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We construct gpreconditioned modified Hermitian and skew-Hermitian splittiRIMHSS) iteration
scheme for solving and preconditioning a class of block two-by-two linear systems arising from the
Galerkin finite element discretizations of a class of distributed control problems. The convergence theory
of this class of PMHSS iteration methods is established and the spectral properties of the PMHSS-
preconditioned matrix are analysed. Numerical experiments show that the PMHSS preconditioners can
be quite competitive when used to precondition Krylov subspace iteration methods such as GMRES.
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1. Introduction

Consider block two-by-two systems of linear equations of the form

e (430)()-(2)

whereW, T e R"™" arereal, symmetric and positive semidefinite matrices with at least one of them,
e.g.,W, being positive definite. This class of linear systems can be formally regarded as a special case of

(© Theauthor 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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thegeneralized saddle point probleBgnzi & Goluh 2004;Benziet al,, 2005). It frequently arises from
finite element discretizations of elliptigartial differential equation(PDE)-constrained optimization
problems such as distributed control problems (Lidi®68;Lasset al.,2009;Reeset al.,2010;Rees &
Stoll, 2010;Bai, 2011) and also from real equivalent formulations of complex symmetric linear systems
(Axelsson & Kucheroy2000;Day & Heroux 2001).

Based on thédermitian and skew-Hermitian splittingdSS):

A=H+S
of the matrixA e R2"™2" with

1 o_ (W 0 _1 o_ (0 -T
H:E(A+A)_(O W) and S_E(A_A)_(T O)

being the Hermitian and skew-Hermitian parts aAd beingthe conjugate transpose of the matrix

A e R?™2" \we can apply the HSS iteration methdsiaf et al., 2003) or its preconditioned variant
PHSS(i.e., the preconditioned HSS; sBai et al., 2004) to compute an approximate solution of the
block two-by-two linear systeml(1); see als®enzi & Golub(2004),Benziet al. (2005) andBai et

al. (2007). With this alternating splitting iteration approach, at each step we need to solve two linear
subsystems of the following forms:

(@Vp+Hx=rbY and (aVp+Sx=r®,

whereVp e R?™2"js a given symmetric positive definite matrix of the block diagonal farm =
Diag(V, V) with V e R"™" ¢ is a prescribed positive constant, arfd, j = 1,2, are two known
vectors. In matrix—vector form, the above linear subsystems can be equivalently written as

aV +W 0 y rd oV =T\ (y r
= (l and = (2 s
0 oV +W z My ) T aV z [ )

. () ) )
r(1>=(r?n), with P rDer", j=1,2
'y

ThematrixaV +W is symmetric positive definite, so the first linear subsystem may be effectively solved
either exactly by the Cholesky factorization or inexactly by some inner iterative scheme. The matrix

oV —T
T aV
is nonsymmetric and positive definite. The second linear subsystem may be solved in principle through

Schur complement reduction (block triangular factorization) by first computing the solution sutwector
from

where

— 2 —
@V +TV I Dz=ar? - TV 42,

1in the real case this becomes the symmetric and skew-symmetric splitting. In this case(Wé tsdenote the transpose of
the corresponding matrix.
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and then computing another solution subvegtinom
1
y=-V1Tz41?).
a

The problem with this approach is that in most cases the Schur complerdeént TV ~1T will be a
large dense matrix that cannot be easily managed.

The system of linear equation%.{) may be solved by the preconditioned GMRES method, or it
may be first symmetrized and then solved by the preconditioned MINRES metho@hee¢2005)
andSaad(2003). If MINRES is used, a symmetric positive definite preconditioner is required. A typical
choice is to use a block diagonal preconditiorReé¢set al., 2010; Pearson & Wathern2010); such
preconditioners necessitate a good approximation to the Schur complmerfw ~1T, which may
be difficult or expensive to construdéi & Ng , 2005). We return to this issue at the end of Sec8on

In this paper we develop a new approach to solving block linear systems of the fatinttiat
avoids Schur complements. The new schemes are based on a class of methods for solving linear syste
with complex symmetric matrices introducedBai et al. (2010,2011) and exploit the fact that real
systems of the formi( 1) are formally identical to linear systems with complex coefficient matgix=
WHiIT e C™", where i= +/—1 denotes the imaginary unit. The algorithm describeBéiet al.(2010)
is amodified Hermitian and skew-Hermitian splittifgiHSS) iteration method; the one introduced in
Bai et al. (2011) is a preconditioned variant of MHSS, call@@conditioned modified Hermitian and
skew-Hermitian splittingPMHSS).

In the following, we develop a PMHSS iterative method for solving the block two-by-two linear
system {.1), establish its convergence theory and analyse the spectral properties of the correspondingg
preconditioned matrix. The PMHSS iteration scheme is, in spirit, analogous to the preconditioned HSS 3
iteration methods discussed above (see Bsozi & Goluh 2004;Bai et al., 2004; Bertacciniet al.,
2005;Baiet al.,2007, for detailed treatments) for solving non-Hermitian positive definite linear systems.
Convergence analysis has shown that the PMHSS iteration method is convergent whéh drodi
are symmetric positive semidefinite and at least one of them is positive definite. For certain special &
cases of the PMHSS iteration method, this convergence condition can be weakened to the requiremeng
that both matrice$V andT are symmetric positive semidefinite satisfying nall) N null(T) = {0},
where null¢) represents the null space of the corresponding matrix. Also, the PMHSS iteration method
naturally leads to a preconditioning matrix for the block two-by-two mairikor the above-mentioned
special PMHSS preconditioners, the eigenvalues of the preconditioned matrices are clustered within

e /Bio'sfeulnolpioixoeu fela//:dnq WwoJ} papeo jumoqd
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complex disks centred at 1 with radﬁ@, wherea > 0 is the iteration parameter, and the matrices
of the corresponding eigenvectors are unitary and hence have condition numbers equal to 1.

In this paper the PMHSS iteration method is applied to a class of KKT linear systems arising from
a finite element discretization of a class of distributed control problémsg, 1968;Lasset al.,2009;
Reeset al, 2010;Bai, 2011). In order to apply the method, we first eliminate the Lagrange multiplier
from the original KKT system to obtain a block two-by-two system, which is then diagonally scaled so
as to obtain linear systems of the fornX). The PMHSS iteration method for such a scaled block two-
by-two linear system is then transformed back to the original variables, resulting in the PMHSS iteration
method and, therefore, the PMHSS preconditioner, for the (nonscaled) block two-by-two linear system.
Numerical results in Sectiohshow that PMHSS iteration methods, when used to precondition Krylov
subspace methods such as GMRE&4d 2003), lead to rapid convergence and tend to outperform the
constraint preconditioners proposedireset al. (2010); see als&eller et al. (2000),Bai et al. (2009)
and the references therein for additional information on constraint preconditioning. Furthermore, our ex-
periments show that PMHSS compares favourably with MINRES with block diagonal preconditioning

¥T0Z ‘S |udY U0 S90UBI0S JO AWepeoy asa


http://imajna.oxfordjournals.org/
http://imajna.oxfordjournals.org/

4 of 27 Z.-Z.BAI ET AL.

anddifferent Schur complement approximations, such as those propogeghison & Wathe2010)
andReeset al. (2010).

The organization of the paper is as follows. In Secftome establish the PMHSS iteration method
and analyse its convergence and preconditioning properties. In S8etienerive the PMHSS iteration
method for a class of block two-by-two linear systems arising from distributed control problems. Nu-
merical results are given in Sectidrio show the effectiveness of the PMHSS preconditioner, including
comparisons with a state-of-the-art constraint preconditioner. Finally, in S&otverend the paper with
some conclusions and remarks.

2. The PMHSS iteration method

The block two-by-two linear system (1.1) can be rewritten as a fixed point equation:

(Yo" i) ()= (5 ) () ()

Alternatively, it can also be rewritten into another fixed point equation:

aV+T 0 y\ _ (aV —-W) [y + q
0 aV+T)\z)  \W aV z =72
Alternating between these two splittings leads to the (real) PMHSS iteration method for systems of the

form (1.1), described as follows. Here and in the sequel, weg95¢o denote the transpose of either a
vector or a square matrix.

METHOD 2.1(The PMHSS iteration method (real version)).

Let (y©", zZO"\T ¢ R2" pean arbitrary initial guess, with®, z® e R". Fork = 0, 1,2, ..., until the
sequence of iteratggy®", zK")T}> - R?" converges, compute the next iteragg+D", zk+D')T
accordingto the following procedure:

aV +W 0 y DY fav T (y® (P
0 aV+W I\ k) ]\ =T aVv )\ 2z® a)’
aV+T 0 ykDY gy —w [y (@
0 oV+T)\zKD ] AW  aV J\ 2+ -p)°
wherea is a given positive constant ande R"*" is a prescribed symmetric positive definite matrix.

Let
(k) (k+3)
& _ (Y &+ _[YT?
X _(z(k)) and x¥72) = Skid |

Thenafter straightforward derivations, we can reformulate the PMHSS iteration scheme (2.1) into the
standard form

2.1)

XD =L (v;ax® +R(V;a)g,  k=0,1,2,...,
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where

(Vi = (VFT 0 oV W\ (aV+W 0 Y 'fav T
&)= 0 aV +T W aV 0 aV +W T aV

and

RV:ay—a (Y FT O VO aV+W 0 M1
e)=a 0 aV4+T 0V 0 aV +W -1 1)

with | € R™" beingthe identity matrix. Note thdt(V; «) is the iteration matrix of the PMHSS iteration
method (real version), i.e., Meth@dl.

By straightforward computations, we can also show that the spectral radiw®/o#) is bounded
by a quantitys (o), which only depends on the iteration parameterhis fact is precisely stated in the
following theorem.

THEOREM2.2 LetA e R?™*?" bethe block two-by-two matrix defined as ih.(L), with bothw e R"*"
andT e R™" beingsymmetric positive semidefinite matrices, andddbe a positive constant. Then
the following statements hold true:

() Ais nonsingular if and only if null/) N null(T) = {0};
(ii) if W is symmetric positive definite, the spectral radius of the PMHSS iteration matvix«)

satisfiesp (L(V; a)) < o (a), with
Ja? +72 Ja? + 1%

o(a)=_ max = - max =
TjespV—iw)  a +Aj  Fjespv-iT) o+ U

‘/a2+;1'12
<. max ——=— <1 Va>0,
Zjespvlw) @ + 4

i.e., the PMHSS iteration, defined by Methad., converges unconditionally to the unique so-
lution of the block two-by-two linear system (1) for any initial guess, where &p denotes the
spectral set of the corresponding matrix;

(iii) for the choicea,. = /7 min? max With 7 min @ndy ax eingthe smallest and the largest eigenvalues
of the matrixV ~1W, it holds that

Vio(V=IW) + 1
VioVIW) + 1

o(oy) <

Proof. We first prove (i).
Necessity: if there exists a nonzero vectot null(W) N null(T), then it follows fromWy = 0 and
Ty = 0 thatAx = 0, wherex = (y",y")T € R?"is a nonzero vector. This obviously contradicts the
assumption thad e R?™2" is nonsingular. Hence, it must hold that i) N null(T) = {0}.
Sufficiency: letx = (yT, z")T € R?", withy, z € R", such thatAx = 0, i.e.,

Wy —Tz=0 and Ty+Wz=0.
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Thenwe easily have
W+Ty+W-T)z=0 and (T-W)y+ (W+T)z=0. (2.2)
Becausé/VN andT are symmetric positive semidefinite matrices and @)l N null(T) = {0}, we see

thatW + T is a symmetric positive definite matrix. Therefore, by solvingyfdrom the first equation
in (2.2), we get

=W+T) (T -Wz
andby substituting it into the second equation th), we get
[(W+T)+(T-W)W+T)H(T-W)z=0
Noting that the matrix (W + T) + (T — W)(W + T)~%(T — W)] is symmetric positive definite, we

immediately obtairz = 0 and, thusy = 0. This shows thaA € R?"*?" mustbe nonsingular.
To demonstrate (ii), we first introduce the notation

~ 1 1 ~ 1 1
W=V "2WV~™2 and T=V 2TV~ 2.
Then there exist orthogonal matrice®w,Qr e R™", a positive diagonal matrixdy =
diag(l1, A2, ..., An) € R"™" anda non-negative diagonal matritt = diag(i1, %o, ..., itn) € R™"
suchthat
W =QwAwQ}, and T =QrArQf.

By block scaling and matrix similarity, we know that the PMHSS iteration mati; «) is similar to
the matrix

E . fal —W al + W 0 -1 al T ol +T 0 -1
(@) = W al 0 al +W -T al 0 al +T '

So,it holds thatp (L(V; a)) = p(L(a)). It follows from straightforward computations that

al WY (al +W I+T o \*
W al 0 a|+W F al 0 a+T) |

(e —Aw) (o + dw al+A4r 0\
- Aw al 0 aI+AW 0 al + A1 )

pL(@)) <

a:l:l/lj axij
= maxXx _—
Tespy | @+ 7j ﬂJGSp(T') o+ pj
Ja? +72 Ja? + %
= max ———. max ———-

TjespV—tw) @+ 4]  fjespv-iT) o+ Uj

=o(a).
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Here we have used the facts thatdp = sp(V W) andsp(T) = sp~1T). Noting that spy—1T)
C [0, +00), we see that for allij spV~1T), j =1,2,...,n, the bounds

/a2+/7]?

~ gl: j=1729"‘5n)
o+ uj

are valid. Hence, it holds that

‘/az + If
o(l@) <_ max ——~— <1
Tjespv—lw) @ + 4j
Thevalidity of (jii) follows immediately from the estimate
/a2 1L 2
o(a) < max L,

<A< T @+ 4

andthe fact that this upper bound attains the minimum.at /7 min?max BY making use of this,,
we get

VPrmin + Pmax _ \/KZ(V_lw) +1

5(05*) < —= — = .
\/Vmin + \/Vmax \/KZ(V_l\N) +1
O
In addition, if we introduce matrices
L aV +W 0 vt 0\ [(aV+T 0
FV o) = P(“)( 0 av +W) ( 0 v—l) ( 0 av +T) (2:3)
and
avV. W) /Vv1l o0 aV T
GV; @) = Ple) (W aV ) ( 0 v—l) (—T aV)’
with
1 /1 —l
then it holds that
A=FV;a)—G(\V;a) and L(V;a)=F(, a)_lG(V; a). (2.5)

Therefore, the PMHSS iteration scher2el() is induced by the matrix splittiny = F(V; a) — G(V; a)
defined in 2.5). It follows that the splitting matri¥(V; a) given in 2.3) can be used as a precondi-
tioning matrix for the block two-by-two matrid e R2"™2" in (1.1), which will be referred to as the
PMHSS preconditioner.
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In actual implementations, the action of the preconditioning m&t(\; «), when used to precon-
dition Krylov subspace methods, is often realized through solving a sequence of generalized residual
equations of the form

FV; a)v=r,

wherer = (r;, rg)T e R?" with ra, rp € R", represents the current residual vector, while=

I, vT e R?, with va, v, € R", represents the generalized residual vector. By making use of the
concrete structures of the matrided/; a) in (2.3) andP(a) in (2.4), we obtain the following procedure
for computing the vectov:

(i) computeVa, Vi, € R" by solving the systems of linear equations
(aV +W)Va=ua(ra +rp),
[ (aV +W)Vp =a(—ra+rp);
(i) computev,, Vp € R" by
Va=VVy and Vp=VVp;
(i) computeva, v € R" by solving the systems of linear equations
(@V 4+ T)Va =V,
[ @V 4+ T)vp =V

Note that both matriceaV + W andaV + T are symmetric positive definite. Hence, the above
four systems of linear equations can be solved effectively either exactly by Cholesky factorizations or
inexactly by some conjugate gradient or multigrid schemepBsget al. (2003,2008).

In particular, wherV = W, we have

. 1 faW+T 0 Y '/aWw T\ [al -
L(“)'ZL(W’“)_m( 0 aW+T) (—T aW)(I al) (2.6)

_ . a [(aW+T o \ '/ 1|
R(oc).:R(W,oc)_a+1( 0 aW+T) (—I I)'

We note that the PMHSS iteration scheme in the real version is induced from the matrix splitting

A =F(a) — G(a),

and

where

2.7)

F(a) := F(W; a) = (« 4+ 1)P(a) (“W U )

0 oW +T

and

G(a) == G(W; a) = P(a) (“'I ;I') ("‘_V¥ OIN)

with P(a) being defined inZ.4).
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Moreover, it holds that

Va2 +1
plL@) < 25 Va0
a

see Theoren®.2(ii). We can further prove the convergence of this PMHSS iteration method under
weaker conditions without imposing the restriction that the matfixe R™*" is positive definite. This
result is precisely stated in the following theorem.

THEOREM 2.3 Let A € R2"™?" bethe block two-by-two matrix defined as if.(), withw e RN
andT e R™" beingsymmetric positive semidefinite matrices satisfying @y N null(T) = {0},
and leta be a positive constant. Then the spectral radius of the PMHSS iteration m&tjixsatisfies

p(L(a)) < o(a), with
VaZ+1 14 |u@)2
o(l@d) = ——- max _
o+1 Iu(ll)espé(a)) 2

whereZ@ = (aW + T)~(aW — T). Therefore, it holds that

Vo2 +1
p(L@) <ola) < YET= :1 Vo > 0;
a

i.e., the PMHSS iteration converges unconditionally to the unique solution of the block two-by-two
linear system (1.1) for any initial guess.

Proof. Becaus&V andT are symmetric positive semidefinite matrices, &) N null(T) = {0}, and
o > 0, we know that the matrig W + T is symmetric positive definite. Based on the identities

oW T I =1y (aW+T T-—aW
-T oW I 1) \aW-T aW+T

I =1\ ol =1\ _1{(@+D (a-1)
[ I al) " 2\@=-a) (@+1)1)°

from (2.6) we immediately have

L@y = L(W+T 0 W4T Toaw\( | =h
“=3 0 oW + T aW-T aW+TJ\ g | ]

and

which is similar to the matrix

with

Z@ = (aW + T)"2(aW — T)(aW + T)"2.
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By noting
| —Z@O\ (1 —Z@\" [(1+Z«* 0
(ZW | )(201) | ) - 0 | 4 7@?
and
=10 T =1 2(e*+1)
= = (@+12"
we obtain

2.1 ()
OION 2?—:1)2(”2 0 )

In addition, straightforward computations show tha#)L(a)T = L(a)TL(a), soL(a) is a normal
matrix. Therefore, it holds that

/0.2 1 7 (@))2
pC@) = 1@ o = p € Ly Ty = V2L [LEPEET 28)

AsZ@ s similar toZ @, we know thatp (Z®) = p(Z@). Hence, from 2.8) we further obtain

~ voaZ+1 14 |pu@)2
pL(a)) =p(a)) = —— max ——— =oa(a).
o+1 Iu(fl)espa(a)) 2

Forallx® e sp@®), it easily follows from spZ®) C [-1, 1] that3(1+|x®|?) < 1and, therefore,

a?+1

< )
o(a) P

O

The spectral properties of the preconditioned maffif:) 1A are established in the following
theorem.

THEOREM 2.4 Let A € R2"™2" hethe block two-by-two matrix defined as if.(), withw e RN
andT e R™" beingsymmetric positive semidefinite matrices satisfying @l N null(T) = {0},
and leta be a positive constant. Defif&® = (aW + T)"2 (W — aT)(@W + T)~2. Denote by
u(l"), ug’), ., 1 theeigenvalues of the symmetric mat@x® e R™*", and byq(l"‘), qg’), ., qw

the correspondingaW + T) ~1-orthogonakigenvectors. Then the eigenvalues of the maitix) A
are

aeh = = (1j:ia -

1 (@) .
141 =1,2,...,Nn
a2+1 a—l— )( ILl )9 J 2 2 9
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and the corresponding eigenvectors are

(@) (@)
o L5 ) x@ LX) 12N
j 2\ Xga) T 2\ i x%“)

with x}“) = (aW + T)_%qﬁa). Therefore, we havB(a) 1A = X@ A@X @™ where

~ 1 /X@ X (@)
(@) —
X = —= (ix(a) —_iX@

V2

) ;X = (9 ), x@) e RN,
and

(@) AE‘:) 0 (a) ; (@,1) ,(a,2) (a,n) nxn
A = 0 A(a) . Ai :dlag(ﬂi 9/11 ""’j‘i )E(C .

Moreover, X(@ e R™" js orthogonal an&(® e C2"%2"js unitary, so it holds that
x2(>~<(“)) — K2(X(“)) =1,
wherex () representthe condition number in the Euclidean norm.
Proof. Define matrices
Q(a) _ (qga)’ qu)’ e ,(1(1)) c RN
and
E@ — diag(,u(la), ,ugl), A /lr(f‘)) e R™N,
Thenit holds that
Z@OQ®W — QW =@ and X@ = (@W + T)~2Q®.

Becauséhe inverse of the matriR(«) defined in 2.4) is given by

P(a)_lza(_ll |I)
(7 W) = (1)

commute, from (1.1) and®(7) we easily get

_ a (aW+T o \t/w -t I
Fa) 1A=a+1( 0 aW+T) (T w)(—| |)' (2.9)

Based on the identities

w T al 1Y (aW+T W —aT
T W = al)  \aT-W aW+T

and the matrices
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al N0y 1 (@t (a-1)
1 al 1) T Zri\a-a)l @+1)1)°

we further obtain from (2.9) that

_ -1
Ftae 0 (PWHT 0 Yaw+T w—oT\( | F!
@ A=7271\ 0 aW+T aT-W aW+T )\ 10,

a+1

1 1
o (aW+T 0 Yz |  ZW\[(aW+T 0 )5
Ca?+1 0  aW+T A 0  aW+T

a (X@ 0 I 2@\ (X® 0\,
=a2+1(0 x<a>)(—5<a> | )( 0 x(a>) J

and

— % @F@g@ 5@
a?+1

- % @yp@jog@™ 2.10

- a2+ 1 9 ( . )
where

o X@ 0 = | z@ ~ | ez
X@ = AE and J® = afll ).
( 0 x(“>)’ —E@ o
Let
uo — L (1 ]
NZAUE=1VA
Then by straightforward computation, we have
i =)
@ Py _ (1 +12 0
e svaua_( 0 | —i 5@
and
e (@) (@+D)+@=1)i| 0
U@ Jl@y — a~l(—)1 (D=1 |-
a+1
Now it follows from (2.10) that
_ a . l+i5@®@ 0
Fla) A= —————X®y® )
(@) @+ D@2+ 1) 0 | —iz@
[(@+1)+i(e — D] 0 U@ @
0 [(@ +1)—i(a = D]l

_ K@ @@

whereX @ = X@y@ and
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al(a +1)+i(a — 1)]

4@ _ al(a + 1) —i(a — 1))
(a+1)(a?+1) -

(@) _ iz i =@
Ay = Il +iZE R | —i = .
* (+ ) (a +1)(a?2+1) ( )

Moreover, asQ® e R"*"is («W +T) ~-orthogonakndU® e C2™"is unitary, we immediately
find thatX @ e R™" andX® e R?™2" areorthogonal and, henc® e C2™2" is unitary. It then
follows thatxo(X®)) = xp(X@) = 1. O

REMARK 2.5 If a = 1, then Theoren2.3leads tas (1) < @ This shows that when

F'=(| —I)(W+T 0 )

' I 0 W4T

is used to precondition the matrx € R2"™*2", the eigenvalues of the preconditioned maffix:A are
containedvithin the complex disk centred at 1 with radiég. Moreover, Theorer.4indicates that the
matrix F~1A is diagonalizable, with the matriXV), formed by its eigenvectors, being unitary. Hence,
the preconditioned Krylov subspace iteration methods, when employed to solve the block two-by-two

linear system1.1), can be expected to converge rapidly and independently of both problem data and
mesh size.

REMARK 2.6 For the PMHSS preconditioning matrb(a) defined in 2.7) in Bai et al. (2011) for
complex symmetric linear systems of the fodgx. = bg, with Ac = W +iT € C™" andb, €
C", in an analogous fashion to the proof of Theor2m we can also demonstrate tHeg(a) tA. is
diagonalizabldoy the orthogonal matriX*) e R™", where

X@ = (x5, ., x @), with X\ = (W + T)"2q(®,

andai”, g5, ..., af”
1 1 . . .

T)"2(W — aT)(aW + T)™ 2. Hence, the preconditioned Krylov subspace iteration methods such as

GMRES, when employed to solve the complex symmetric linear sy8teq = b¢, can be expected to
converge very rapidly. This result improves Theorems 3.2 and Baiiet al. (2011).

arethe (aW + T)~l-orthogonaleigenvectors of the matrix® = (aW +

3. Applications to the numerical solution of distributed control problems

Consider the distributed control problem

1 5 5
FLQIPEIIU—U*||2+ﬁIIfI|2 (3.1)
subjecto —Vau=f in Q, (3.2)
0
with u=g on o691 and a—t: =g on 00, (3.3)

whereQ is a domain inR? or R3, 52 is the boundary of2, andoQ; andoQ, aretwo parts ofo Q2
satisfyingo 2, U 0Q2 = 0Q andoQq N 0L, = @. The parametef > 0 in (3.1) is a regularization
parameter; some authors Léénsteadof p, e.g.,Pearson & Wathe(R010). Such problems, introduced
by Lions (1968), consist of a cost functiond.() to be minimized subject to a PDE proble®i2-3.3)
posed on the domaif2. Here the functiom, (the‘desired state’) is known, and we want to fiagwhich
satisfies the PDE problem and is as closa.t@spossible in the.>-normsense. For recent references
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on this topic, see, e.glto & Kunisch (2008),Lasset al. (2009),Bai (2011), Takacs & Zulehne(2011)
andTroltzsch(2010).

When the PDE-constrained optimization probleg11¢3.3) is treated with the discretize-then-
optimize approach (Reex al., 2010) through application of a Galerkin finite element method to its
weak formulation, we obtain a KKT system in the following saddle point form:

26M 0 —-M f 0
0 M KT ul=(b], (3.4)
-M K 0 A d

whereM e R™ M isthe mass matrixK e R™*™ is the stiffness matrix (the discrete Laplaciag)> 0
is the regularization parameter,e R™ containsthe terms coming from the boundary values of the
discrete solution and € R™ is the Galerkin projection of the discrete state In addition, 1 is a vector
of Lagrange multipliers.
The saddle point linear systerd.4) can be equivalently rewritten in block element form as

28Mf — M2 =0,

Mu+ KTl =hb, (3.5)
—Mf+Ku =d.
From the first equation ir3(5) we easily get
2 =2pf. (3.6)

By substituting this expression with respectitoto the other two equations in (3.5), we obtain

Mu+28KTf =b,
Ku— Mf =d,

or equivalently,

e (B2 5)()- ()5

We remark that the block two-by-two linear systedxi7(), together with (3.6), is equivalent to the saddle
point linear system (3.4); see alSimoncini(2011). Recall thaM € R™™M is the mass matrix and is,
thus, symmetric positive definite. Therefore, the mafix R°™ ™M is positive real, i.e., its symmetric
part is positive definite.

In the remainder of this section, we assume that the stiffness matisxsymmetric and positive
semidefinite; this assumption is slightly more general than needed for the treatment of the particular
distributed control problem (3.1-3.3), for whi&his positive definite. Through symmetric block-scaling

by the diagonal matrix
b (‘Vozﬁ' ?) (3.8)

wherel e R™™ representthe identity matrix, we can reformulate the block two-by-two linear system
(3.7) into the form of {.1), with

A=DAD=(\/;V|—ﬁK _*ﬁ_/’)K), e, W=M and T=.25K, (3.9)
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and

__1
x:D‘1x=( «/fﬁu) i.e.,y:—\/izfﬁu and z=f,

(3.10)

—lp
g=Dg ( dﬁ , i.e,p mb and q d.

Now first applying Method?.1 directly to the block two-by-two linear system.(), and then trans-
forming the induced iteration scheme back to the original variables thr@®i1§hgnd (3.10), with the
notational replacemeit = V, we obtain the PMHSS iteration method for solving the block two-by-two
linear system (3.7) as follows.

METHOD 3.1. (The PMHSS iteration method f0B.(7)).

Let u@T, fO")T ¢ R2™ pe an arbitrary initial guess, with©, f© ¢ R™ Fork = 0,1,2, ...,
until the sequence of iterat¢a®", f®©")T}e = R2™ converges, compute the next iteratelk+1)’
f +DYT accordingo the following procedure:

aV+M 0 uk D\ [faVv  —28K (u® ("
0 aV +M fk+3 ]~ LK aV £k —d)’
aV + /2K 0 uktby aV  J2BM uk+3) /25d
( 0 aV+«/_2ﬂK)(f(k+1))_ —ﬁm aV f kD) + ﬁb ’

where « is a given positive constant and € R™™ is a prescribed symmetric positive definite
matrix.

We easily see that the convergence rate of the PMHSS iteration sequence generated bydMethod

is bounded by
2472 2 72
A V&< +2pu
oola)=_  max ~——~—-. max -~———.
TjespV~IM) a+Aj  FjespViK) &+ /2PU|

Moreover, the PMHSS preconditioner induced from Mettd for the block two-by-two linear
system (3.7) is given by

F(V;a)=D"'F(V; a)D!

P (VM 0 vt o aV + /2BK 0
=P@Hl 0 wvim)\l o v 0 aV + V2PK )

(3.11)
where
1
P(a; p) = D‘lP(oz)D‘1 = m (—\/lﬁl ﬁl ) ; (3.12)

see(2.3), 2.4) and 8.8) for the definitions of the matricéqV; «), P(a) and D, respectively. Here we
have applied the relationships i8.9).
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In actual implementations, the action of the preconditioning m&(¥; «), when used to precondi-
tion the Krylov subspace iteration methods, is often realized through solving a sequence of generalized
residual equations of the form

F(V;a)o =r,

wherer = (1, r])T e R®™, with ra,r, € R™, represents the current residual vector, while=

01, o7 e R?™, with va, 0o € R™, represents the generalized residual vector. By making use of
the concrete structure of the matix(V; ), we obtain the following procedure for computing the
vectory:

(i) computeds, op € R™ by solving the systems of linear equations

(@V + M) =208 (ra — A5ro)
(aV + M)op = a(/2Pra + I'p);
(i) computevy, vp € R™ by
va=V0a and vp = Vop;
(i) computena, vp € R™ by solving the systems of linear equations
(@V + V2BK)va =7Da,
[ (@V + V2K)vp = Db.

Notethat both matriceaV +M andaV + /28K aresymmetric positive definite. Hence, the above
four systems of linear equations can be solved effectively either exactly by Cholesky factorizations or
inexactly by some conjugate gradient or multigrid schemeBsget al. (2003,2008).

In particular, whenv = M, the PMHSS preconditioning matri (V; a) defined in 8.11-3.12)
reduces to

M + V28K 0
Flo) = F(M;a):(a+1)P(a;,b’)(a +o p aM+mK). (3.13)
If « = 1,then we further have
M+ v2BK 0
F— P( : " ZﬂK)’ (3.14)

where

P_ 1 I 21
28\ —=V2p1 281 )
We stress that our solution approach is not limited to the special (and rather simple) model problem
(3.1-3.3), and that it can handle any kind of distributed control problem leading to KKT systems of
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the form @.4) with K symmetric and positive (semi-)definite. Hence, a broad class of elliptic PDE
constraints can be accommodated besides Poisson’s equation.

Finally, the definition in 8.14) shows that up to the fact®, the preconditioneF is nothing but
a block diagonal preconditioner. Recently, different block diagonal preconditioners for optimal control
of Poisson’s equation have been developed by several authors; seReesgpt al. (2010),Pearson &
Wathen(2010) andZulehner(2011). InReeset al. (2010), it was found that various block diagonal
preconditioners for MINRES are robust with respechtdut their performance deteriorates for de-
creasing values gf. Furthermore, the results Reeset al. (2010) demonstrate that tipeeconditioned
projected conjugate gradiefPPCG) method with constraint preconditioning is systematically faster
than MINRES with block diagonal preconditioning in terms of solution times, often by a large mar-
gin. Other more robust preconditioners have been recently introducadehner(2011) andPearson
& Wathen(2010). It is interesting to note that the diagonal blocks in these preconditioners are scalar
combinations of the mass matr and the stiffness matriK, similar to the coefficient matrices in
(3.4) and (3.7), respectively. These preconditioners appear to be robust with respecttabdthand
have costs comparable to the PMHSS preconditioner developed here. For instance, the block diagon
preconditioner irPearson & Wathe(2010) requires at each iteration the (approximate) solution of two
linear systems with coefficient matrik + ﬁM, in addition to three linear systems involving the

.//Zdllq wiouj pepeojumod

'g'fEUJI

mass matrix. (Recall that oy corresponds t@/2 in Pearson & Wather2010; hence, ouK + ﬁ M
correspondso the matrixK + \/iﬁM in Pearsor& Wathen,2010.) The PMHSS preconditioner (with

a = 1) requires the (approximate) solution of two linear systems with coefficient mdtrix,/2K at
eachiteration. Hence, apart from the (inexpensive) mass matrix solves, the two preconditioners require
almost identical computational effort.

4. Numerical results

In this section, we use the following example to examine the numerical behaviour of the PMHSS
preconditioning matrix and the corresponding preconditioned Krylov subspace iteration methods.

ExAMPLE 4.1 (Reeset al, 2010). LetQ = [0, 1]? be a unit square and consider the distributed
control problem (3.1-3.3) withQ2, = @, g = u, and

x =

(2x =122y - 17 if (x,y) € [0, 31%,
0 otherwise

Our aim is to compare the PMHSS scheme with some of the best existing solvers for this problem.
To this end, we solve the system of linear equatidhg)(by the projected conjugate gradient method
preconditioned with the constraint preconditioning matx andits approximation (inexact variant)
PP (see,e.g., Keller et al, 2000) and solve the system of linear equatiodg) by the GMRES
method preconditioned with the PMHSS preconditioning matrfeés) and F, defined by 8.13) and
(3.14), and their inexact varian5@P)¢) and F @PP), Also, we solve the system of linear equations
(3.4) and its block two-by-two variant

1 T 1
ASXE(ZI;’(M fM)(‘]f):(ng)Egs (4.1)
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by the MINRES method preconditioned with the block diagonal preconditioning matrices

1 1
Pp = Diag(ZﬂM, M, z—ﬁM + KM‘lK) and Ppy = Diag(z—ﬁM, M +2ﬁKM‘1K),

respectrely. We also consider the corresponding inexact variants of the block diagonal preconditioners
pEPP) _ Diag (2 SM@PP) M (@PP) ¢ @PP)\ 1K (app>)
and

. 1
pg"zpp) = Diag (Z_ﬂ M (app)’ 28K (@ppp —1k (app)) :

seeKelleret al. (2000),Reeset al. (2010) andBai (2011). Here, in applying the precondition@éapp),

PP and P@PP) the approximatiorK @PP) to the matrixK is implicitly defined by twoalgebraic
multigrid (AMG) V-cycles with two damped Jacobi pre- and post-smoothing steps obtained by the
amg operator in the software COMSOL MultiphysigsThe approximationM @PP) to the matrix M

is implicitly defined by 20 steps of Chebyshev semiiteration approximationReeset al. (2010).

In computing the actions of the inverses BfPPX«) and F(@PP), the inverses of the approximations
G@PP)(g) andG@PP) correspondingo the matriceG(a) = aM + 2K andG := M + /28K are
alsoimplemented by 20 steps of Chebyshev semiiteration. This choice is justified later in this section.

In our implementations, all iteration processes are terminated once the Euclidean norms of the
current residuals are reduced by a factor of i@m those of the initial residuals, and the iteration
parametersiop: adoptedin the PMHSS preconditioners (o) and F@PP)(4) are the experimentally
found optimal ones that minimize the total iteration steps of the corresponding iteration processes;
see Tabld.

In Tables?2 and3, we list the numbers of iteration steps and the computing times (in parentheses) with
respect to the constraint preconditioner, the PMHSS preconditioners and their inexact variants, which
are employed to precondition the projected CG and the GMRES methods, respectively. The optimal
iteration parametersopt usedin these two tables are those given in Table

From Table2 we see that the number of iteration steps of the PPCG method, with the constraint
preconditioner, is independent of the discretization mesh Isizeith h = ﬁ“ whenpg = 1072

and10~4. It is mildly dependent on the discretization mesh dizahen = 10°% andis strongly
dependent oh wheng = 10~8. The number of iteration steps of the PMHSS-preconditioned GMRES
method, with the preconditionét(aopt) Or F, is roughly independent of the discretization mesh &ize
for all tested values of. In addition, ass decreases from 16 to 108, the number of iteration steps
of the PPCG method changes drastically, while that of the PMHSS-preconditioned GMRES method
remains nearly constant. These observations indicate that the PMHSS preconditionehslamals
S-independent convergence properties, whereas the constraint preconditioner does not.

For 8 ranging from 102 to 105, the computing times of the PMHSS-preconditioned GMRES
method are comparable with those of the PPCG method Wwher2—J, j = 2,3,4,5; they are, how-
ever, one order of magnitude less than those of the PPCG methodiwke2=°. For § = 1078,
the computing times of the PMHSS-preconditioned GMRES method are comparable with those of

2For more details about the COMSOL Multiphysics simulation software, we refer to the watigitéwww.comsol.com/
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TABLE 1 Experimentaloptimal parameters for Fz)- and F@P)q)-precondi-

tioned GMRESnethods

B h aopt for F(a) aopt for F@PPX(q)
272 [0.01, 1.00] [0.01, 1.00]
2-3 [0.15, 0.18] [0.14, 0.16]
1072 274 [0.15, 0.18] [0.27, 0.30]
2-5 [0.15, 0.18] [0.01, 053]
276 [0.15, 0.19] [0.01, 1.00]
272 [0.83, 1.00] [0.83, 1.00]
2-3 [0.44, 0.83] [0.44, 0.83]
104 274 [0.21, 0.85] [0.16, 0.95]
2-5 [0.54, 0.84] [0.37, 0.40]
276 [0.55, 0.55] [0.01, 0.10]
272 [0.66, 0.85] [0.66, 0.85]
2-3 [0.85, 0.86] [0.85, 0.86]
1076 274 [0.98, 1.00] [0.98, 1.00]
2-5 [0.94, 0.98] [0.94, 0.98]
2-6 [0.94, 1.00] [0.76, 0.76]
272 [0.92, 1.00] [0.96, 1.00]
2-3 [0.58, 0.85] [0.58, 0.85]
1078 2~4 [0.85, 0.86] [0.85, 0.86]
2-5 [0.90, 1.00] [0.90, 1.00]
276 [0.96, 1.00] [0.96, 1.00]
the PPCG method wheh = 27, j = 2,3,4; they are, however, one order of magnitude less than

those of the PPCG method whian= 2% and2~%. This shows that the performance of the PMHSS-
preconditioned GMRES method is comparable to or better than that of the PPCG method.

Moreover, and importantly, the iteration steps and the computing times with respect to both pre-
conditionersF (aopt) and F are almost the same. This implies that in actual implementations of the
PMHSS preconditioning matrix, one should simply take the iteration parametee 1, resulting in a
parameter-free method; see Figand2.

Comparing the results in Tablésand 3, we observe that the inexact PMHSS preconditioner
F(app)(aopt) yields almost the same iteration steps and computing times as the exact PMHSS precon-
ditioner F (aopt) Whenp = 10-% and10~8. The same observation applies to the inexact and the exact

constraint preconditioner@éapp) and Pc whenp = 102 and10~%. On the other hand, the inexact
constraint preconditioner suffers a significant deterioratiomiaslecreased whefi = 10~% and10-8,

andthe inexact PMHSS preconditioner shows some deterioratidniaslecreased whefi = 102
and10~“. The reason for the latter phenomenon is that for small valugs dfie coefficient matrix

G(a) = aM + /28K, with a = agptOr o = 1, is dominated by the term involving the mass matrix

M, hence, it is well conditioned (independentlytgfand 20 steps of Chebyshev semiiteration suffice

to approximate the action of its inverse. For larger value, dfowever, the stiffness matrik makes a
significant contribution and the conditioning Gf(a), with o = agpt Or & = 1, deteriorates as — O.

Hence, a fixed number of Chebyshev semiiteration is no longer sufficient to approximate the action of
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TABLE 2 lteration counts and CPU timings (in seconds) for the constraint preconditioner and for the
PMHSS preconditioners with optimaland witho = 1

B h Pc F(Ofopt) F
2-2 3 (382x 1079 9 (6.00x 1072) 9 (1.93x 1079)
23 3 (3.30x 1079 9 (262x 1072 11 (2.17x 1072)
1072 2—4 3 (3.88x 1079 9 (456x 1072) 11 (411x 1072
2-5 3 (149x 10°Y) 9 (113x 1071 11 (1.15x 1071)
276 3 (1.60) 9 (434x 1071 11 (481x 1071
272 5 (1.22x 1072) 9 (229x 1079) 9 (1.83x 10729)
2-3 5 (1.69x 1072) 12 (2.68x 1072) 13 (2.24x 1072)
104 2-4 5 (4.00x 1072) 14 (5.17x 1072) 16 (5.08x 1072)
2-5 5 (1.78x 1071 14 (1.35x 1071) 16 (141x 107 1)
26 5 (1.70) 14 (6.07x 1071 18 (6.96x 1071)
2-2 6 (1.23x 10729) 11 (2.43x 1072) 12 (1.95x 1072)
23 11 (2.05% 1072) 13 (2.87x 1072) 16 (2.46x 1072)
1076 2—4 14 (7.66x 1072) 14 (5.19% 1072) 14 (444 % 1072)
2-° 14 (3.06x 10°1) 13 (1.29x 1071 14 (122x 1071
26 14 (2.40) 14 (6.02x 1071) 14 (560x 1071)
272 6 (1.19x 1072) 8 (246x 1072) 8 (1.88x 1079)
23 15 (2.31x 1072) 11 (2.73x 1072) 12 (2.38x 1072)
108 2—4 25 (123x 1071 13 (4.98x 1072) 14 (4.42x 1072)
2-5 37 (6.20x 1071 14 (1.39x 1071) 14 (1.24x 1071
276 47 (4.84) 14 (6.05x 1071) 14 (559x% 1071)

G(aopt)_l or G~1in such a way that thb-independent convergence of GMRES is preserved. This is
confirmed by the numerical experiments described in Tabléere, we report the errofix2® — x, |-
(andCPU times, in parentheses) after 20 Chebyshev semiiteratioms forl and for the optimal pa-
rametera = aopt, With differenth andg. In these experiments, the exact solutiqrio G(a)x = b is
the vector of all ones and the initial guess is the zero vector. The results clearly show that the quality of
the approximation deteriorateslaslecreases anfllincreases, as expected.

One way to avoid this difficulty is to approximate the actiorGﬁ;colm)‘1 or G~ with one or more
AMG V-cycles. This approach, while yielding robustness with respect totbatid 3, is however more
expensive in terms of CPU time than the nonoptimal Chebyshev-based approach, at least for the range
of h values considered here. It is expected that for finer grids and/or three-dimensional problems, the use
of AMG instead of Chebyshev semiiteration will be the recommended approach for larger vafues of

Next, from Table3, we see thafF @P) performsas well asF @PX(aqp), as both of them produce
nearly the same number of iterations and computing times. Therefore, in actual computations, we may
adopt the inexact preconditioning matrices rather than the exact ones to accelerate the PPCG and the
GMRES methods and, instead of the experimentally found optimal pararagggnse may simply take
o = 1to obtain good performance and effectively eliminate the need for parameter tuning.

In Table5, we show the results obtained with MINRES preconditioned with the block diagonal

preconditionersp,, Pgizpp), Pp and P[()app) describectarlier. From these results, we can see H’ﬁfp)
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for the inexact PMHSS preconditioners with optimednd witha = 1

21 of 27

B

(app)
Pc

F PP copy)

F (@pp

1072

1074

1076

108

3 (8.28x 1079
3 (296x 1072)
3 (443x 1072
4 (182x 1071
7 (1.64)

5 (2.71x 1072)
5 (3.07x 1072)
6 (557x 1072
6 (2.16x 1071
6 (1.56)

7 (2.83x 1072
14 (3.89x 1072)
34 (1.30x 10°Y)
38 (6.21x 1071
41 (2.93)

6 (2.84x 1072
22 (4.90x 107?)
88 (2.71x 1071

283 (3.83)
178 (8.26)

9 (1.02x 1072
9 (1.08x 1072)
11 (241x 107?)
21 (213x107Y)
48 (860x 10°1)

9 (9.48x 107%)
12 (1.38x 1072)
14 (298x 1071)
15 (155x% 1071)
31 (556x 1071

11 (1.09x 1072)
13 (144 % 1072)
14 (2.92x 1072)
13 (1.35x 1071)
13 (2.81x 1071

8 (8.69x 1072
11 (1.31x 1073
13 (2.72x 107?)
14 (1.42x 1071
14 (3.02x 1071

9 (9.64x 1079)
11 (1.22x 1072)
13 (2.68x 1072)
23 (2.22x 107Y)
48 (8.29x 1071

9 (9.43x 107?)
13 (1.40x 1072)
16 (3.26x 1072)
19 (1.80x 1071
34 (5.82x 1071

12 (116 x 1072)
16 (1.75% 1072)
14 (294 x 1072)
14 (1.37x 1071
18 (3.38x 1071

8 (9.37x 1079
12 (1.45x 1072)
14 (2.77x 107?)
14 (1.43x 1071
14 (2.86x 1071)
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601

——p=10"8
o p=107
* p=107*

p=1072
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FiG. 1. Pictures of IT versus for F (a)-preconditioned GMRES whefi = 10-2, 10~4, 10~ and 1078, with h = 273 (left)

andh = 274 (right).
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FIG. 2. Pictures of IT versus for F(a)-preconditioned GMRES wheft = 102, 104, 1078 and 1078, with h = 27 (left)
andh = 276 (right).

used with MINRES is competitive fgf = 102 andh sufficiently small, while it is generally inferior

to inexact PMHSS and constraint preconditioning in virtually all the remaining cases. Also, MINRES
with the other block diagonal preconditioners is not competitive on this test problem. In particular, the
results show that while the exact preconditionBgsand, to a lesser extenPp, are very robust with
respect to regularization and discretization parameters, their cost is too high to make them competitive as
h — 0. Moreover, their inexact variants lack robustness and drastically deteriorate as the regularization
parameter is decreased, with no convergence within 1000 MINRES iterations in several cases (denoted
by a dash in Tablé).

These results confirm the findingshearson & Wathe(2010), namely, that approximating the in-
verse ofK ~IM K ~1 by replacing the exact inverse of the stiffness malkiby a spectrally equivalent
multilevel preconditioner gives poor results. As showrPearson & Wathe2010), more favourable
results can be expected by using the block diagonal precondit@rieased on the following approxi-
mation of the Schur complement:

. 1 1
S~S=(K+—=M M—l(K —IVI);
( * 2 ) M7

1
seePearson & Wathe(R010, (5) and (11)). In turn, the action ()K + \/Lz*/; M) can be approximated

by a suitable iterative method.

In the application of the preconditioning matrﬁgl(app), the inverse ofM is again approximated
by 20 steps of Chebyshev semiiteration. As for the invers& of %ﬂM, we find that the AMG
implementation in COMSOL fails due to the fact that most off-diagonal entries are positive; in other
words, the matrix is too far from being avi-matrix and the construction of the preconditioner breaks
down in the coarsening phase. Similar problems were report&tanrson & Wathei(2010) (which
uses a different code for AMG) for certain valueshoéind 8. To circumvent this problem, we use two

different approximations. As before, we approximate the inversb’e{)% M by 20 steps of Chebyshev
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TABLE 5 Iteration counts and CPU timings (in seconds) for block-diagonal preconditioned MINRES

Z.-Z.BAl ET AL.

methods applied to solving the linear systed) and (4.)

11 (6.80x 1071) — (1.21x 10Y
11 (1.91x 10

4 (533x10°1) — (1.27x10Y
4 (1.62x 10Y

) h Poo Pgazpp) P PI(Dapp)
272 7 (632x107%) 7 (113x10YH) 4 (207x107%) 8 (1.17x1079)
273 7 (298x107%) 7 (251x107%) 4 (202x107%) 8 (1.34x1072)
1072 2~4 7 (130x101) 7 (438x107%) 4 (505x107%) 6 (2.65% 1072
2-5 7 596x10°1) 8 (129x10Y) 4 (539x10°1) 8 (155x10°1)
26 6 (167x10Y) 11 (541x10°1) 4 (161x10Y) 14 (1.29)
272 11 (250x 1072) 12 (230x1072) 4 (1.72x10°%) 13 (1.46x 1072
273 13 (361x107%) 17 (366x107%) 4 (202x107%) 17 (229x 1072
104 2-4 13 (8.35x107%) 25 (1.01x10°1) 4 (460x1072) 24 (7.65x 1072
27° 13 (724x 1071 — (1.21x10Y 4 (544x 1071 26 (387x 1071
2-6 13 (201x 10Y) 27 (1.26) 4 (161x10Y) 24 (1.66)
272 6 (258x107%) 11 (241x10%) 4 (1.78x107%) 14 (1.66x 1072)
2-3 11 (313x107%) 63 (8.74x 1072 4 (200x1072) 63 (7.19x 107?)
1076 24 13 (8.04x 1072) 675 (2.18) 4 (460x 1072) 172 (494x 10°Y)
2-° 13 (724x10°1) — (121x10Y) 4 (530x10°1) — (1.26x 10Y
26 13 (201x10) — (4.45x10Y 4 (162x10Y 170 (7.31)
272 4 (243x1072) 10 (224x107%) 4 (1.77x107%) 14 (155x 1072
273 4 (263x1072) 73 (990x102) 4 (2.03x 1072 116 (1.32x 1071
1078 2~4 6 (6.01x 1072) 675 (2.20) 4 (465x 1072) 675 (1.90)
5
e

— (447x 10YH — (3.93x 10Y

semiiteration(which works well for smaller values ¢f); alternatively, we replace the mass matrix in

K+ \/szﬁM by its diagonal, leading to a new approximation of the Schur complement, namely,

~so (ks Lt (ks Lg
SNS_(K+mdlagGw))M (K+md|ag(M)).

Thereplacement o6 by Sin P, thenleads to a preconditiond?; for the coefficient matrix of the linear
system (3.4). As the number of positive off-diagonal elements of the matﬁx%diag(M) is small
relative to the number of nonpositive ones, we can use the algebraic multigrid method described earlier

to approximate the inverse of the matix + «/szﬂ diag(M). This results in an approximatioﬁl(app)

to the matrixP;. The numerical results for the block diagonal preconditioning matrﬁe?{app) and
P,2PP) appliedto precondition the MINRES method for solving the linear syst@#)(are given in
Table6. These results show fairly good robustness of the preconditidheaad P, .

Comparingthe results reported in Tablé with those for the inexact PMHSS preconditioners

F @PPY(gqpn1) and F @PPin Table3, we find in nearly all cases that PMHSS results in faster convergence
and smaller CPU timings.
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TABLE 6 Iteration counts and CPU timings (in seconds) for block diagonal preconditioned MINRES
methods irPearson & Wathei§2010) applied to solving the linear system (3.4

B h P piapp) p(aPP)
2-2 10 (3.22x 1072) 10 (1.65% 1072) 8 (287x 10°h)
23 11 (3.30x 1072) 11 (2.01x 1072) 10 (557 % 1072)
1072 2—4 12 (7.39x 1072) 14 (5.33x 107?) 10 (7.85x 1072) o
2-5 12 (1.80x 1071) 24 (369x 1071 12 (2.64x 1071) §
26 12 (1.48) 66 (2.19) 15 (1.44) g
2-2 10 (2.89% 1072) 10 (1.63x 1072) 12 (559x% 1072) %
2-3 12 (359x 1072) 12 (2.34x 107?) 12 (5.71x 1072) 3
1074 24 14 (7.48x 1072) 14 (4.68x 1072) 12 (8.20x 107?) g
2-5 14 (2.06x 1071) 20 (313x 1071 15 (2.99x 1071) 5
2-6 14 (1.59) 50 (1.87) 15 (1.41) 2
o
2-2 10 (2.82x 1072) 10 (1.66x 1072) 14 (5.81x 1072) %
23 12 (3.38x 1072) 12 (2.35x 1072) 32 (8.12x 1073 =
1076 24 12 (6.92x 1072) 12 (442x 1072) 25 (1.19x 107 §
2-° 12 (1.82x 1071 12 (217x 1071 22 (383x 107 2
26 14 (158) 14 (1.04) 20 (1.61) a
2-2 8 (3.05x 1072) 8 (1.44x 1072 14 (5.89% 1072) 3
23 10 (3.25% 1072) 10 (1.87x 1072) 45 (9.47 x 1072) &
108 2~4 12 (6.86x 1072) 12 (4.09x 1072) 62 (223x 10°Y) 2
2-5 12 (1.77x 1071 12 (220x 1071 42 (6.23x107Y =
26 12 (1.47) 12 (1.01) 28 (1.90) 3
[}
Q
5. Concluding remarks &
>
The PMHSS iteration method provides a fairly general framework for solving block two-by-two linear &
systems arising from the discretization of a class of distributed control problems. For this class of linear §
systems, choosing = W (which is just a mass matrix) one can construct high-quality preconditioners &
for which the eigenvalues of the preconditioned matrices are clustered within complex disks centred at 1 %’
with radiid(a) := Va"‘jfl, and the matrices of the corresponding eigenvectors are unitary, wher@ 8
o
is the iteration parameter. Note that wheg= 1, it holds that (1) = @ In practice, the preconditioner >
=]

is applied inexactly and these bounds no longer hold. Nevertheless, numerical experiments on a stan=.
dard test problem indicate that the proposed preconditioner compares favourably with some of the best’
existing solvers, including constrained and block diagonal preconditioning.

In general, the PMHSS iteration method can be applied to solve a reasonably broad class of block
two-by-two linear systems, for which the symmetric matri¢gésandT are only required to satisfy the
conditions that each of them is either positive or negative semidefinite and thavipalhull(T) = {0}.

Under these conditions, we can analogously demonstrate that the block two-by-twoAnatig"=2"

is nonsingular and the PMHSS iteration method is unconditionally convergent; moreover, for the special
case whet/ =WorV =T (orV = =W orV = —T) depending on whethal or T is positive (or
negative) semidefinite, we can demonstrate that the convergence factor of the PMHSS iteration method
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is at most Va’ffl, the eigenvalues of the PMHSS-preconditioned matrix are included in a complex disk

centred at 1 with radiu@fl andthe matrix of eigenvectors of the PMHSS-preconditioned matrix is

unitary with condition number equal to 1. More generally, the block two-by-two matrix R2"*2"

is nonsingular and Theoreth4 holds true even when the mat@W + T is symmetric and is either
positive or negative definite, which may allow the real symmetric mattiar T to be indefinite. In fact,

if the matrixaW + T is symmetric negative definite, we may simply multiphl through both sides

of the linear systeml(1), obtaining a new block two-by-two linear system satisfying the requirement
thataW + T is a symmetric positive definite matrix. These observations equally apply to the PMHSS
iteration method introduced and discussedai et al. (2011) for solving complex symmetric linear
systems of the form\cxc = be, With Ac =W +iT e C"™"andb. =p+iqe C".
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