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A reconstructed discontinuous Galerkin (RDG) method based on a hierarchical WENO
reconstruction, termed HWENO (P1P2) in this paper, designed not only to enhance the
accuracy of discontinuous Galerkin methods but also to ensure the nonlinear stability of
the RDG method, is presented for solving the compressible Euler equations on tetrahedral
grids. In this HWENO (P1P2) method, a quadratic polynomial solution (P2) is first recon-
structed using a Hermite WENO reconstruction from the underlying linear polynomial
(P1) discontinuous Galerkin solution to ensure the linear stability of the RDG method
and to improve the efficiency of the underlying DG method. By taking advantage of handily
available and yet invaluable information, namely the derivatives in the DG formulation, the
stencils used in the reconstruction involve only von Neumann neighborhood (adjacent
face-neighboring cells) and thus are compact. The first derivatives of the quadratic polyno-
mial solution are then reconstructed using a WENO reconstruction in order to eliminate
spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear
stability of the RDG method. The developed HWENO (P1P2) method is used to compute a
variety of flow problems on tetrahedral meshes to demonstrate its accuracy, robustness,
and non-oscillatory property. The numerical experiments indicate that the HWENO
(P1P2) method is able to capture shock waves within one cell without any spurious oscil-
lations, and achieve the designed third-order of accuracy: one order accuracy higher than
the underlying DG method.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The discontinuous Galerkin methods [1–28] (DGM) have recently become popular for the solution of systems of conser-
vation laws. Originally introduced for the solution of neutron transport equations [1], nowadays they are widely used in
computational fluid dynamics, computational acoustics, and computational magneto-hydrodynamics. The discontinuous
Galerkin methods combine two advantageous features commonly associated with finite element and finite volume methods.
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As in classical finite element methods, accuracy is obtained by means of high-order polynomial approximation within an
element rather than by wide stencils as in the case of finite volume methods. The physics of wave propagation is, however,
accounted for by solving the Riemann problems that arise from the discontinuous representation of the solution at element
interfaces. In this respect, the DG methods are similar to finite volume methods. The discontinuous Galerkin methods have
many attractive features: (1) They have several useful mathematical properties with respect to conservation, stability, and
convergence; (2) The methods can be easily extended to higher-order (>2nd) approximation; (3) The methods are well suited
for complex geometries since they can be applied on unstructured grids. In addition, the methods can also handle non-con-
forming elements, where the grids are allowed to have hanging nodes; (4) The methods are highly parallelizable, as they are
compact and each element is independent. Since the elements are discontinuous, and the inter-element communications are
minimal, domain decomposition can be efficiently employed. The compactness also allows for structured and simplified cod-
ing for the methods; (5) They can easily handle adaptive strategies, since refining or coarsening a grid can be achieved with-
out considering the continuity restriction commonly associated with the conforming elements. The methods allow easy
implementation of hp-refinement, for example, the order of accuracy, or shape, can vary from element to element; (6) They
have the ability to compute low Mach number flow problems without recourse to the time-preconditioning techniques nor-
mally required for the finite volume methods. In contrast to the enormous advances in the theoretical and numerical analysis
of the DGM, the development of a viable, attractive, competitive, and ultimately superior DG method over the more mature
and well-established second order finite volume methods is relatively an untouched area. This is mainly due to the fact that
the DGM have a number of weaknesses that have yet to be addressed, before they can be robustly used for flow problems of
practical interest in a complex configuration environment. In particular, how to effectively control spurious oscillations in
the presence of strong discontinuities, and how to reduce the computing costs for the DGM remain the two most challenging
and unresolved issues in the DGM. Indeed, compared to the finite element methods and finite volume methods, the DGM
require solutions of systems of equations with more unknowns for the same grids. Consequently, these methods have been
recognized as expensive in terms of both computational costs and storage requirements especially in the context of implicit
methods, where the memory requirement for the Jacobian matrix grows quadratically with the order of the DG methods,
thus leading to a significant increase in computational cost.

In order to reduce high costs associated with the DGM, Dumbser et al. [18–20] have introduced a new family of recon-
structed DGM, termed PnPm schemes and referred to as RDG (PnPm) in this paper, where Pn indicates that a piecewise poly-
nomial of degree of n is used to represent a DG solution, and Pm represents a reconstructed polynomial solution of degree of
m (m P n) that is used to compute the fluxes. The RDG (PnPm) schemes are designed to enhance the accuracy of the discon-
tinuous Galerkin method by increasing the order of the underlying polynomial solution. The beauty of RDG (PnPm) schemes is
that they provide a unified formulation for both finite volume and DGM, and contain both classical finite volume and stan-
dard DG methods as two special cases of RDG (PnPm) schemes, and thus allow for a direct efficiency comparison. When n = 0,
i.e., a piecewise constant polynomial is used to represent a numerical solution, RDG (P0Pm) is nothing but classical high order
finite volume schemes, where a polynomial solution of degree m (m P 1) is reconstructed from a piecewise constant solu-
tion. When m = n, the reconstruction reduces to the identity operator, and RDG (PnPn) scheme yields a standard DG method.

Obviously, the construction of an accurate and efficient reconstruction operator is crucial to the success of the RDG (PnPm)
schemes. In Dumbser’s work, a higher order polynomial solution is reconstructed using a L2 projection, requiring it indistin-
guishable from the underlying DG solutions in the contributing cells in the weak sense. The resultant over-determined sys-
tem is then solved using a least-squares method that guarantees exact conservation, not only of the cell averages but also of
all higher order moments in the reconstructed cell itself, such as slopes and curvatures. However, this conservative least-
squares reconstruction approach is computationally expensive, as the L2 projection, i.e., the operation of integration, is re-
quired to obtain the resulting over-determined system. Furthermore, the reconstruction might be problematic for a bound-
ary cell, where the number of the face-neighboring cells might be not enough to provide the necessary information to
recover a polynomial solution of a desired order. Fortunately, the projection-based reconstruction is not the only way to ob-
tain a polynomial solution of higher order from the underlying discontinuous Galerkin solutions. In a reconstructed DG
method using a Taylor basis [26–28] developed by Luo et al. for the solution of the compressible Euler and Navier–Stokes
equations on arbitrary grids, a higher order polynomial solution is reconstructed by use of a strong interpolation, requiring
point values and derivatives to be interpolated on the face-neighboring cells. The resulting over-determined linear system of
equations is then solved in the least-squares sense. This reconstruction scheme only involves von Neumann neighborhood,
and thus is compact, simple, robust, and flexible. Like the projection-based reconstruction, the strong reconstruction scheme
guarantees exact conservation, not only of the cell averages but also of their slopes due to a judicious choice of the Taylor
basis. More recently, Zhang et al. [29,30] presented a class of hybrid DG/FV methods for the conservation laws, where the
second derivatives in a cell are obtained from the first derivatives in the cell itself and its neighboring cells using a
Green-Gauss reconstruction widely used in the finite volume methods. This provides a fast, simple, and robust way to obtain
higher-order polynomial solutions. Lately, Luo et al. [31,32] have conducted a comparative study for these three recon-
structed discontinuous Galerkin methods RDG (P1P2) by solving 2D Euler equations on arbitrary grids. It is found that all
three reconstructed discontinuous Galerkin methods can deliver the desired third order of accuracy and significantly im-
prove the accuracy of the underlying second-order DG method, although the least-squares reconstruction method provides
the best performance in terms of both accuracy and robustness.

Unfortunately, the attempt to extend our RDG method to solve 3D Euler equations on tetrahedral grids was not success-
ful. Like the second order cell-centered finite volume methods RDG (P0P1), the resultant RDG (P1P2) method is unstable.
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Although RDG (P0P1) methods are in general stable in 2D and on Cartesian or structured grids in 3D, they suffer from the so-
called linear instability on unstructured tetrahedral grids, when the reconstruction stencils only involve von Neumann neigh-
borhood, i.e., adjacent face-neighboring cells [33]. The RDG (P1P2) method exhibits the same linear instability, which can be
overcome by using extended stencils. However, this is achieved at the expense of sacrificing the compactness of the under-
lying DG methods. Furthermore, these linear reconstruction-based DG methods will suffer from non-physical oscillations in
the vicinity of strong discontinuities for the compressible Euler equations. Alternatively, ENO, WENO, and HWENO can be
used to reconstruct a higher-order polynomial solution, thereby not only enhancing the order of accuracy of the underlying
DG method but also achieving both linear and non-linear stability. This type of hybrid HWENO + DG schemes has been devel-
oped on 1D and 2D structured grids by Balsara et al. [34], where the HWENO reconstruction is relatively simple and
straightforward.

The objective of the effort discussed in this paper is to develop a reconstructed discontinuous Galerkin method based on a
hierarchical WENO reconstruction, HWENO (P1P2), using a Taylor basis [13] for the solution of the compressible Euler equa-
tions on unstructured tetrahedral grids. The HWENO (P1P2) method is designed not only to reduce the high computing costs
of the DGM, but also to avoid spurious oscillations in the vicinity of strong discontinuities, thus effectively addressing the
two shortcomings of the DGM. In this HWENO (P1P2) method, a quadratic solution is first reconstructed to enhance the accu-
racy of the underlying DG method in two steps: (1) all second derivatives on each cell are first reconstructed using the solu-
tion variables and their first derivatives from adjacent face-neighboring cells via a strong interpolation; (2) the final second
derivatives on each cell are then obtained using a WENO strategy based on the reconstructed second derivatives on the cell
itself and its adjacent face-neighboring cells. This reconstruction scheme, by taking advantage of handily available and yet
valuable information namely the gradients in the context of the DG methods, only involves von Neumann neighborhood and
thus is compact, simple, robust, and flexible. As the underlying DG method is second-order, and the basis functions are at
most linear functions, fewer quadrature points are then required for both domain and face integrals, and the number of un-
knowns (the number of degrees of freedom) remains the same as for the DG (P1). Consequently, this RDG method is more
efficient than its third order DG (P2) counterpart. The gradients of the quadratic polynomial solutions are then modified
using a WENO reconstruction in order to eliminate non-physical oscillations in the vicinity of strong discontinuities, thus
ensuring the non-linear stability of the RDG method. The developed HWENO (P1P2) method is used to compute a variety
of flow problems on tetrahedral grids to demonstrate its accuracy, robustness, and non-oscillatory performance. The pre-
sented numerical results indicate that this HWENO (P1P2) method is able to capture shock waves within once cell without
any spurious oscillations, and achieve the designed third-order of accuracy: one order accuracy higher than the underlying
DG (P1) method, and thus significantly increase its accuracy without significant increase in computing costs and memory
requirements. The remainder of this paper is organized as follows. The governing equations are listed in Section 2. The devel-
oped reconstructed discontinuous Galerkin method is presented in Section 3. Extensive numerical experiments are reported
in Section 4. Concluding remarks are given in Section 5.

2. Governing equations

The Euler equations governing unsteady compressible inviscid flows can be expressed as
@Uðx; tÞ
@t

þ @FkðUðx; tÞÞ
@xk

¼ 0 ð2:1Þ
where the summation convention has been used. The conservative variable vector U, and inviscid flux vector F are defined by
U ¼
q

qui

qe

0B@
1CA Fj ¼

quj

quiuj þ pdij

ujðqeþ pÞ

0B@
1CA ð2:2Þ
Here q, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui is the velocity of the
flow in the coordinate direction xi. The pressure can be computed from the equation of state
p ¼ ðc� 1Þq e� 1
2

ujuj

� �
ð2:3Þ
which is valid for perfect gas, where c is the ratio of the specific heats.

3. Reconstructed discontinuous Galerkin method

3.1. Discontinuous Galerkin formulation

The governing Eq. (2.1) is discretized using a discontinuous Galerkin finite element formulation. We first introduce some
notations. We assume that the domain X is subdivided into a collection of non-overlapping tetrahedral elements Xe. We
introduce the following broken Sobolev space Vp

h
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Vp
h ¼ vh 2 ½L2ðXÞ�m : vhjXe

2 Vm
p

h i
8Xe 2 X

n o
; ð3:1Þ
which consists of discontinuous vector-values polynomial functions of degree p, and where m is the dimension of the un-
known vector and Vp is the space of all polynomials of degree6p. To formulate the discontinuous Galerkin method, we intro-
duce the following weak formulation, which is obtained by multiplying the above conservation law (2.1) by a test function
Wh, integrating over an element Xe, and then performing an integration by parts,

Find Uh 2 Vp
h such as
d
dt

Z
Xe

UhWhdXþ
Z

Ce

FkðUhÞnkWhdC�
Z

Xe

FkðUhÞ
@Wh

@xk
dX ¼ 0; 8Wh 2 Vp

h ð3:2Þ
where Uh and Wh are represented by piecewise-polynomial functions of degrees p, which are discontinuous between the cell
interfaces and nk denotes the unit outward normal vector to Ce: the boundary of Xe. Assume that Bi is the basis of polyno-
mial function of degrees p, this is then equivalent to the following system of N equations,
d
dt

Z
Xe

UhBidXþ
Z

Ce

FkðUhÞnkBidC�
Z

Xe

FkðUhÞ
@Bi

@xk
dX ¼ 0; 1 6 i 6 N ð3:3Þ
where N is the dimension of the polynomial space. Since the numerical solution Uh is discontinuous between element inter-
faces, the interface fluxes are not uniquely defined. The flux function Fk(Uh)nk appearing in the second terms of Eq. (3.3) is
replaced by a numerical Riemann flux function Hk UL

h;U
R
h;nk

� �
where UL

h and UR
h are the conservative state vector at the left

and right side of the element boundary, and which is computed using HLLC scheme [43] in the present work. This scheme is
called discontinuous Galerkin method of degree p, or in short notation DG (P) method. Note that discontinuous Galerkin for-
mulations are very similar to finite volume schemes, especially in their use of numerical fluxes. Indeed, the classical first-
order cell-centered finite volume scheme exactly corresponds to the DG (P0) method, i.e., to the discontinuous Galerkin
method using a piecewise-constant polynomial. Consequently, the DG (Pk) methods with k > 0 can be regarded as a natural
generalization of finite volume methods to higher order methods. By simply increasing the degree p of the polynomials, the
DG methods of corresponding higher order are obtained. The domain and boundary integrals in Eq. (3.3) are calculated using
Gauss quadrature formulas. The number of quadrature points used is chosen to integrate exactly polynomials of order of 2p
and 2p + 1 for volume and surface inner products in the reference element. In the traditional DGM, termed nodal discontin-
uous Galerkin methods, numerical polynomial solutions Uh in each element are expressed using either standard Lagrange
finite element or hierarchical node-based basis as following
Uh ¼
XN

i¼1

UiðtÞBiðxÞ; ð3:4Þ
where Bi are the finite element basis functions. As a result, the unknowns to be solved for are the variables at the nodes Ui.
In the present work, the numerical polynomial solutions are represented using a Taylor series expansion at the center of

the cell. For example, if we do a Taylor series expansion at the center of the cell, a quadratic polynomial solution can be ex-
pressed as follows:
Uh ¼ Uc þ
@U
@x

����
c

ðx� xcÞ þ
@U
@y

����
c

ðy� ycÞ þ
@U
@z

����
c

ðz� zcÞ þ
@2U
@x2

�����
c

ðx� xcÞ2

2
þ @

2U
@y2

�����
c

ðy� ycÞ
2

2
þ @

2U
@z2

�����
c

ðz� zcÞ2

2

þ @2U
@x@y

�����
c

ðx� xcÞðy� ycÞ þ
@2U
@x@z

�����
c

ðx� xcÞðz� zcÞ þ
@2U
@y@z

�����
c

ðy� ycÞðz� zcÞ ð3:5Þ
which can be further expressed as cell-averaged values and their derivatives at the center of the cell:
Uh ¼ eU þ @U
@x

����
c

ðx� xcÞ þ
@U
@y

����
c

ðy� ycÞ þ
@U
@z

����
c
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@2U
@x2

�����
c
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2
� 1

Xe

Z
Xe

ðx� xcÞ2

2
dX

 !
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�����
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2
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Z
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2

2
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 !
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Z
Xe

ðz� zcÞ2

2
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1
Xe

Z
Xe
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� �
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@x@z

�����
c
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1
Xe

Z
Xe
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@y@z

�����
c
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1
Xe

Z
Xe

ðy� ycÞðz� zcÞdX
� �

ð3:6Þ
where eU is the mean value of U in this cell. The unknowns to be solved for in this formulation are the cell-averaged variables
and their derivatives at the center of the cells. The dimension of the polynomial space is 10 and the basis functions are



H. Luo et al. / Journal of Computational Physics 236 (2013) 477–492 481
B1 ¼ 1; B2 ¼ x� xc; B3 ¼ y� yc; B4 ¼ z� zc

B5 ¼
B2

2

2
� 1

Xe

Z
Xe

B2
2

2
dX; B6 ¼

B2
3

2
� 1

Xe

Z
Xe

B2
3

2
dX; B7 ¼

B2
4

2
� 1

Xe

Z
Xe

B2
4

2
dX;

B8 ¼ B2B3 �
1
Xe

Z
Xe

B2B3dX; B9 ¼ B2B4 �
1
Xe

Z
Xe

B2B4dX; B10 ¼ B3B4 �
1
Xe

Z
Xe

B3B4dX

ð3:7Þ
The discontinuous Galerkin formulation then leads to the following 10 equations
d
dt

Z
Xe

eUdXþ
Z

Ce

Hk UL
h;U

R
h;nk

� �
dC ¼ 0

M9�9
d
dt
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@x

����
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@U
@y

����
c

@U
@z

����
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@2U
@x2

�����
c

@2U
@y2

�����
c

@2U
@z2

�����
c

@2U
@x@y

�����
c

@2U
@x@z

�����
c

@2U
@y@z

�����
c

 !T

þ R9�1 ¼ 0
ð3:8Þ
Note that in this formulation, equations for the cell-averaged variables are decoupled from equations for their derivatives
due to the judicial choice of the basis functions and the fact that
Z

Xe

B1BidX ¼ 0 2 6 i 6 10 ð3:9Þ
In the implementation of this DG method, the basis functions are actually normalized in order to improve the conditioning of
the system matrix (3.3) as follows:
B1 ¼ 1; B2 ¼
x� xc

Dx
; B3 ¼

y� yc

Dy
; B4 ¼

z� zc

Dz

B5 ¼
B2

2

2
� 1

Xe

Z
Xe

B2
2

2
dX; B6 ¼

B2
3

2
� 1
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Z
Xe

B2
3

2
dX; B7 ¼

B2
4

2
� 1

Xe

Z
Xe

B2
4

2
dX;

B8 ¼ B2B3 �
1
Xe

Z
Xe

B2B3dX; B9 ¼ B2B4 �
1
Xe

Z
Xe

B2B4dX; B10 ¼ B3B4 �
1
Xe

Z
Xe

B3B4dX;

ð3:10Þ
where Dx = 0.5(xmax � xmin), Dy = 0.5(ymax � ymin), and Dz = 0.5(zmax � zmin), and xmax, xmin, ymax, ymin, zmax, and zmin are the
maximum and minimum coordinates in the cell Xe in x-, y-, and z-directions, respectively. A quadratic polynomial solution
can then be rewritten as
Uh ¼ eUB1 þ UxB2 þ UyB3 þ UzB4 þ UxxB5 þ UyyB6 þ UzzB7 þ UxyB8 þ UxzB9 þ UyzB10 ð3:11Þ
where
Ux ¼
@U
@x

����
c

Dx; Uy ¼
@U
@y

����
c

Dy; Uz ¼
@U
@z

����
c

Dz; Uxx ¼
@2U
@x2

�����
c

Dx2; Uyy ¼
@2U
@y2

�����
c

Dy2;

Uzz ¼
@2U
@z2

�����
c

Dz2; Uxy ¼
@2U
@x@y

�����
c

DxDy; Uxz ¼
@2U
@x@z

�����
c

DxDz; Uyz ¼
@2U
@y@z

�����
c

DyDz

ð3:12Þ
This formulation belongs to the so-called modal discontinuous Galerkin method and has a number of attractive, distinct, and
useful features. First, cell-averaged variables and their derivatives are handily available in this formulation. This makes the
implementation of both in-cell and inter-cell reconstruction schemes straightforward and simple [26–28,30,31]. Secondly,
the Taylor basis is hierarchic. This greatly facilitates implementation of p-multigrid methods [16,17] and p-refinement.
Thirdly, the same basis functions are used for any shapes of elements: tetrahedron, pyramid, prism, and hexahedron. This
makes the implementation of DGM on arbitrary meshes straightforward.

3.2. Reconstructed discontinuous Galerkin methods

In comparison with reconstructed FV methods, the DGM have a significant drawback in that they require more degrees of
freedom, additional domain integration, and more Gauss quadrature points for the boundary integration, and therefore more
computational costs and storage requirements. On the one hand, the reconstruction methods that FV methods use to achieve
higher-order accuracy are relatively inexpensive but less accurate and robust. On the other hand, the DGM that can be
viewed as a different way to extend a FV method to higher orders are accurate and robust but costly. It is only natural
and tempting to combine the efficiency of the reconstruction methods and the accuracy of the DG methods. This idea
was originally introduced by Dumbser et al. in the frame of PnPm scheme [18–20], termed RDG (PnPm) in this paper, where
Pn indicates that a piecewise polynomial of degree of n is used to represent a DG solution, and Pm represents a reconstructed
polynomial solution of degree of m (m P n) that is used to compute the fluxes and source terms. The beauty of RDG (PnPm)
schemes is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite
volume and standard DG methods as two special cases of RDG (PnPm) schemes, and thus allow for a direct efficiency
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comparison. When n = 0, i.e., a piecewise constant polynomial is used to represent a numerical solution, RDG (P0Pm) is noth-
ing but classical high order finite volume schemes, where a polynomial solution of degree m (m P 1) is reconstructed from a
piecewise constant solution. When m = n, the reconstruction reduces to the identity operator, and RDG (PnPm) scheme yields
a standard DG method. Clearly, an accurate and efficient reconstruction is the key ingredient in extending the underlying DG
method to higher order accuracy. Our discussion in this work is mainly focused on a third order RDG (P1P2) method, as the
benefits of higher-order (>3rd) methods diminish dramatically for aerodynamic applications. Nevertheless, its extension to
higher order DG methods is straightforward, as demonstrated by Dumbser et al. in Ref. [18]. The RDG (P1P2) method is based
on a hierarchical Hermite WENO reconstruction and designed not only to reduce the high computing costs of the DGM, but
also to avoid spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG
method. Similar to moment limiters, the hierarchical reconstruction methods [35] reconstruct the derivatives in a hierarchi-
cal manner. In the case of the RDG (P1P2) method, the second derivatives (curvatures) are first reconstructed and the first
derivatives (gradients) are then reconstructed, which are describes in the next two sub-sections.

3.2.1. WENO reconstruction at P2: WENO (P1P2)
The reconstruction of the second derivatives consists of two steps: a quadratic polynomial solution (P2) is first recon-

structed using a least-squares method from the underlying linear polynomial (P1) discontinuous Galerkin solution, and
the final quadratic polynomial solution is then obtained using a WENO reconstruction, which is necessary to ensure the lin-
ear stability of the RDG method [36]. The resulting RDG method is referred to as WENO (P1P2) in this paper, where the qua-
dratic polynomial solution is obtained from the underlying linear DG solution via a WENO reconstruction.

3.2.1.1. Least-squares reconstruction. In the case of DG (P1) method, a linear polynomial solution Ui in any cell i is expressed as
Ui ¼ eUi þ UxiB2 þ UyiB3 þ UziB4 ð3:13Þ
A quadratic polynomial solution UR
i can be reconstructed using the underlying linear polynomial DG solution in the neigh-

boring cells as follows:
UR
i ¼ eUR

i þ UR
xiB2 þ UR

yiB3 þ UR
ziB4 þ UR

xxiB5 þ UR
yyiB6 þ UR

zziB7 þ UR
xyiB8 þ UR

xziB9 þ UR
yziB10 ð3:14Þ
In order to maintain the compactness of the DG methods, the reconstruction is required to involve only von Neumann neigh-
borhood, i.e., the adjacent cells that share a face with the cell i under consideration. There are 10 degrees of freedom, and
therefore 10 unknowns must be determined. The first four unknowns can be trivially obtained, by requiring the consistency
of the RDG with the underlying DG: (1) The reconstruction scheme must be conservative, and (2) The values of the recon-
structed first derivatives are equal to the ones of the first derivatives of the underlying DG solution at the centroid i. Due to
the judicious choice of Taylor basis in our DG formulation, these four degrees of freedom simply coincide with the ones from
the underlying DG solution, i.e.,
eUR

i ¼ eUi;U
R
xi ¼ Uxi;U

R
yi ¼ Uyi;U

R
zi ¼ Uzi ð3:15Þ
As a result, only six second derivatives need to be determined. This can be accomplished by requiring that the point-wise
values and first derivatives of the reconstructed solution are equal to these of the underlying DG solution at the cell centers
for all the adjacent face neighboring cells. Considering an adjacent neighboring cell j, one obtains
Uj ¼ eUi þ UxiB2 þ UyiB3 þ UziB4 þ UR
xxiB5 þ UR

yyiB6 þ UR
zziB7 þ UR

xyiB8 þ UR
xziB9 þ UR

yziB10
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where the basis functions B are evaluated at the center of cell j, i.e., B = B(xj,yj,zj). This can be written in a matrix form as
follows:
Bj
5 Bj

6 Bj
7 Bj

8 Bj
9 Bj

10

Bj
2 0 0 Bj

3 Bj
4 0
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where R is used to represent the right-hand-side for simplicity. Similar equations can be written for all cells connected to the
cell i with a common face, which leads to a non-square matrix. The number of face-neighboring cells for a tetrahedral is four.
Consequently, the size of the resulting non-square matrix is 16 � 6. In the present work, this over-determined linear system
of 16 equations for 6 unknowns is solved in the least-squares sense using both normal equation approach and the QR decom-
position to obtain the second derivatives of the reconstructed quadratic polynomial solution. One can easily verify that this
least-squares reconstruction satisfies the so-called 2-exactness, i.e., it can reconstruct a quadratic polynomial function
exactly.
3.2.1.2. WENO reconstruction. This least-squares reconstructed discontinuous Galerkin method: RDG (P1P2) has been success-
fully used to solve the 2D compressible Euler equations for smooth flows on arbitrary grids [26–28,30,31] and is able to
achieve the designed third order of accuracy and significantly improve the accuracy of the underlying second-order DG
method. However, when extended to solve the 3D compressible Euler equations on tetrahedral grids, this RDG method suf-
fers from the so-called linear instability, that is also observed in the second-order cell-centered finite volume methods, i.e.,
RDG (P0P1)[33]. This linear instability is attributed to the fact that the reconstruction stencils only involve von Neumann
neighborhood, i.e., adjacent face-neighboring cells [33]. The linear stability can be achieved using extended stencils, which
will unfortunately sacrifice the compactness of the underlying DG methods. Furthermore, such a linear reconstruction-based
DG method cannot maintain the non-linear instability, leading to non-physical oscillations in the vicinity of strong discon-
tinuities. Alternatively, ENO/WENO can be used to reconstruct a higher-order polynomial solution, which can not only en-
hance the order of accuracy of the underlying DG method but also achieve both linear and non-linear stability. Specifically,
the WENO scheme introduced by Dumber et al. [40] is adopted in this work, where an entire quadratic polynomial solution
on cell i is obtained using a nonlinear WENO reconstruction as a convex combination of the least-squares reconstructed sec-
ond derivatives at the cell itself and its four face-neighboring cells,
@2U
@xm@xn

�����
WENO

i

¼
X5

k¼1

wk
@2U

@xm@xn

�����
k

ð3:18Þ
where the normalized nonlinear weights wk are computed as
wk ¼
~wkP5

i¼1 ~wk

ð3:19Þ
The non-normalized nonlinear weights ~wi are functions of the linear weights ki and the so-called oscillation indicator oi
~wi ¼
ki

ðeþ oiÞc
ð3:20Þ
where e is a small positive number used to avoid division by zero, and c an integer parameter to control how fast the non-
linear weights decay for non-smooth stencils. The oscillation indicator for the reconstructed second order polynomials is
simply defined as
ok ¼
@2U

@xm@xn

�����
k

 !2
24 351=2

ð3:21Þ
The linear weights ki can be chosen to balance the accuracy and the non-oscillatory property of the RDG method. Note that
the least-squares reconstructed polynomial at the cell itself serves as the central stencil and the least-squares reconstructed
polynomials on its four face-neighboring cells act as biased stencils in this WENO reconstruction. This reconstructed qua-
dratic polynomial solution is then used to compute the domain and boundary integrals of the underlying DG (P1) method
in Eq. (3.3). As demonstrated in Ref. [36], the resulting WENO (P1P2) method is able to achieve the designed third order
of accuracy, maintain the linear stability, and significantly improve the accuracy of the underlying second-order DG method
without significant increase in computing costs and storage requirements. Note that this RDG method is not compact any-
more, as neighbor’s neighbors are used in the solution update. However, the stencil used in the reconstruction is compact,
involving only von Neumann neighbors. Consequently, the resultant RDG method can be implemented in a compact manner.
3.2.2. WENO reconstruction at P1: HWENO (P1P2)
Although the WENO (P1P2) method does not introduce any new oscillatory behavior for the reconstructed curvature

terms (second derivatives) due to the WENO reconstruction, it cannot remove inherent oscillations in the underlying DG
(P1) solutions. Consequently, the WENO (P1P2) method still suffers from the non-linear instability for flows with strong dis-
continuities. In order to eliminate non-physical oscillations in the vicinity of strong discontinuities and thus maintain the
non-linear instability, the first derivatives need to be reconstructed using a WENO reconstruction. The resulting recon-
structed discontinuous Galerkin method based on this Hierarchical WENO reconstruction is termed as HWENO (P1P2) in this
paper, where a hierarchical reconstruction (successively from high order to low order) strategy [35] is adopted.
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The WENO reconstruction for the first derivatives is based on the reconstructed quadratic polynomial solutions of the
flow variables for each cell in the mesh. The stencils are only chosen in the von Neumann neighborhood. More precisely,
for a cell i, the following four stencils ði; j1; j2; j3Þ; ði; j1; j2; j4Þ; i:e:; j1; j3; j4Þ, and ði; j2; j3; j4Þ, where j1; j2; j3, and j4 designate
the four adjacent face-neighboring cells of the cell i are chosen to construct a Lagrange polynomial such that
Uj ¼ eUi þ UR
xiB2 þ UR

yiB3 þ UR
ziB4 þ UR

xxiB5 þ UR
yyiB6 þ UR

zziB7 þ UR
xyiB8 þ UR

xziB9 þ UR
yziB10 ð3:22Þ
where Uj refers to the pointwise value of the reconstructed polynomial solution at centroid of cell j and the basis functions B
are evaluated at the center of cell j, i.e., B = B(xj, yj, zj). In addition, the following four stencils ði; j1Þ; ði; j2Þ; ði; j3Þ, and ði; j4Þ are
chosen to construct a Hermite polynomial such that
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These eight reconstructed gradients UR
xi;U

R
yi; and UR

zi

� �
serving as the biased stencils and the gradient from the DG solution

itself at cell i (Uxi, Uyi, and Uzi) acting as the central stencil are used to modify the first derivatives based on the WENO recon-
struction as a convex combination of these nine derivatives,
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where the normalized nonlinear weights wk are computed as
wk ¼
~wkP9

i¼1 ~wk

ð3:25Þ
The non-normalized nonlinear weights ~wi are functions of the linear weights ki and the so-called oscillation indicator oi
~wi ¼
ki

ðeþ oiÞc
ð3:26Þ
where e is a small positive number used to avoid division by zero, and c an integer parameter to control how fast the non-
linear weights decay for non-smooth stencils. The oscillation indicator is simply defined as
ok ¼
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ð3:27Þ
The present choice of stencils is symmetric, and compact, as van Neumann neighbors are only involved in the reconstruction.
This means that no additional data structure is required for our HWENO (P1P2) method. Note that this WENO reconstruction
at P1 is the extension of a HWENO limiter developed for the DG (P1) by the authors in Ref. [15]. From the perspective of both
computational cost and solution accuracy, the above WENO reconstruction on P1 should only be used in the regions where
strong discontinuities exist. This can be accomplished using the so-called discontinuity detectors, which are helpful to dis-
tinguish regions where solutions are smooth and discontinuous. The beauty of this WENO reconstruction is that in case that
the reconstruction is mistakenly applied in the smooth cells, the uniform high-order accuracy can still be maintained, unlike
the slope limiters, which, when applied near smooth extrema, will have a profoundly adverse impact on solution in the
smooth region, leading to the loss of the original high-order accuracy. This remarkable feature of the WENO reconstruction
in turn alleviates the burden on the discontinuity detectors, as no discontinuity detectors can really either in theory or in
practice make a distinction between a stagnation point and a shock wave, as flow gradients near the stagnation point are
even larger than the ones near the shock wave in some cases. All numerical experiments presented in the next section
are performed by applying the P1 reconstruction everywhere in an effort to ensure that the computational results are not
affected by a shock detector, and to demonstrate the superior properties of the designed HWENO (P1P2) method.

4. Numerical examples

The hierarchical WENO reconstruction method has been implemented in a well-tested DG code [13–17] to solve a variety
of the compressible flow problems on tetrahedral grids, where a fast implicit p-multigrid method [16,17] is used to obtain
steady state solutions considered in this paper. A few examples are presented in this section to demonstrate that the devel-
oped HWENO (P1P2) method is able to maintain the non-linear stability and achieve the designed third order of accuracy. The
first two test cases are chosen to demonstrate that the developed HWENO (P1P2) method is able to achieve the designed
third-order of convergence for smooth flows. The next two test cases are used to assess the non-oscillatory property of
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the HWENO (P1P2) method for flows with strong discontinuities. The final test case is presented to illustrate the applicability
of the HWENO (P1P2) method to solve problems of scientific and industrial interests for complex configurations. All the grids
in our numerical experiments are generated using an advancing front method described in Refs. [41,42]. In the grid conver-
gence study of the first two test cases, a sequence of the three successively refined tetrahedral grids is used, where the cell
size is halved between consecutive meshes. The number of elements on a successively refined mesh is not exactly eight
times the coarse mesh’s elements due to the nature of unstructured grid generation. The length scale, characterizing the cell
size of an unstructured grid, is defined as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nDOFs3
p

, where nDOFs is the total number of degrees of freedom. Since the ana-
lytical solutions are unknown, the following L 2-norm of the entropy production is used as the error measurement
Fig. 1

Fig. 2.
for a su
kekL2ðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
e2dX

s

where the entropy production e defined as
e ¼ S� S1
S1

¼ p
p1

q1
q

� �c

� 1
Note that the entropy production, where the entropy is defined as S = p/qc, is a very good criterion to measure accuracy of
the numerical solutions, since the flow under consideration is smooth and therefore isentropic.

4.1. Subsonic flow through a channel with a smooth bump

The problem under consideration is a subsonic internal flow inside a 3D channel with a smooth bump on the lower sur-
face. The height, width, and length of the channel are 0.8, 0.8, and 3, respectively. The shape of the lower wall is defined by
the function 0.0625exp (�25 � 2) from x = �1.5 to x = 1.5. The inflow condition is prescribed at a Mach number of 0.5, and an
angle of attack of 0o. Fig. 1 shows the three successively refined tetrahedral grids used in this the grid convergence study. The
numbers of elements, points, and boundary points for the coarse, medium, and fine grids are (889,254,171), (6986,1555,691),
and (55703,10822,2711), respectively. Numerical solutions to this problem are computed using the RDG (P1P1), WENO
(P1P2), and HWENO (P1P2) methods on these three grids to obtain a quantitative measurement of the order of accuracy
and discretization errors. Fig. 2 illustrates the computed velocity contours in the flow field obtained by the HWENO
(P1P2) methods on these three grids. The errors and the convergence rates for the three methods are reported in Table 1.
It shows the mesh size, the L2-error of the error function, and the order of convergence. Considering that this is a 3D sim-
ulation of a 2D problem, and unstructured tetrahedral grids are not symmetric by nature, thus causing error in the z-direc-
tion, the second order RDG (P1P1) method can be viewed to offer the designed second order of accuracy. Both WENO (P1P2)
and HWENO (P1P2) methods are able to deliver the designed third order of convergence, adding one order of accuracy to the
underlying DG (P1) method. As expected, the WENO reconstruction on P1 increases slightly the absolute error. However, it
. A sequence of three successively globally refined unstructured meshes used for computing a subsonic flow in a channel with a smooth bump.

Computed velocity contours in the flow field obtained by the HWENO (P1P2) on a sequence of three successively globally refined unstructured grids
bsonic flow through a channel with a bump on the lower surface at M1 = 0.5.



Table 1
L2-error and order of convergence for the RDG (P1P1), WENO (P1P2), and HWENO (P1P2) methods.

Length scale RDG (P1P1) WENO (P1P2) HWENO (P1P2)

L2-error Order L2-error Order L2-error Order

6.552E�2 2.438E�3 2.183E�3 2.220E�3
3.295E�2 7.356E�4 1.744 2.794E�4 2.992 2.851E�4 2.987
1.650E�2 1.807e-4 2.032 4.539E�05 2.626 4.565E�5 2.647
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does not destroy the order of accuracy. This example demonstrates that the HWENO (P1P2) method can indeed achieve a
third-order rate of convergence for this smooth internal flow.

4.2. Subsonic flow past a sphere

A subsonic flow past a sphere at a Mach number of M1 = 0.5 is considered in this test case. A sequence of the three suc-
cessively refined tetrahedral grids used in this grid convergence study is shown in Fig. 3. The numbers of elements, points,
and boundary points for the coarse, medium, and fine grids are (535,167,124), (2426,598,322), and (16467,3425,1188),
respectively. Like the previous test case, the computations are performed on these three grids using the RDG (P1P1), WENO
(P1P2), and HWENO (P1P2) methods. Fig. 4 illustrates the computed velocity contours in the flow field obtained by the HWE-
NO (P1P2) method on these three grids. The errors and the orders of accuracy for the three methods are reported in Table 2.
All three methods achieve higher than the expected rates of convergence, being 2.36, 3.55, and 3.50 respectively. One can
observe again that the HWENO (P1P2) keeps the designed order of accuracy, although the WENO reconstruction on P1 in-
creases slightly the absolute errors of the WENO (P1P2) method. This example demonstrates that the HWENO (P1P2) method
is able to deliver a third-order rate of convergence for smooth external flows.

4.3. Transonic flow past an ONERA M6 wing

A transonic flow over the ONERA M6 wing at a Mach number of M1 = 0.84 and an attack of angle of a = 3.06� is considered
in this example. This standard test case is chosen to demonstrate that the developed HWENO (P1P2) method can effectively
Fig. 3. A series of four successively globally refined tetrahedral meshes for computing a subsonic flow past a sphere at M1 = 0.5.

Fig. 4. Computed velocity contours in the flow field obtained by the HWENO (P1P2) on a sequence of three successively globally refined unstructured grids
for a subsonic flow past a sphere at M1 = 0.5.



Table 2
L2-error and order of convergence for the RDG (P1P1), WENO (P1P2), and HWENO (P1P2) methods.

Length scale RDG (P1P1) WENO (P1P2) HWENO (P1P2)

L2-error Order L2-error Order L2-error Order

7.760E�2 1.783E�2 1.052E�2 1.117E�2
4.688E�2 5.010E�3 2.519 1.317E�3 4.124 1.503E�3 3.980
2.476E�2 1.232E�3 2.198 1.978E�4 2.964 2.201E�4 3.009
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suppress spurious oscillations in the vicinity of strong discontinuities and provide high accuracy solution in comparison with
the second-order finite volume method, WENO (P0P1) [37]. The flow solutions are presented using the WENO (P0P1) method
on a fine mesh and the HWENO (P1P2) method on a coarse mesh, respectively. The coarse mesh contains 95,266 elements,
18,806 points, and 5,287 boundary points, and the fine one 593,169 elements, 110,282 points, and 19,887 boundary points.
Fig. 5 shows the computed pressure contours on the upper wing surface obtained by these two solutions, respectively. The
computed pressure coefficients obtained by these two solutions are compared with experimental data [38] at six span-wise
stations in Fig. 6. The computed pressure coefficients for the HWENO (P1P2) solution are plotted by a straight line connecting
the two nodes of each triangle that intersect with the desired cut plane, thus truly reflecting the discontinuous nature of a DG
solution. The results obtained by both RDG methods compare closely with the experimental data, except at the root stations,
due to the lack of viscous effects. The leading edge suction peak is extremely well captured by both solutions in spite of the
coarseness of the grids used in both solutions. However, one can observe that the third-order HWENO (P1P2) solution on the
coarse mesh is more accurate than the second-order WENO (P0P1) solution on a globally refined grid, which is especially evi-
dent by judging the entropy production on the surface of the wing at these six span-wise stations as shown in Fig. 7. Note
that the entropy production corresponds directly to the error of the numerical methods, as it should be zero everywhere with
exception of shock waves where it should increase. The shocks are virtually captured within one cell without any oscillations
in the HWENO (P1P2) solution, clearly demonstrating the high accuracy and non-oscillatory property of our HWENO (P1P2)
method.
4.4. Transonic flow past a wing/pylon/finned-store configuration

A transonic flow past a wing/pylon/finned-store configuration reported in Ref. [39] is computed in this test case using
HWENO (P1P2) method. The configuration consists of a clipped delta wing with a 45� sweep comprised from a constant NACA
64010 symmetric airfoil section. The wing has a root chord of 15 in. a semi-span of 13 in. and a taper ratio of 0.134. The pylon
is located at the mid-span station and has a cross-section characterized by a flat plate closed at the leading and trailing edges
by a symmetrical ogive shape. The width of the pylon is 0.294 in. The four fins on the store are defined by a constant NACA
0008 airfoil section with a leading-edge sweep of 45� and a truncated tip. The mesh used in the computation contains
319,134 elements, 61,075 grid points, and 14,375 boundary points. The flow solution is presented at a Mach number of
0.95 and an angle of attack of 0�. Fig. 8 shows the computed pressure contours on the upper and lower wing surface, respec-
tively. The computed pressure coefficient distributions are compared with experimental data at two span-wise stations in
Fig. 9. The comparison with experimental data is excellent on both upper and lower surface up to 70% chord. As expected
from the Euler solution, the computation predicts a shock location that is downstream of that measured by the experiment
Fig. 5. Computed pressure contours on the unstructured surface mesh obtained by the WENO (P0P1) solution on the fine mesh (left, nelem = 593,169,
npoin = 110,282, nboun = 19,887), and the HWENO (P1P2) solution on the coarse mesh (right, nelem = 95,266, npoin = 18,806, nboun = 5287) for a transonic
flow past a M6 wing at M1 = 0.84, a = 3.06�.



Fig. 6. Comparison of the computed pressure coefficient distributions obtained by WENO (P0P1) and HWENO (P1P2) solutions with experimental data at six
span-wise locations for a transonic flow past the ONERA M6 wing at M1 = 0.84, and a = 3.06�.
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due to the lack of viscous effect. Again, our third-order HWENO (P1P2) method captures the shock waves very sharply within
one cell without any visible under-and over-shoots.

4.5. Transonic flows past a Boeing 747 aircraft

Finally, a transonic flow past a complete Boeing 747 aircraft is presented in this test case. The 747 configuration includes
the fuselage, wing, horizontal and vertical tails, under-wing pylons, and flow-through engine nacelle. The mesh used in the



Fig. 7. Comparison of the computed entropy production distributions obtained by the WENO (P0P1) and HWENO (P1P2) solutions at six span-wise locations
for a transonic flow past the ONERA M6 wing at M1 = 0.84, and a = 3.06�.
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computation contains 48,851 grid points, 253,577 elements, and 11,802 boundary points for the half-span airplane. The solu-
tion is computed at a free stream of Mach number of 0.85 and an angle of attack of 2�. The computed Mach number contours
on the surface of the airplane, along with the surface mesh, are shown in Fig. 10. One can see that the shock waves on the
upper surface of the wing are captured well within one cell, confirming the accuracy and robustness of the HWENO (P1P2)
method for computing complicated flows of practical importance.



Fig. 8. Computed pressure contours on the unstructured surface mesh obtained by the HWENO (P1P2) solution (nelem = 319,134, npoin = 61,075,
nboun = 14,373) for a transonic flow past a wing/pylon/finned-store configuration at M1 = 0.95, and a = 0�.

Fig. 9. Comparison of the computed pressure coefficient distributions with experimental data at two span-wise locations for a transonic flow past a wing/
pylon/finned-store configuration at M1 = 0.95, and a = 0�.

Fig. 10. Computed Mach number contours and unstructured surface mesh for transonic flow past a complete B747 aircraft (nelem = 253,577,
npoin = 48,851, nboun = 11,802) at M1 = 0.85, and a = 2�.
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5. Conclusions

A reconstructed discontinuous Galerkin method based on a hierarchical Hermite WENO reconstruction, HWENO (P1P2),
has been presented for solving the compressible Euler equations on tetrahedral grids. The HWENO (P1P2) method is designed
not only to enhance the accuracy of the discontinuous Galerkin method, but also to avoid non-physical oscillations in the
vicinity of discontinuities. A number of numerical experiments for a variety of flow conditions have been conducted to dem-
onstrate the accuracy, robustness, and non-oscillatory performance of the HWENO (P1P2) method. The numerical results ob-
tained indicate that the developed HWENO (P1P2) method is able to provide sharp resolution of shock waves without over-
and under-shoots for flows with strong discontinuities and achieve the designed third-order of accuracy for smooth flows:
one order accuracy higher than the underlying DG method, thus significantly increasing the accuracy of the underlying DG
method without significant increase in computing costs and memory requirements.
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