical results. Figures 7-9 show 
the comparison of the force components and the 
moment. The first-harmonic force components and the 
rotational moment are calculated by Fourier analysis. 
The computational results are shown to be in good 
agreement with experimental results except in the 
region of 1.5 . It is believed that the deviation 
may be attributed to viscous and other nonlinear 
effects. It is also noted that the present results are 
more consistent with experimental results than Koo’s, 
which is based on potential theory. It is shown that the 
turbulence of fluid has an influence on the wave-body 
interactions even in deep water. 

Fig.7 Comparison of first-harmonic horizontal normalized 
force

Fig.8 Comparison of first-harmonic vertical normalized force 

Fig.9 Comparison of first-harmonic normalized moment 

3.2 Domain with flat bottom topography 
The computational domain is shown in Fig.2 

with tan = 0 . The length of damping zone is 2 m ,
where m  represents the maximum wavelength of all 
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cases. The water depth for the incident region is 5.0 m. 
Tables 2 and 3 give, respectively, the values of 
dimension parameters and the input wave properties, 
where /T g d  is the dimensionless parameter to 
represent the nonlinearity of the incident wave. 

Table 2 Dimension parameters 

Table 3 Incident wave inputs 
Case /T g d /A d  (m) 

1 0.24 9.1 0.10 41.9
2 0.28 8.4 0.10 38.1
3 0.33 7.7 0.10 34.2
4 0.40 7.0 0.10 30.3
5 0.50 6.5 0.10 26.3
6 0.63 5.6 0.04 22.2
7 0.82 4.9 0.04 18.0
8 1.12 4.2 0.04 13.7
9 1.61 3.5 0.04 9.70

Fig.10 The total forces in the x- and y-directions 

Figure 10 shows the total normalized forces (
and ), which are plotted against the 
nondimensional time ( ). In this figure, the 
steady-state time series results for three different cases 
are shown, from which a series of harmonic 
components for horizontal force, vertical force and 
rotational moment can be obtained. We can also see 
that the horizontal force shows more nonlinear 

features with the 

Fs
Fh

/t T

increase of /T g d .
Figure 11 shows the comparison of horizontal 

force components for finite depth and deep water 
conditions. Horizontal force components for finite 
water depth condition are approximately similar to the 
cases for deep water condition, while the first and 
second order forces are much greater than those in 
deep water when the wave frequency is low 
( 0.82 ). The magnitude of the first order can be 
47% greater than that of deep water at = 0.33 .

Fig.11 Comparison of horizontal force components for two 
water depth conditions 

The same kind of comparisons for vertical force 
is shown in Fig.12. The first order vertical force under 
finite water depth condition is more sensitive to the 
variations of  and is significantly larger than that 
under deep water condition in four cases with 

= 0.24, 0.33, 0.4 and 0.63. In case of = 0.63 , the 
first-harmonic component can be as large as 25% of 
that in deep water. Due to the wave reflection from 
flat bottom and re-reflection from body surface, the 
first order components can be enhanced.  

Fig.12 Comparison of vertical force components for two water 
depth conditions 

Figure 13 shows the comparison of rotational 
moment components for two water depth conditions. 
The first order component under finite water depth 
condition is much greater than that under deep water 
condition for cases with low frequencies ( 0.82 ).
Specially, the magnitude of the first order component 
gradually increases up to 144% of the value at the 

W  (m) 100 
d  (m) 5.0
h  (m) 0.5
B  (m) 5.0
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case of = 0.33 . This phenomenon indicates that the 
state of the structure  becomes  more unstable and
precarious in shallow water than in deep water, 
especially when the frequency is low. 

Fig.13 Comparison of moment components for two water depth 
conditions

3.3 Domain with sloping bottom topography 
The computational domain is shown in Fig.2 

with tan = 0.03 . Computational conditions and 
input settings for sloping bottom topography are the 
same as those for flat bottom topography.  

Figures 14-16 show the comparison of horizontal 
force, vertical force and rotational moment 
components for sloping bottom and flat bottom 
topography. Because of the wave reflection from 
sloping bottom, not only the vertical force component 
but also the horizontal force and rotational moment 
components are affected. The first order components 
become much larger in some cases. 

Fig.14 Comparison of horizontal force components for two 
types of bottom topographies 

As for the horizontal force component, the values 
for two types of bottoms are almost the same for 
in the range between 0.28 and 0.5, while the 
first-harmonic component is 23% greater than that for 
flat bottom in case of = 0.63 . A similar trend for 
the variations of the moment component can be 
observed in Fig.16. 

From Fig.15, we can see that the first order 
vertical force for sloping bottom is larger than that for 
flat bottom when 0.71 . The second and third 

order components of all parameters for sloping bottom 
condition are close to the results for flat bottom 
condition except in the low frequency region 
( 0.33 ).

Fig.15 Comparison of vertical force components for two types 
of bottom topographies 

Fig.16 Comparison of moment components for two types of 
bottom topographies 

4. Conclusions 
In the present article, the nonlinear wave-body 

interactions for a stationary surface-piercing body 
under regular waves in water of finite depth are 
simulated in a 2-D numerical wave tank. The tank 
model is based on Reynolds averaged Navier–Stokes 
equations and k  two-equation model. The 
central difference scheme and QUICK scheme are 
employed to represent the diffusion term and 
convection term, respectively. The PCG method is 
employed for solving the algebraic equations. 
Boundary conditions associated with regular waves 
are prescribed along the left side of the computational 
domain. Accordingly, artificial damping zones are 
allocated at the two ends of the domain to absorb the 
wave energy reflection and re-reflection. In order to 
capture the water-air free surface, VOF method and 
CICSAM scheme are adopted. All these features are 
implemented by utilizing the open source code named 
OpenFOAM. 

In the solution of the fluid domain, the time 
history of the wave nonlinear force on the bodies can 
be obtained by integrating the pressure and viscous 
force. By using the force time histories, the mean and
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higher-harmonic force components are calculated. 
Under the finite water depth condition, the first order 
forces and rotational moment components are much 
greater than those under deep water condition when 
the frequency is low. For the domain with sloping 
bottom topography, the second and third order 
components of all parameters under sloping bottom 
conditions are close to the results under flat bottom 
condition except in the low frequency region. Due to 
the wave reflection and re-reflection, the forces and 
rotational moment components vary in a complicated 
way with the increase of frequency , especially 
under the sloping bottom condition. 

References

[1]   KOO W. C., KIM M. H. and TAVASSOLI A. Fully 
nonlinear wave-body interactions with fully submerged 
dual cylinders[J]. International Journal of Offshore 
and Polar Engineering, 2004, 14(3): 210-217. 

[2]   VENGATESAN V., VARYANI K. S. and BARLTROP 
N. D. P. Wave force coefficients for horizontally 
submerged rectangular cylinders[J]. Ocean Engineering, 
2006, 33(11-12): 1669-1704. 

[3]   LIU Yong, LI Yu-cheng and TENG Bin. Wave motion 
over two submerged layers of horizontal thick plates[J]. 
Journal of Hydrodynamics, 2009, 21(4): 453-462. 

[4]   SUNG H. G., HONG S. Y. and CHOI H. S. Evaluation 
of nonlinear wave forces on a fixed body by numerical 
wave tank techniques[C]. Proceedings of the 3rd 
International Conference on Hydrodynamics. Seoul, 
Korea, 1998, 191-196. 

[5]  LI Chi-wai, LIN Peng-zhi. A numerical study of 
three-dimensional wave interaction with a square 
cylinder[J]. Ocean Engineering, 2001, 28(12): 
1545-1555.

[6]   YOU Yun-xiang, SHI Qiang and MIAO Guo-ping. The 
radiation and diffraction of water waves by a 
bottom-mounted circular cylinder in a two-layer fluid[J]. 
Journal of Hydrodynamics, Ser. B, 2007, 19(1): 1-8. 

[7]   TANIZAWA K., MINAMI M. Estimation of wave drift 
force by numerical wave tank[C]. Proceedings of the 
9th ISOPE Conference. Brest, France, 1999, 69-75. 

[8]   BAI Wei, TENG Bin and QIU Da-hong. Real time 
simulation of second-order radiation of 3D bodies[J]. 
Journal of Hydrodynamics, Ser. A, 2003, 18(4): 
489-498(in Chinese). 

[9]   KOO W. C., KIM M. H. Fully nonlinear wave-body 
interactions with surface-piercing bodies[J]. Ocean 
Engineering, 2007, 34(7): 1000-1012. 

[10]  WANG Da-guo, ZOU Zhi-li and TANG Chun-an. Time 
stepping solutions of nonlinear wave forces on a 
three-dimensional box-shaped ship in a harbor[J]. 
Journal of Ship Mechanics, 2007, 11(4): 533-544(in 
Chinese).

[11]  NOJIRI N., MURAYAMA K. A study on the drift force 
on two dimensional floating body in regular waves[J]. 
Transactions of the West-Japan Society Naval 
Architect, 1975, 51: 131-152. 

[12]  MARUO H. On the increase of the resistance of a ship in 
rough seas[J]. Journal of Zosen Kiokai, 1960, (108): 
5-13(in Japanese). 

[13]  UBBINK O., ISSA R. I. A method for capturing sharp 
fluid interfaces on arbitrary meshes[J]. Journal of 
Computational Physics, 1999, 153(1): 26-50. 

[14]  QI Peng, WANG Yong-xue and HOU Yi-jun. Numerical 
simulation of solitary waves overtopping a breakwater[J]. 
Journal of Hydrodynamics, Ser. A, 2004, 19(12): 
884-889(in Chinese). 

[15] XU Shao-kun. A numerical wave tank based on 
OpenFOAM and its application[D]. Ph. D. Thesis, 
Tianjin: Tianjin University, 2008(in Chinese). 

[16]  DONG Zhi, ZHAN Jie-min. Comparison of existing 
methods for wave generating and absorbing in VOF- 
based numerical tank[J]. Journal of Hydrodynamics, 
Ser. A, 2009, 24(1): 15-21(in Chinese). 


