
Mechanics of Materials 59 (2013) 24–35
Contents lists available at SciVerse ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat
Partial slip contact between a rigid punch with an arbitrary
tip-shape and an elastic graded solid with a finite thickness
0167-6636/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechmat.2012.12.003

⇑ Corresponding author. Tel.: +86 10 82543960; fax: +86 10 82543977.
E-mail address: chenshaohua72@hotmail.com (S. Chen).
Peijian Chen, Shaohua Chen ⇑
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 September 2012
Available online 25 December 2012

Keywords:
Contact mechanics
Finite graded solid
Partial slip contact
Fretting
In contrast to the case of a graded half-space, a nonlinear plane strain partial slip model
between a rigid punch with an arbitrary tip-shape and a finite graded solid is investigated.
The modulus of the finite graded solid varies according to an exponential function in the
thickness direction. Fourier integral transform method is adopted in order to reduce the
current nonlinear problem to a set of singular integral equations. Based on the Goodman’s
approximation, the contact problem is simplified. An iterative method is used to determine
the size of the contact zone, the interface stress singularity, as well as the distributions of
the normal and tangential stresses. The effects of different parameters on the contact
behavior, such as the ratio of shear modulus, the friction coefficient and the thickness of
the graded solid, are analyzed. The results exhibit significant differences between the
model of a half-space and the present one of a finite solid, which highlights the practica-
bility of the present model for practical engineering applications and the design of novel
graded materials.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Graded materials generally consist of several constitu-
ents with a gradual variation in the volume fracture from
one location to the other (Guler and Erdogan, 2004). As a
new kind of non-homogeneous composite, functionally
graded materials (FGMs) possess special mechanical prop-
erties. As a coating or an interfacial material, it tends to re-
duce mismatching stresses, increase the bonding strength,
improve surface properties, provide protection against ad-
verse or chemical environment (Suresh and Mortensen,
1998) and possess excellent thermal shielding function,
such as high temperature chambers, furnace liners, tur-
bines, micro-electronics and space structures (Xing et al.,
1998). Other potential applications of FGM involve contact
with load transfer between or among different surfaces or
interfaces of solids, generally with friction, such as cylinder
linings, brake discs and other automotive components for
the purpose of improving the wear resistance, as well as
abradable seal design in stationary gas turbines (Guler
and Erdogan, 2007).

Indentation techniques were used to measure the elas-
tic properties of a graded material (Suresh et al., 1997;
Jitcharoen et al., 1998; Krumova et al., 2001) and it was
found that a power law or exponential one could be used
to describe the variation tendency of Young’s modulus of
such a composite in the graded direction.

The Hertzian contact mechanics of graded materials
have been studied by many researchers. Some representa-
tive work is given as follows. An axisymmetric contact
problem of a graded half-space subjected to a concentrated
load or flat, spherical and conical indenters was considered
by Giannakopoulos and Suresh (1997a,b). It was found that
the interface stress distribution under a frictionless inden-
ter could be significantly influenced by the gradient fea-
tures, even leading to a suppressive Hertzian crack near
the contact edge. A closed-form analytical solution was
further given by Giannakopoulos and Pallot (2000) for a
two-dimensional contact model between a rigid cylinder

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.mechmat.2012.12.003&domain=pdf
http://dx.doi.org/10.1016/j.mechmat.2012.12.003
mailto:chenshaohua72@hotmail.com
http://dx.doi.org/10.1016/j.mechmat.2012.12.003
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat


b−
a− a b

h ( )xμ

y

x

FGM strip 

Fig. 1. Schematic of a partial slip contact model involving a finite graded
layer fixed on a rigid foundation and a rigid punch.
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and an elastic graded half-space. Guler and Erdogan (2004,
2006, 2007) investigated the frictional contact model be-
tween a rigid punch and a FGM coated substrate as well
as the one between a rigid punch and two layered-elastic
solids with graded coatings. Contact model of a rigid punch
on a homogeneous half-space with a graded coating was
discussed by Chen and Chen (2012), in which the effects
of the variation law and the thickness of the graded coating
on the interfacial contact behaviors were discussed in de-
tail. Receding contact between a graded coating and a
homogeneous substrate was considered by El-Borgi et al.
(2006) and Rhimi et al. (2009). Considering the thermo ef-
fects, Choi and Paulino (2008, 2010) analyzed the thermo-
elastic contact model for a coating/substrate system with
or without a crack. Liu et al. (2011) investigated a plane
strain frictional sliding contact model of a half-plane
coated with graded materials. All the researches demon-
strated that improving resistance of contact damage could
be achieved by tuning the gradient index of the solid, the
sliding speed of the punch and the friction coefficient of
the contact interface.

As for the contact problem of a graded material consid-
ering the interface adhesion, typical works should be men-
tioned as follows. A plane strain adhesive contact model of
a rigid cylinder on an elastic graded half-space was studied
by Giannakopoulos and Pallot (2000), where the elastic
modulus of the half-space varies with the depth according
to a power law. Chen et al. (2009a,b) further discussed the
plane strain model as well as an axis-symmetric one, in
which a very simple closed-form analytical solution for
the pull-off force was given. The corresponding non-slip-
ping models were further discussed by Jin and Guo
(2010) and Guo et al. (2011).

Fretting contact is often found in practical engineering,
which involves cyclic contact stresses and may result in
surface damage named as fretting (Elloumi et al., 2010).
It has been extensively discussed for homogeneous materi-
als (Ciavarella, 1998; Ciavarella and Hills, 1999; Hanson
and Keer, 1989; Nowell et al., 1988; Spence, 1973; Wang
et al., 2010). However, very limited literatures consider
the fretting contact of FGM. Ke and Wang (2010) investi-
gated a two-dimensional contact model of a half-space
coated with a graded layer, which was subjected to a
monotonically increasing normal load or a small-scale
oscillatory tangential motion. A fully coupled partial slip
contact problem of a graded half-plane was studied by
Elloumi et al. (2010). In almost all of the existing fretting
contact models concerning FGMs, an assumption of an infi-
nite half-space was adopted, which is actually not consis-
tent with the practical engineering. Is there any
difference between the model of an infinite half-space
and the one of a finite solid? How large is it if there is?
When does the model of an infinite half-space can repre-
sent the one of a really finite solid? It should be very inter-
esting and useful to answer these questions. In fact, similar
questions have been put forward in lots of experiments
and theoretical models concerning homogeneous layers
(Araújo and Nowell, 1999; Argatov, 2001; Dini and Nowell,
2004; Fellows et al., 1995; Nowell and Hills, 1988). Espe-
cially, Fellows et al. (1995) pointed that ‘‘The geometry is
relevant to a number of common fretting fatigue
experiments’’ and ‘‘The half-plane solution may not give
a good approximation to the stress component for practical
experimental configurations, even where the specimen
thickness is as large as 10 times the contact width’’.

In the present paper, a partial slip contact model of a ri-
gid punch with an arbitrary end-tip and a graded solid
with a finite thickness is investigated. One of the main
objectives is to compare the fretting features of a homoge-
neous solid and a graded solid, the other one is to answer
the above mentioned questions whether there are some
differences between the model of a graded half-space
and the one of a finite graded solid. The case with a normal
load alone is investigated and a mixed boundary value
problem is solved analytically using the singular equation
method. An iterative procedure is adopted to find the size
of the stick zone and the interface contact stresses. As spe-
cial examples, cases of a flat punch and a cylindrical one
are discussed in details with the help of numerical
calculations.

2. Partial slip contact model

The partial slip contact model of a rigid punch with an
arbitrary end-shape and a finite graded solid with a thick-
ness h is shown in Fig. 1, where a normal load P is acted
along the direction of y axis to compress the rigid punch.

Due to the dissimilarity of the two contact bodies, the
tangential displacements at the upper and lower contact
interfaces are different so that interfacial slip or partial slip
will generally take place (Johnson, 1985). In the contact
model, we assume that the contact region lies in
�b 6 x 6 b, which consists of an inner stick zone jxj 6 a
and two separated slip zones a 6 jxj 6 b, as shown in
Fig. 1. In the slip zone, the tangential stress is assumed to
be proportional to the normal contact pressure according
to the Coulomb’s friction law.

We assume that the Poisson’s ratio of the finite graded
solid is a constant m and its shear modulus varies exponen-
tially in the thickness direction as

l2ðyÞ ¼ l1 expðcyÞ; 0 6 y 6 h ð1Þ

c ¼ 1
h

ln
l3

l1
; ð2Þ
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where the subscript ‘‘1’’ denotes the surface of the finite
graded solid at y = 0, and ‘‘3’’ is the lower boundary at y = h.

3. Formulation of the contact model

In the contact model, u(x, y) and v(x, y) denote the dis-
placement components in the x and y directions, respec-
tively. rxx, ryy and rxy are the stress components and the
corresponding strain components are exx, eyy and exy,
respectively.

Neglecting the body force leads to the following equilib-
rium equations,

@rxx
@x þ

@rxy

@y ¼ 0
@rxy

@x þ
@ryy

@y ¼ 0

8<
: ð3Þ

Due to an elastic problem considered in the present pa-
per, the strain–displacement relationship and the constitu-
tive relation can be expressed as

exx ¼
@u
@x
; exy ¼

1
2

@u
@y
þ @v
@x

� �
; eyy ¼

@v
@y

; ð4Þ

and

rxx ¼ l2ðyÞ
j�1 ½ð1þ jÞexx þ ð3� jÞeyy�

ryy ¼ l2ðyÞ
j�1 ½ð1þ jÞeyy þ ð3� jÞexx�

rxy ¼ 2l2ðyÞexy

8><
>: ð5Þ

where j = 3 � 4m for a plane strain problem and
j = (3 � m)/(1 + m) for a plane stress one.

Substituting Eqs. (4) and (5) into Eq. (3) yields partially
differential equations in terms of the displacements as

ðj� 1Þ @2u
@y2 þ ðjþ 1Þ @2u

@x2 þ 2 @2v
@x@y

þcðj� 1Þ @v
@x þ @u

@y

� �
¼ 0

ðj� 1Þ @2v
@x2 þ ðjþ 1Þ @2v

@y2 þ 2 @2u
@x@y

þc ðjþ 1Þ @v
@y þ ð3� jÞ @u

@x

h i
¼ 0

8>>>>>>><
>>>>>>>:

; ð6Þ

and the following boundary conditions should be satisfied
in the present model

ryyðx; 0Þ ¼ 0;rxyðx; 0Þ ¼ 0; jxj > b; ð7Þ

rxyðx; 0Þ ¼ gryyðx; 0ÞsignðxÞ; a < jxj < b; ð8Þ

rxyðx; 0Þ 6 gjryyðx; 0Þj; jxj < a; ð9Þ

uðx; hÞ ¼ vðx; hÞ ¼ 0: ð10Þ

where g is the friction coefficient of the interface between
the punch and the graded solid. The symbol sign(�) is a sign
function. The main difference between a half-space model
and a finite one is embodied by the boundary conditions in
Eq. (10). If the thickness of the finite graded solid tends to
be infinity, the present model will reduce to the half-space
case (Elloumi et al., 2010).

According to the contact mechanics (Johnson, 1985),
the interface normal displacement v(x,0) can be obtained
from the profile of the above rigid punch, whose derivative
is denoted as
@vðx; 0Þ
@x

¼ f �ðxÞ; �b < x < b: ð11Þ

In the stick zone, the relative tangential displacement
on the interface is unknown for a non-conforming contact
problem (Johnson, 1985) and its derivative is denoted as

@uðx; 0Þ
@x

¼ g�ðxÞ; �a < x < a: ð12Þ

The relations between the interface stresses and the
external load can be expressed asZ b

�b
ryyðx; 0Þdx ¼ �P ð13Þ

Z b

�b
rxyðx; 0Þdx ¼ 0 ð14Þ

In the present paper, we define the unknown interface
stresses as

pðxÞ ¼ �ryyðx; 0Þ; qðxÞ ¼ �rxyðx; 0Þ ð15Þ

In the slip zone, the shear stress is opposite to the slip
direction, which is proportional to the interface normal
pressure according to the Coulomb’s friction law,

qðxÞ ¼
�gpðxÞ; �b 6 x 6 �a;
gpðxÞ; a 6 x 6 b:

�
ð16Þ

Similar to Elloumi et al. (2010), we define the shear
stress in the stick zone as the following form,

qðxÞ ¼ gpðxÞ x
a
þ q�ðxÞ; �a < x < a; ð17Þ

where q⁄(x) is an unknown odd function and vanishes at
x = ±a.

Using the Fourier integral transform method with re-
spect to Eq. (6) yields the displacement fields in the finite
graded solid,

uðx; yÞ ¼ 1
2p

Rþ1
�1

X4

j¼1

BjðsÞenjye�isxds

vðx; yÞ ¼ � i
2p

R þ1
�1

X4

j¼1

BjðsÞFjðsÞenjye�isxds

8>>>>><
>>>>>:

ð18Þ

where Bj(s) (j = 1, . . ., 4) are arbitrary unknown parameters,
which will be determined by the boundary conditions. The
terms nj (j ¼ 1; . . . ; 4) are roots of the following character-
istic equation,

ðn2 þ cn� s2Þ2 þ c2s2 3� c
1þ c

� �
¼ 0; ð19Þ

and can be obtained as,

nj ¼ �
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ s2 � ið�1Þjcs

3� j
1þ j

� �1=2
s

ReðnjÞ > 0; j

¼ 1; 2;

nj ¼ �
c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ s2 þ ið�1Þjcs

3� j
1þ j

� �1=2
s

ReðnjÞ < 0; j

¼ 3; 4

FjðsÞ ðj ¼ 1; . . . ; 4Þ are functions of nj(s) as follows,
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FjðsÞ ¼
ðj� 1Þðn2

j þ cnjÞ � ð1þ jÞs2

½2nj þ ðj� 1Þc�s ;

ðj ¼ 1; . . . ; 4Þ: ð21Þ

Substituting Eq. (18) and Eq. (4) into Eq. (5) yields the
stress field in the finite graded solid,

ryyðx; yÞ ¼ l2ðyÞ
1�j

i
2p

Rþ1
�1

X4

j¼1

BjðsÞ½ð1þ jÞFjnj þ sð3� jÞ�

�enjy�isxds

sxyðx; yÞ ¼ l2ðyÞ
2p

Rþ1
�1

X4

j¼1

BjðsÞ½nj þ sFj�enjy�isxds

8>>>>>>><
>>>>>>>:

ð22Þ

4. Relation between the interface stress and
displacement

The interface contact stresses can be determined from
the condition that the surface displacements of the finite
graded solid should coincide with the profile of the rigid
punch for a complete contact.

From the general solutions in Eqs. (18) and (22) and the
constitutive relations in Eq. (5), the displacement and
stress fields of the graded solid can be written in a Fou-
rier-transformed domain as

fðs; yÞ ¼ Hðs; yÞaðsÞ ð23Þ
where f(s,y) is a state vector containing physical variables
that need to be determined for the given constituents, a(s)
is a vector for the four unknowns in the general solutions,

fðs; yÞ ¼ f�vðs; yÞ=i; �uðs; yÞ; �ryyðs; yÞ=i; �sxyðs; yÞgT ð24Þ

aðsÞ ¼ fB1ðsÞ; B2ðsÞ; B3ðsÞ; B4ðsÞgT ð25Þ

Hðs; yÞ is a 4 � 4 matrix, which is a function of not only the
variables s and y, but also the elastic parameters of the
constituents.

On the bottom surface of the graded solid y = h, we have

fðs; hÞ ¼ Hðs; hÞaðsÞ ð26Þ
where

fðs; hÞ ¼ f0; 0; �ryyðs; hÞ=i; �sxyðs; hÞgT ð27Þ
On the upper surface of the graded solid y = 0, we have

fðs; 0Þ ¼ Hðs; 0ÞaðsÞ ð28Þ

where

fðs; 0Þ ¼ f�vðs; 0Þ=i; �uðs; 0Þ; �ryyðs; 0Þ=i; �sxyðs; 0Þg ð29Þ
Here, �ryyðs; 0Þ and �sxyðs; 0Þ denote the transformed nor-

mal and tangential tractions on the upper surface of the
graded solid. Therefore

�ryyðs; 0Þ ¼
Z b

�b
ryyðx; 0Þeisxdx; �sxyðs; 0Þ

¼
Z b

�b
sxyðx; 0Þeisxdx ð30Þ

Eliminating the unknown vector a(s) in Eqs. (26) and
(28) yields

fðs; 0Þ ¼ GðsÞfðs; hÞ ð31Þ

where G(s) is a 4 � 4 transfer matrix connecting the upper
and the lower surfaces of the graded solid,
GðsÞ ¼ Hðs; 0ÞH�1ðs; hÞ ð32Þ

and the superscript ‘‘�1’’ denotes the inverse of a matrix.
The corresponding displacements can be written as

vðx; 0Þ ¼ 1
2p

Z þ1

�1
½N11ðsÞ�ryyðs; 0Þ

þ iN12ðsÞ�sxyðs; 0Þ�e�isxds; ð33Þ

uðx; 0Þ ¼ 1
2p

Z þ1

�1
½�iN21ðsÞ�ryyðs; 0Þ þ N22ðsÞ�sxyðs; 0Þ�e�isxds;

jxj 61; ð34Þ

where the functions Njk(s) (j, k = 1, 2) are elements of a
2 � 2 matrix N(s)

NðsÞ ¼
G13 G14

G23 G24

� 	
G33 G34

G43 G44

� 	�1

; ð35Þ

Differentiating with respect to x, the integral Eqs. (33)
and (34) can be rewritten as,

@vðx; 0Þ
@x

¼ � 1
2p

Z þb

�b
½iK11ðx; rÞryyðr; 0Þ

� K12ðx; rÞsxyðr; 0Þ�dr ð36Þ

@uðx; 0Þ
@x

¼ � 1
2p

Z þb

�b
½K21ðx; rÞryyðr; 0Þ

þ iK22ðx; rÞsxyðr; 0Þ�dr ð37Þ

where

Kjk ¼
Z þ1

�1
sNjkðsÞeisðr�xÞds; j; k ¼ 1; 2 ð38Þ

For a large value of |s|, we have the following asymp-
totic solutions,

lim
jsj!1

sN11ðsÞ ¼ lim
jsj!1

sN22ðsÞ ¼ N11
s
jsj ; ð39aÞ

lim
jsj!1

sN12ðsÞ ¼ lim
jsj!1

sN21ðsÞ ¼ N12 ; ð39bÞ

where N11 ¼ � jþ1
4l1

and N12 ¼ � j�1
4l1

.
Separating the leading term from the kernels in Eq. (38)

and using Eqs. (11), (12), (15) as well as the following gen-
eralized functionsZ 1

0
sin½sðr � xÞ�ds ¼ 1

r � x
;

Z 1

0
cos½sðr � xÞ�ds

¼ pdðr � xÞ ð40Þ
Eqs. (36) and (37) can be written as,

1
p

Z b

�b

pðrÞ
x� r

dr � j� 1
jþ 1

qðxÞdþ 4l1

pðjþ 1Þ

Z b

�b
k11ðx; rÞpðrÞdr

þ 4l1

pðjþ 1Þ

Z b

�b
k12ðx; rÞqðrÞdr ¼ � 4l1

ðjþ 1Þ f
�ðxÞ; ð41Þ

1
p

Z b

�b

qðrÞ
x� r

dr � j� 1
jþ 1

pðxÞ � 4l1

pðjþ 1Þ

Z b

�b
k21ðx; rÞpðrÞdr

þ 4l1

pðjþ 1Þ

Z b

�b
k22ðx; rÞqðrÞdr ¼ � 4l1

ðjþ 1Þ g
�ðxÞ; ð42Þ
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where d(�) is the Dirac delta function and kjk(x,r) (j, k = 1, 2)
is defined as

kjkðx; rÞ ¼
Z þ1

0
½sNjkðsÞ � N11 � sin sðr � xÞds;

ðj; kÞ ¼ ð1; 1Þ; ð2; 2Þ; ð43Þ

kjkðx; rÞ ¼
Z þ1

0
½sNjkðsÞ � N12 � cos sðr � xÞds;

ðj; kÞ ¼ ð1; 2Þ; ð2; 1Þ: ð44Þ

Here, one can see that the interface normal and tangen-
tial stresses are coupled in the Cauchy singular Eqs. (43)
and (44). Combining Eqs. (11)–(17), a well-posed problem
is established and the solution can be obtained by numer-
ical techniques, which are given in the next section.

5. Numerical solutions of the singular integral
equations

According to Elloumi et al. (2010), the coupling effect of
normal and tangential stresses on the final results is not
significant in contrast to the results in an uncoupled prob-
lem, when only a normally external load is acted on the
above rigid punch. In the present paper, an approximation
that is often called as the Goodman approximation is
adopted to neglect the influence of tangential traction on
the interface normal stress, whereas the influence of the
normal stress on the tangential one still exists. Then, Eq.
(41) can be simplified as

1
p

Z b

�b

pðrÞ
r�x

drþ 1
pa1

Z b

�b
k11ðx; rÞpðrÞdr¼� 1

a1
f �ðxÞ; jxj<b ð45Þ

where a1 ¼ � ðjþ1Þ
4l1

.
Introducing the following normalized quantities,

r ¼ bk; x ¼ bf; ð46Þ

Eqs. (45) and (13) can be rewritten as

1
p

Z 1

�1

pðkÞ
k�f

dkþ b
pa1

Z 1

�1
k11ðf;kÞpðkÞdk¼� 1

a1
f �ðfÞ; jfj<1 ð47Þ

Z 1

�1
pðkÞdk ¼ P

b
; ð48Þ

For a given value b of the contact region or a given load
P, the interface normal stress p(x) can be obtained from
Eqs. (47) and (48). Then, substituting Eq. (17) into (42)
yields the equation about q⁄(x),

1
p

Z a

�a

q�ðrÞ
x�r

dr� 1
pa1

Z a

�a
k22ðx; rÞq�ðrÞdr¼NðxÞ; jxj<a; ð49Þ

where

NðxÞ ¼ 1
a1

@uðx; 0Þ
@x

� j� 1
jþ 1

pðxÞ � 1
pa1

Z b

�b
k21ðx; rÞpðrÞdr

þ g
p

Z �a

�b

pðrÞ
x� r

dr � g
p

Z b

a

pðrÞ
x� r

dr � gpðaÞ
pa

Z a

�a

r
x� r

dr

� 1
pa1

Z �a

�b
gk22ðx; rÞpðrÞdr � gpðaÞ

a

Z a

�a
k22ðx; rÞrdr

�

�
Z b

a
gk22ðx; rÞpðrÞdr

#
: ð50Þ
Introducing the following normalized quantities,

r ¼ as; x ¼ az; ð51Þ

Eq. (49), which is only effective in the stick zone |x| < a,
may be reformulated as

1
p

Z 1

�1

q�ðsÞ
z� s

ds� a
pa1

Z 1

�1
k22ðz; sÞq�ðsÞds ¼ NðzÞ; jzj

< 1 ð52Þ

In the following sub-sections, special cases of a flat
punch and a circular one will be analyzed in details.

5.1. Flat punch case

In the contact model of a flat punch, we have (Johnson,
1985)

vðx; 0Þ ¼ constant;
@vðx; 0Þ
@x

¼ 0; jxj < b; ð53Þ

Then, according to Eq. (11), we have f⁄(x) = 0.
Due to a vanishing tangential displacement in the stick

zone, the boundary condition in Eq. (12) becomes

@uðx; 0Þ
@x

¼ 0; jxj < a: ð54Þ

In the contact model of a flat punch, the unknown nor-
mal stress pðkÞ is unbounded, which may be expressed as
(Erdogan et al., 1973)

pðkÞ ¼ f ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p ð55Þ

While q⁄(s) is bounded, which is usually denoted as
(Erdogan et al., 1973)

q�ðsÞ ¼ /ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

; ð56Þ

where f ðkÞ and /(s) are two continuous functions and
bounded in the interval [�1,1].

In addition, Erdogan et al. (1973) has verified that the
solution of Eq. (52) should satisfy the following consis-
tency condition (Muskhelishvili, 1953),Z 1

�1

1
p

Z 1

�1

q�ðsÞ
z� s

ds
� 	

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p ¼ 0: ð57Þ

Substituting Eq. (52) into the above consistency condi-
tion yieldsZ 1

�1

1
p

Z 1

�1
NðzÞ � a

pa1

Z 1

�1
k22ðz; sÞq�ðsÞds

� 

ds

� 	
dzffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

¼ 0:

ð58Þ

With the help of Eqs. (55) and (56) and the Gauss–
Chebyshev quadrature method (Erdogan et al., 1973),
Eqs. (47), (48), and (52) can be reduced to a set of linear
algebraic equations as follows,

1
M

XM

l¼1

f ðklÞ
a1

kl � fm
þ bk11ðfm; klÞ

� 	
¼ 0; ðm

¼ 1; 2; . . . ; M � 1Þ ð59aÞ
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1
M

XM

l¼1

f ðklÞ ¼
P
pb

ð59bÞ

XM

l¼1

ð1� s2
l Þ/ðslÞ

M þ 1
1

zi � sl
� a

a1
k22ðzi; slÞ

� 	
¼ NðziÞ;

ði ¼ 1; 2; . . . ; M þ 1Þ ð59cÞ

where

kl ¼ cos
ð2l� 1Þp

2M
; l ¼ 1; 2; . . . ; M; ð60aÞ

fm ¼ cos
pm
M

; m ¼ 1; 2; . . . ; M � 1; ð60bÞ

sl ¼ cos
lp

M þ 1
; l ¼ 1; 2; . . . ; M; ð60cÞ

zi ¼ cos
pð2i� 1Þ
2ðM þ 1Þ ; i ¼ 1; 2; . . . ; M þ 1: ð60dÞ

There are 2M + 1 unknowns in Eqs. (58) and (59), i.e., a,
f ðklÞ and /(sl) (l = 1, 2, . . ., M), which can be found using the
following iteration procedure,

(1) f ðklÞ (l = 1, 2, . . ., M) can be obtained directly from
the linear algebraic Eqs. (59a) and (59b). Then, the
interface normal stress pðkÞ can be found from Eq.
(55).

(2) According to the approximate expression for the
case of a homogeneous half-plane (Spence, 1973),
we choose an initial value for a.

(3) /(sl) (l = 1, 2, . . ., M) can be achieved from Eq. (59c),
in which the (M/2 + 1)th equation is satisfied
automatically.

(4) Substituting the achieved /(sl) (l = 1, 2, . . ., M) into
Eq. (58) yields an updated a. Then, using step (3)
to find updated /(sl) (l = 1, 2, . . ., M). Iterations go
like this until the difference of results between two
neighboring steps is sufficiently small, then, the
results are recorded.

(5) Once /(sl) (l = 1, 2, . . ., M) are obtained, the normal-
ized tangential stress in Eq. (56) is found.

The stress intensity factors at points x = ±b can be ob-
tained from the interface normal stress pðkÞ,

FIðbÞ ¼ lim
r!b

pðrÞ
2�1=2ðb� rÞ�1=2 ¼ f ð1Þb1=2

; ð61aÞ

FIð�bÞ ¼ lim
r!�b

pðrÞ
2�1=2ðbþ rÞ�1=2 ¼ f ð�1Þb1=2

: ð61bÞ
5.2. Plane strain case with a cylindrical punch

According to Johnson (1985), the normal displacement
at the contact interface and its derivative in the plane
strain contact problem with a cylindrical punch can be
written as,
vðx; 0Þ ¼ x2

2R
;

@vðx; 0Þ
@x

¼ x
R
; jxj < b; f �ðxÞ ¼ x

R
ð62Þ

According to Spence (1968), we assume the points in
the central stick zone are pre-strained before sticking and
the pre-strain is proportional to |x|. Then the boundary
condition given in Eq. (12) can be written as

@uðx; 0Þ
@x

¼ Cjxj; jxj < a ð63Þ

where C is an unknown constant.
The interface normal stress pðkÞ in the plane strain case

with a cylindrical punch should be bounded, which may be
expressed as (Erdogan et al., 1973)

pðkÞ ¼ f ðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
: ð64Þ

q�ðsÞ in Eq. (52) is also a bounded function, which is
usually given as the following form (Erdogan et al., 1973)

q�ðsÞ ¼ /ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

: ð65Þ

Functions f ðkÞ and /(s) in Eqs. (64) and (65) are contin-
uous and bounded in the interval [�1,1]. The consistency
condition in Eq. (58) should also be satisfied in such a
cylindrical punch case.

With the help of Eqs. (64) and (65) and the Gauss–
Chebyshev quadrature method (Erdogan et al., 1973), inte-
gral Eqs. (47), (48), and (52) can be reduced as

XM

l¼1

ð1� k2
l Þ

M þ 1
f ðklÞ

1
kl � fm

þ b
a1

k11ðfm; klÞ
� 	

¼ bfm

a1R
; ðm ¼ 1; 2; . . . ; M þ 1Þ ð66aÞ

XM

l¼1

ð1� k2
l Þ

M þ 1
f ðklÞ ¼

P
pb

; ð66bÞ

XM

l¼1

ð1� s2
l Þ/ðslÞ

M þ 1
1

zi � sl
� a

a1
k22ðzi; slÞ

� 	
� 1

a1
Cjazij

¼ NðziÞ; ði ¼ 1; 2; . . . ; M þ 1Þ ð66cÞ

where

kl ¼ cos
lp

M þ 1
; l ¼ 1; 2; . . . ; M; ð67aÞ

fm ¼ cos
pð2m� 1Þ
2ðM þ 1Þ ; m ¼ 1; 2; . . . ; M þ 1; ð67bÞ

sl ¼ cos
lp

M þ 1
; l ¼ 1; 2; . . . ; M; ð67cÞ

zi ¼ cos
pð2i� 1Þ
2ðM þ 1Þ ; i ¼ 1; 2; . . . ; M þ 1: ð67dÞ

Since the solution of Eq. (47) is bounded at the contact
edges, it must satisfy the consistency condition. According
to Erdogan et al. (1973), the (M/2 + 1)th equation in Eq.
(66a) corresponds to the consistency condition, which is
always satisfied.

Thus, Eqs. (58) and (66a–c) consist of (2M + 3) indepen-
dent equations including (2M + 3) unknowns, i.e., f ðklÞ, /
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(sl), a, P (or b) and C, which can be found by the iteration
method similar to that used in the flat punch case.
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Fig. 3. Validation of the stick size a/b versus the friction coefficient of a
homogeneous half-plane in the case of a flat punch, g; m = 0.3.
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6. Results and discussions

6.1. Special cases

In our model, if the graded parameter c ¼ 1
h log l3

l1

� �
van-

ishes and the contact width is much smaller than the thick-
ness of the graded solid, the present model will be reduced
to a special one, i.e., the partial slip contact problem of a
homogeneous half-space under plane strain condition
(Spence, 1973; Nowell et al., 1988). Fig. 2 shows the distri-
bution of the dimensionless contact stresses p(y)/r0 and
q(y)/r0 in the contact model of a flat punch contacting a
homogeneous half-space, where r0 is the average contact
pressure. The size of the stick zone varying with the
friction coefficient for a fixed Poisson’s ratio is shown in
Fig 3. One can readily see that the present results agree
very well with the Spence’s ones. As for the plane strain
model of a rigid circular punch contacting a homogeneous
half-plane, Fig. 4 shows the distributions of the contact
stress obtained from the present reduced model and that
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Fig. 2. Validation of normalized contact stress distribution of a homoge-
neous half-plane in the case of a flat punch (a) normal stress; (b) shear
stress; g = 0.2374 and m = 0.3.
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Fig. 4. Validation of normalized contact stress distribution of a homoge-
neous half-plane in the case of a circular punch (a) normal stress; (b)
shear stress; g = 0.2374 and m = 0.3.
from Nowell et al. (1988) with parameters g = 0.23738
and m = 0.3. Consistent results are achieved for both the
present model and the one in Nowell et al. (1988).

If the graded parameter c is chosen as a constant and
the contact width is much smaller than the thickness of
the graded solid, i.e., b� h, the present model can be



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q(y)/σ
0

p(y)/σ
0

p(
x)

/ σ
0

,q
(x

)/
σ 0

x/b

Solid line:
Present solution

Dot:
Elloumi et al's solution(2010)

Fig. 5. Validation of normalized contact stress distribution of a graded
half-plane with cb = 0.1 in the case of a flat punch; g = 0.35 and m = 0.3.

-1.0 -0.5 0.0 0.5 1.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

p(
x)

/σ
0

x/b

μ
1
/μ

3
=8

μ
1
/μ

3
=1

μ
1
/μ

3
=1/8

h/b=5
η=0.3
ν=0.3

-1.0 -0.5 0.0 0.5 1.0
-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

h/b=5
η=0.3
ν=0.3

q (
x)

/ σ
0

x/b

μ
1
/μ

3
=8

μ
1
/μ

3
=1

μ
1
/μ

3
=1/8

(a)

(b)

Fig. 6. Distributions of normalized contact stress distribution in the case
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and m = 0.3 (a) normal stress; (b) shear stress.

Table 1
Non-dimensional stress intensity factors FI(b)/F0 at the contact edge for
different values of h/b and l1/l3 with g = 0.3 and m = 0.3.

l1/l3 h/b = 20 h/b = 10 h/b = 5
FI(b)/F0 FI(b)/F0 FI(b)/F0

1/8 0.2930 0.2801 0.2536
1 0.3178 0.3161 0.3098
8 0.3450 0.3699 0.4075
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Fig. 7. Distributions of normalized contact stress distribution in the case
of a circular punch for some selected ratio of shear moduli with g = 0.3, h/
b = 5, R = 10 and m = 0.3 (a) normal stress; (b) shear stress.
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reduced to another special one, i.e., the partial slip contact
model between a rigid punch and a graded half-plane
(Elloumi et al., 2010; Kallel-Kamoun et al., 2010). Numeri-
cal results for the present model and the graded half-plane
model (Elloumi et al., 2010; Kallel-Kamoun et al., 2010) are
shown in Fig. 5, where it shows good agreement between
the two kinds of models.

6.2. Parametric study

Fig. 6(a and b) illustrate the effect of shear modulus ra-
tio l1/l3 on the distributions of the normal contact stress
and the tangential one in the partial slip contact model
of a flat punch and a finite graded solid, respectively. From
Fig. 6(a), one can see that the non-dimensional normal
contact stress p(x)/r0 becomes more uniform in the contact
area with a decreasing l1/l3. The corresponding non-
dimensional stress intensity factors FI(b)/F0 are shown in
Table 1 for different ratios of shear modulus l1/l3, where
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F0 = Pb�1/2. Table 1 exhibits that the stress intensity factor
for the case of l1/l3 < 1 is smaller than that for the case of
l1/l3 > 1. From the fretting mechanics point of view, it is
easy to conclude that a graded layer with gradually
increasing stiffness in the thickness direction will have less
possibility for crack initiation and propagation in the flat
punch case. Fig. 6(b) shows that, for a fixed g, a decreasing
l1/l3 leads to an increase of the size of stick zone a/b.

Fig. 7 illustrates the effect of shear modulus ratio l1/l3

on the distributions of the normal and tangential contact
stresses for the case of a circular punch. For fixed g and
b/h, it is easy to find that a smaller ratio of shear modulus
l1/l3 results in a larger magnitude of contact pressure in
Fig. 7(a). It also means that for the same normal loading,
a smaller l1/l3 corresponds to a narrower contact width.
Both Bramhall (1973) and Nowell (1988) have found that
a large contact width results in a short fretting fatigue life.
Thus, a graded layer with gradually increasing stiffness in
the thickness direction, i.e., l1/l3 < 1, should have a long
fretting fatigue life. The distribution of the tangential con-
tact stress is shown in Fig 7(b), where one can see that for a
fixed g, a decreasing l1/l3 leads to an increase size of the
stick zone a/b.

Fig. 8(a and b) exhibit the effect of the friction coeffi-
cient g on the size of the stick zone a/b for cases of a flat
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Fig. 8. Variations of the stick zone versus the friction coefficient, g for
some selected ratio of shear moduli with h/b = 5 and m = 0.3 (a) flat punch;
(b) circular punch (R = 10).
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layer, ln(h/b) for some selected ratio of shear moduli with g = 0.3 and
m = 0.3, compared with the homogeneous half-plane case (a) flat punch;
(b) circular punch (R = 10).
punch and a circular one, respectively, where the ratio of
shear modulus l1/l3 is fixed. It is easy to find the fact that
an increasing friction coefficient will lead to an increasing
stick zone and finally it will tend to be a fully adhesive
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contact. It means a larger friction coefficient may relieve
the occurrence of interfacial slip. For a fixed g, decreasing
l1/l3 will also result in an increasing stick zone.

The slope of the tangential displacement C in Eq. (63) is
an additional unknown for the case of a circular punch.
Fig. 9 shows the effect of the shear modulus ratio l1/l3

on the relation between C and the friction coefficient g.
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Fig. 11. Distributions of normalized contact stress distribution in the case
of a flat punch for some selected thickness of the graded layer with g = 0.3
and m = 0.3 (a) normal stress (l1/l3 = 1/8); (b) normal stress (l1/l3 = 1);
(c) normal stress (l1/l3 = 8).
One can see that with the increase of g, the value of C tends
to be a constant. For a determined g, the absolute value of C
will increase with an increasing l1/l3.

The relation between the thickness of the graded layer
h/b and the stick zone a/b with different l1/l3 for cases
of a flat punch and a circular one are given in Fig. 10(a
and b), respectively. With the increase of the non-dimen-
sional thickness of the graded layer h/b, all the results will
tend to that of a homogeneous half-space case due to the
weakened boundary effect and slow variation of shear
modulus in the thickness direction. It is interesting to find
that the result for a homogeneous finite layer case, i.e., l1/
l3 = 1, deviates significantly from that for the homoge-
neous half-space case due to the effect of finite thickness.
Thus, it should be noted that, in practice, the solution of
a half-space case cannot be used to represent the one of
a finite body case.

The effect of thickness of the graded layer on the distri-
bution of contact stresses is plotted in Fig. 11(a–c) for the
case of a flat punch, where one can see that the normal
contact stress p(x)/r0 distributes more uniformly in cases
of l1/l3 = 1/8 and l1/l3 = 1 when the thickness decreases,
while it is contrary in the case of l1/l3 = 8. The corre-
sponding stress intensity factors FI(b)/F0 decrease with a
decreasing thickness h/b in cases of l1/l3 < 1 and l1/
l3 = 1, but increase in the case of l1/l3 > 1 as shown in Ta-
ble 1. The results also demonstrate that the contact stress
in a finite model cannot be accurately represented by that
in a half-space one. However, if the thickness of the finite
layer is much large, the boundary effect is weakened
whether in cases of l1/l3 < 1 and l1/l3 = 1 or in the case
of l1/l3 > 1. Thus, it is reasonable to use a layer with large
enough thickness to represent a half-space in the numeri-
cal simulations.

Distributions of the non-dimensional normal and tan-
gential contact stresses, p(x)/l1 and q(x)/l1, under a circu-
lar punch are shown in Fig. 12(a–f) for different types of
l1/l3. From Fig. 12(a–f), one can see that, for a fixed con-
tact width, the normal contact stress increases with a
decreasing layer thickness, which is totally different from
that in the flat punch case. It can be inferred that, for a
determined external load, the contact width will decrease
with a decreasing layer thickness in such as circular punch
case. This phenomenon agrees qualitatively with that in
the model of a homogeneous layer (Nowell and Hills,
1988).

In the present paper, we only focus on the contact stress
and stick zone induced by an externally normal load. In
fact, the externally tangential load in any fretting problem
is inevitably involved, the results of which can also be
found by a similar method of the present paper.
7. Conclusions

A more general and practical model has been estab-
lished in the present paper for the slip contact problem be-
tween a rigid stamp and a finite graded layer. Exponential
variation law in the thickness direction is adopted for the
layer’s shear modulus. The governing equation establishing
the relation between the contact stress and the contact
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Fig. 12. Distributions of normalized contact stress distribution in the case of a circular punch for some selected thickness of the graded layer with g = 0.3
and m = 0.3 (a) normal stress (l1/l3 = 1/8); (b) shear stress (l1/l3 = 1/8); (c) normal stress (l1/l3 = 1); (d) shear stress (l1/l3 = 1); (e) normal stress (l1/
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width is derived for the slip contact models with arbitrary
punch-tips. Two special cases, i.e., a flat punch case and a
circular punch one, are analyzed in details. It was found
that the distributions of the contact stresses and the size
of the stick zone are significantly influenced by the shear
modulus of the graded layer and the friction coefficient
of the contact interface. Furthermore, it is interesting to
find that the finite thickness of the graded layer leads to
significant influence on the contact stresses and the scale
of stick zone too, which demonstrates that the solution of
the slip contact model of a half-space cannot be valid for
the contact model of a finite layer. With the increasing
thickness of the layer, the solution of the present finite
model tends to the one of the half-space model. The results
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in this paper should be helpful in the design of new graded
materials for fretting fatigue and useful in applications of
practical engineering.
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