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Abstract For a class of block two-by-two systems of linear equations with cer-
tain skew-Hamiltonian coefficient matrices, we construct additive block diagonal
preconditioning matrices and discuss the eigen-properties of the corresponding pre-
conditioned matrices. The additive block diagonal preconditioners can be employed
to accelerate the convergence rates of Krylov subspace iteration methods such as
MINRES and GMRES. Numerical experiments show that MINRES preconditioned
by the exact and the inexact additive block diagonal preconditioners are effective,
robust and scalable solvers for the block two-by-two linear systems arising from the
Galerkin finite-element discretizations of a class of distributed control problems.
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1 Introduction

Consider block two-by-two systems of linear equations of the form

Ax ≡
(

W −T
T W

)(
y
z

)
=
(

p
q

)
≡ g, (1.1)

where W, T ∈ R
n×n are real, symmetric and positive semidefinite matrices satisfying

null(W)∩null(T) = {0}, where null(·) represents the null space of the corresponding
matrix. Note that the matrix A ∈ R

2n×2n is nonsingular. Hence the linear system (1.1)
has a unique solution. This class of linear systems can be formally regarded as a spe-
cial case of the generalized saddle-point problem [4, 5, 16] and the skew-Hamiltonian
linear system [25, 32]. It frequently arises from finite-element discretization and first-
order linearization of the two-phase flow problems based on Cahn-Hilliard equation
[3, 17, 18], order-reduction and sinc discretization of the third-order linear ordinary
differential equations [30], finite-element discretizations of elliptic PDE-constrained
optimization problems such as the distributed control problems [6, 23, 24, 29], real
equivalent formulations of complex symmetric linear systems [2, 15, 20], linear
quadratic control problems [22, 25], and H∞ control problems [28, 32, 34].

The matrix A naturally possesses the Hermitian and skew-Hermitian splitting
(HSS)1

A = H + S,

with

H = 1

2
(A + AT ) =

(
W 0
0 W

)
and S = 1

2
(A − AT ) =

(
0 −T
T 0

)

being the symmetric and the skew-symmetric parts and AT being the transpose of the
matrix A; see [1, 14]. By modifying and preconditioning the HSS iteration method
[10, 11, 13], recently Bai, Benzi, Chen and Wang [9] proposed and discussed a class
of preconditioned modified HSS (PMHSS) iteration methods for solving the block
two-by-two linear system (1.1); see also [7, 8].

The PMHSS iteration method introduced in [9] naturally leads to a precondition-
ing matrix

F(α) = (α + 1)P(α)

(
αW + T 0

0 αW + T

)
, with P(α) = 1

2α

(
I −I
I I

)
, (1.2)

for the block two-by-two matrix A, where α is a given positive parameter and I ∈
R

n×n is the identity matrix. Theoretical analysis has shown that the eigenvalues of

1In the real case this becomes the symmetric and skew-symmetric splitting.
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the preconditioned matrix F(α)−1A are clustered within a complex disk centered at

1 with radius
√

α2+1
α+1 , and the matrix of the corresponding eigenvectors is unitary.

Because F(α) is essentially a scaled product of the orthogonal and the symmetric
positive definite matrices

1√
2

(
I −I
I I

)
and

(
αW + T 0

0 αW + T

)
,

in practical applications its action can be computed by solving only two systems of
linear equations with the same coefficient matrix αW + T, which is symmetric and
positive definite. However, noticing that F(α) is, in general, a nonsymmetric matrix,
it can be only employed to precondition Krylov subspace iteration methods such as
GMRES, which may require considerable memory and storage in computations.

In this paper, by further simplifying and modifying the PMHSS preconditioning
matrix F(α) in (1.2) we construct an additive block diagonal (ABD) preconditioning
matrix

B(α) =
(

αW + T 0
0 αW + T

)
∈ R

2n×2n (1.3)

for the block two-by-two matrix A. Note that the matrix B(α) is obtained by directly
dropping P(α) in the matrix F(α). Since the matrix B(α) is symmetric positive defi-
nite, it can be used to precondition the symmetric form, denoted by As , of the matrix
A as well, where

As =
(

W T
T −W

)
∈ R

2n×2n. (1.4)

In this case, instead of GMRES we can use a symmetric Krylov subspace iteration
solver of orthogonal and minimal properties such as MINRES or SYMMLQ
(see [26]), with considerable savings in terms of both computation and storage.
Hence, the ABD preconditioner B(α) can be applied to a larger spectrum of
Krylov subspace iteration methods than the PMHSS preconditioner F(α), though the
computational cost of applying either of them is about the same.

We derive the expressions for the eigenvalues and eigenvectors of the precondi-
tioned matrices B(α)−1A and B(α)−1As , showing that the eigenvalues of B(α)−1A

are clustered within a complex disk centered at (1, 0) with radius
√

α2+1
α+1 , those

of B(α)−1As are clustered within a real interval, and the matrices of the corre-
sponding eigenvectors of both matrices are orthogonal or unitary. These immediately
lead to theoretical estimates about the convergence rates of the ABD-preconditioned
GMRES and the ABD-preconditioned MINRES methods for solving the block two-
by-two linear systems with the coefficient matrices A in (1.1) and As in (1.4),
respectively; see [31].

The exact and the inexact additive block diagonal preconditioners are applied to
precondition a class of KKT (Karush-Kuhn-Tucker) linear systems arising from a
finite-element discretization of a class of distributed control problems [6, 23, 24, 29].
Numerical results show that the exact and the inexact ABD-preconditioned MINRES
or GMRES methods [19] lead to rapid convergence and outperform the exact and the
inexact PMHSS-preconditioned GMRES methods, respectively; see [9].
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The remainder of the paper is organized as follows. In Section 2, we analyze the
preconditioning properties of the additive block diagonal preconditioning matrix with
respect to both A and its symmetric form As . In Section 3, we derive the additive
block diagonal preconditioner for a class of block two-by-two linear systems aris-
ing from the distributed control problems. Numerical results are given in Section 4
to show the effectiveness of the additive block diagonal preconditioner. Finally, in
Section 5 we end the paper with some conclusions and remarks.

2 Analyses of preconditioning properties

In this section we analyze the spectral properties of the preconditioning matrix B(α)

for both symmetric and nonsymmetric matrices As and A, respectively. These results
are precisely stated in the following theorem.

Theorem 2.1 Let As , A ∈ R
2n×2n be the block two-by-two matrices defined in

(1.4) and (1.1), respectively, with W ∈ R
n×n and T ∈ R

n×n being symmetric
positive semidefinite matrices satisfying null(W) ∩ null(T) = {0}, and let α be a

positive constant. Define Z(α) = (αW + T)− 1
2 (W − αT)(αW + T)− 1

2 . Denote by
μ

(α)
1 , μ

(α)
2 , . . . , μ

(α)
n the eigenvalues of the symmetric matrix Z(α) ∈ R

n×n, and by

q(α)
1 , q(α)

2 , . . . , q(α)
n the corresponding (αW + T)−1-orthonormal eigenvectors. Set

x(α)
j = (αW+T)− 1

2 q(α)
j (j = 1, 2, . . . , n) and X(α) = (x(α)

1 , x(α)
2 , . . . , x(α)

n ) ∈ R
n×n.

Then

(i) the eigenvalues of the matrix B(α)−1As are given by

λ
(α,j)
± = ±

√√√√
(
μ

(α)
j

)2 + 1

α2 + 1
, j = 1, 2, . . . , n,

and the corresponding orthonormal eigenvectors are

x̃(α)
j =

(
−x(α)

j φ
(α)
j

x(α)
j ψ

(α)
j

)
and x̃(α)

n+j =
(

x(α)
j ψ

(α)
j

x(α)
j φ

(α)
j

)
, j = 1, 2, . . . , n,

where

φ
(α)
j = α + μ

(α)
j + δ

(α)
j√

2δ
(α)
j

(
α + μ

(α)
j + δ

(α)
j

) and ψ
(α)
j = αμ

(α)
j − 1√

2δ
(α)
j

(
α + μ

(α)
j + δ

(α)
j

) ,

with δ
(α)
j =

√(
α2 + 1

) ((
μ

(α)
j

)2 + 1
)

;

(ii) the eigenvalues of the matrix B(α)−1A are given by

λ
(α,j)
± =

(α ± i)
(

1 ∓ iμ(α)
j

)
α2 + 1

, j = 1, 2, . . . , n,
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and the corresponding unitary eigenvectors are

x̃(α)
j = 1√

2

(
x(α)
j

i x(α)
j

)
, x̃(α)

n+j = 1√
2

(
x(α)
j

−i x(α)
j

)
, j = 1, 2, . . . , n,

where i = √−1 denotes the imaginary unit.

Therefore, we have B(α)−1As = X̃
(α)

�(α)X̃
(α)−1

with

X̃
(α) =

(−X(α)�(α) X(α)	(α)

X(α)	(α) X(α)�(α)

)

being an orthogonal matrix so that κ2

(
X̃

(α)
)

= 1, and B(α)−1A = X̃
(α)

�(α)X̃
(α)−1

with

X̃
(α) = 1√

2

(
X(α) X(α)

i X(α) −i X(α)

)

being a unitary matrix so that κ2

(
X̃

(α)
)

= 1, where κ2(·) represents the condition

number in the Euclidean norm,

�(α) =
(

�
(α)
− 0
0 �

(α)
+

)
, �

(α)
± = diag

(
λ

(α,1)
± , λ

(α,2)
± , . . . , λ

(α,n)
±

)
,

and

�(α) = diag
(
φ

(α)
1 , φ

(α)
2 , . . . , φ(α)

n

)
, 	(α) = diag

(
ψ

(α)
1 , ψ

(α)
2 , . . . , ψ(α)

n

)
.

Proof Define matrices

Q(α) =
(

q(α)
1 , q(α)

2 , . . . , q(α)
n

)
∈ R

n×n

and

�(α) = diag
(
μ

(α)
1 , μ

(α)
2 , . . . , μ(α)

n

)
∈ R

n×n.

Then it holds that

Z(α)Q(α) = Q(α)�(α) and X(α) = (αW + T)−
1
2 Q(α).

Let

X̂
(α) =

(
X(α) 0

0 X(α)

)
, 	̂(α) =

(
I �(α)

−�(α) I

)

and

J(α)
s =

(
αI I
I −αI

)
, J(α) =

(
αI −I
I αI

)
.

Then we have(
J(α)
s

)−1 = 1

α2 + 1
J(α)
s and

(
J(α)
)−1 = 1

α2 + 1
J(α).
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Based on the identities

AsJ(α)
s =

(
W T
T −W

)(
αI I
I −αI

)
=
(

αW + T W − αT
αT − W αW + T

)

and

AJ(α) =
(

W −T
T W

)(
αI I
−I αI

)
=
(

αW + T W − αT
αT − W αW + T

)
,

we obtain

B(α)−1As = 1

α2 + 1

(
αW + T 0

0 αW + T

)−1 (
αW + T W − αT
αT − W αW + T

)
J(α)
s

= 1

α2 + 1

(
αW + T 0

0 αW + T

)− 1
2
(

I Z(α)

−Z(α) I

)

×
(

αW + T 0
0 αW + T

) 1
2

J(α)
s

= 1

α2 + 1

(
X(α) 0

0 X(α)

)(
I �(α)

−�(α) I

)(
X(α) 0

0 X(α)

)−1

J(α)
s

= 1

α2 + 1
X̂

(α)
	̂(α)X̂

(α)−1

J(α)
s

= 1

α2 + 1
X̂

(α)
	̂(α)J(α)

s X̂
(α)−1

(2.1)

and

B(α)−1A = 1

α2 + 1

(
αW + T 0

0 αW + T

)−1 (
αW + T W − αT
αT − W αW + T

)
J(α)

= 1

α2 + 1

(
αW + T 0

0 αW + T

)− 1
2
(

I Z(α)

−Z(α) I

)

×
(

αW + T 0
0 αW + T

) 1
2

J(α)

= 1

α2 + 1

(
X(α) 0

0 X(α)

)(
I �(α)

−�(α) I

)(
X(α) 0

0 X(α)

)−1

J(α)

= 1

α2 + 1
X̂

(α)
	̂(α)X̂

(α)−1

J(α)

= 1

α2 + 1
X̂

(α)
	̂(α)J(α)X̂

(α)−1

. (2.2)

Now, it follows from straightforward computations that

	̂(α)
s := 	̂(α)J(α)

s =
(

αI + �(α) I − α�(α)

I − α�(α) − (αI + �(α)
)
)

.
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Note that this matrix is real symmetric and has the eigenvalues

±
√

(α2 + 1)

((
μ

(α)
j

)2 + 1

)
, j = 1, 2, . . . , n.

Hence, from (2.1) we see that the eigenvalues of the matrix B(α)−1As are given by

λ
(α,j)
± = ±

√√√√
(
μ

(α)
j

)2 + 1

α2 + 1
, j = 1, 2, . . . , n.

In addition, by letting

V(α) =
(−�(α) 	(α)

	(α) �(α)

)
,

we know that V(α) ∈ R
2n×2n is an orthogonal matrix. By straightforward computa-

tions we have

V(α)T 	̂(α)
s V(α) =

⎛
⎜⎝

√
α2 + 1

(
I + (�(α)

)2) 1
2

0

0 −√
α2 + 1

(
I + (�(α)

)2) 1
2

⎞
⎟⎠ .

It readily follows from (2.1) again that

B(α)−1As = 1√
α2 + 1

X̂
(α)

V(α)

⎛
⎜⎝−
(

I + (�(α)
)2) 1

2
0

0
(

I + (�(α)
)2) 1

2

⎞
⎟⎠V(α)T X̂

(α)−1

= X̃
(α)

�(α)X̃
(α)−1

,

where

X̃
(α) = X̂

(α)
V(α) and �

(α)
± = ± 1√

α2 + 1

(
I +

(
�(α)

)2
) 1

2

.

Moreover, as Q(α) ∈ R
n×n is an (αW + T)−1-orthogonal matrix, we know

that X(α) and, hence X̂
(α)

, are orthogonal matrices. It follows immediately from

the orthogonality of V(α) ∈ R
2n×2n that X̃

(α) ∈ R
2n×2n is orthogonal. Therefore,

κ2

(
X̃

(α)
)

= 1. This demonstrates the validity of (i).

We now turn to prove (ii). To this end, we let

U(α) = 1√
2

(
I I
i I −i I

)
,

which is evidently a unitary matrix. Then by straightforward computations we have

U(α)∗	̂(α)U(α) =
(

I + i �(α) 0
0 I − i �(α)

)
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and

U(α)∗J(α)U(α) =
(

(α − i)I 0
0 (α + i)I

)
.

Here and in the sequel, we use (·)∗ to denote the conjugate transpose of the
corresponding matrix. Now, it follows from (2.2) that

B(α)−1A = 1

α2 + 1
X̂

(α)
U(α)

(
I+ i �(α) 0

0 I−i �(α)

)(
(α − i)I 0

0 (α+ i)I

)
U(α)∗X̂

(α)−1

= X̃
(α)

�(α)X̃
(α)−1

,

where

X̃
(α) = X̂

(α)
U(α) and �

(α)
± = α ± i

α2 + 1

(
I ∓ i �(α)

)
.

Moreover, as Q(α) ∈ R
n×n is an (αW + T)−1-orthogonal matrix, we know that

X(α) and, hence X̂
(α)

, are orthogonal matrices. It follows immediately from the

fact that U(α) ∈ C
2n×2n is unitary that X̃

(α) ∈ C
2n×2n is unitary, too. Therefore,

κ2
(
X̃

(α)) = 1.

Based on Theorem 2.1 we can further derive bounds for the eigenvalues of the
preconditioned matrices B(α)−1As and B(α)−1A.

Theorem 2.2 Let As , A ∈ R
2n×2n be the block two-by-two matrices defined in (1.4)

and (1.1), respectively, with W ∈ R
n×n and T ∈ R

n×n being symmetric positive
semidefinite matrices satisfying null(W) ∩ null(T) = {0}, and let α be a posi-

tive constant. Define Z(α) = (αW + T)− 1
2 (W − αT)(αW + T)− 1

2 and denote by
μ

(α)
1 , μ

(α)
2 , . . . , μ

(α)
n the eigenvalues of the symmetric matrix Z(α) ∈ R

n×n. Assume
that

sp
(

Z(α)
)

⊆
[
μ

(α)
min, μ(α)

max

]

and

μ(α) = max
{∣∣∣μ(α)

min

∣∣∣ ,
∣∣∣μ(α)

max

∣∣∣} , η(α) = max
{∣∣∣αμ(α)

max − 1
∣∣∣ ,

∣∣∣αμ
(α)
min − 1

∣∣∣} .

Then

(a) the eigenvalues of the matrix B(α)−1As are bounded as

sp
(
B(α)−1As

) ⊆
[
−
√

(μ(α))
2+1

α2+1
, − 1√

α2+1

]

⋃[ 1√
α2+1

,

√
(μ(α))

2+1
α2+1

]
;

(b) the eigenvalues of the matrix B(α)−1A are bounded as

sp(B(α)−1A) ⊆
[

α + μ
(α)
min

α2 + 1
,

α + μ
(α)
max

α2 + 1

]
×
[
− η(α)

α2 + 1
,

η(α)

α2 + 1

]
.
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Proof The bounds in (a) and (b) straightforwardly follow from the expressions for
the eigenvalues of matrices B(α)−1As and B(α)−1A given in Theorem 2.1, and from
the bounds assumed for the eigenvalues μ

(α)
j , j = 1, 2, . . . , n, of the matrix Z(α).

Remark 2.1 If α = 1, then Theorems 2.1 and 2.2 show that when

B :=
(

W + T 0
0 W + T

)

is used to precondition the matrices As and A, the eigenvalues of the precondi-

tioned matrix B−1As are clustered within the real interval
[
−1, −

√
2

2

]
∪
[√

2
2 , 1

]
, and

those of the matrix B−1A are located within the complex rectangle (0, 1] × [−1, 1].
In addition, both B−1As and B−1A are orthogonally and unitarily diagonaliz-

able with the matrices X̃
(1)

formed by their eigenvectors, respectively. Hence, the
ABD-preconditioned MINRES can be expected to converge very rapidly when it is
employed to solve the symmetric form of the block two-by-two linear system (1.1)
with respect to the coefficient matrix As defined in (1.4). However, when employed
to solve the block two-by-two linear system (1.1), the ABD-preconditioned GMRES
may converge very slowly, as the real parts of the eigenvalues of the preconditioned
matrix B−1A could be very close to 0, especially for large matrices.

3 Applications to the numerical solution of distributed control problems

Consider the distributed control problem

min
u,f

1

2
‖u − u∗‖2

2 + β‖f ‖2
2, (3.1)

subject to − ∇2u = f in �, (3.2)

with u = υ1 on ∂�1 and
∂u

∂ n = υ2 on ∂�2, (3.3)

where � is a domain in R
2 or R3, ∂� is the boundary of �, ∂�1 and ∂�2 are two parts

of ∂� satisfying ∂�1 ∪ ∂�2 = ∂� and ∂�1 ∩ ∂�2 = ∅, and n is the outward normal
of �. Such problems, introduced by Lions in [24], consist of a cost functional (3.1)
to be minimized subject to a partial differential equation (PDE) problem (3.2)–(3.3)
posed on the domain �. Here, the function u∗ (the “desired state”) is known, and we
want to find u which satisfies the PDE problem and is as close to u∗ as possible in
the L2-norm sense. For recent references on this topic, see, e.g., [6, 23].

When the PDE-constrained optimization problem (3.1)–(3.3) is treated with
the discretize-then-optimize approach [29] through application of a Galerkin
finite-element method to its weak formulation, we obtain a KKT system in the
following saddle-point form:⎛

⎝ 2βM 0 −M

0 M KT

−M K 0

⎞
⎠
⎛
⎝ f

u

φ

⎞
⎠ =

⎛
⎝ 0

b

d

⎞
⎠ , (3.4)
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where M ∈ R
m×m is the mass matrix, K ∈ R

m×m is the stiffness matrix (the discrete
Laplacian), β > 0 is the regularization parameter, d ∈ R

m contains the terms com-
ing from the boundary values of the discrete solution, and b ∈ R

m is the Galerkin
projection of the discrete state u∗. In addition, φ is a vector of Lagrange multipliers.

After eliminating the Lagrange multiplier φ, we can equivalently rewrite the
saddle-point linear system (3.4) as the block two-by-two linear system

Ax ≡
( 1

2β
M KT

−K M

)(
u

f

)
=
( 1

2β
b

−d

)
≡ g. (3.5)

Recall that M ∈ R
m×m is the mass matrix and is, thus, symmetric positive definite.

Therefore, the matrix A ∈ R
2m×2m is positive real, i.e., its symmetric part is positive

definite.
In the remainder of this section, we assume that the stiffness matrix K is symmetric

and positive semidefinite. Through symmetric block-scaling by the diagonal matrix

D =
(−√

2βI 0
0 I

)
,

where I ∈ R
m×m represents the identity matrix, we can reformulate the block two-

by-two linear system (3.5) into the form of (1.1), with

A =
(

M −√
2βK√

2βK M

)
, i.e., W = M and T = √2βK, (3.6)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x =
(

− 1√
2β

u

f

)
, i.e., y = − 1√

2β
u and z = f,

g =
(

− 1√
2β

b

−d

)
, i.e., p = − 1√

2β
b and q = −d.

Now from (1.3) we know that the additive block diagonal preconditioning matrix
B(α) of the matrix A in (3.6) (see also (1.1)) is defined by

B(α) =
(

αW + T 0
0 αW + T

)
=
(

αM + √
2βK 0

0 αM + √
2βK

)
.

Therefore, the additive block diagonal preconditioning matrix for the block two-by-
two matrix A in (3.5) is as follows:

B(α) =
( 1

2β
(αM + √

2βK) 0
0 αM + √

2βK

)
. (3.7)

Of course, the matrix B(α) can also be employed to precondition the symmetric form
of the linear system (3.5) defined as follows:

Asx ≡
( 1

2β
M K

K −M

)(
u

f

)
=
( 1

2β
b

d

)
≡ gs, (3.8)
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We recall that the PMHSS preconditioning matrix for the block two-by-two matrix
A in (3.5) is given by

F(α) = (α + 1)P (α; β)

(
αM + √

2βK 0
0 αM + √

2βK

)
, (3.9)

where

P(α; β) = 1

4αβ

(
I

√
2βI

−√
2βI 2βI

)
;

see [9] for a detailed derivation.
Note that the matrix αM + √

2βK is symmetric positive definite. Hence, in
implementations the actions of the preconditioning matrices B(α) and F(α) can be
effectively accomplished either exactly by Cholesky factorization or inexactly by
some conjugate gradient or multigrid scheme; see [12].

In particular, if α = 1 we further have

B :=
( 1

2β
(M + √

2βK) 0
0 M + √

2βK

)
(3.10)

and

F := P

(
M + √

2βK 0
0 M + √

2βK

)
, (3.11)

with

P = 1

2β

(
I

√
2βI

−√
2βI 2βI

)
.

Below we state several remarks about the ABD preconditioning matrices B(α)

and B.

Remark 3.1 We stress that our solution approach is not limited to the special (and
rather simple) model problem (3.1)–(3.3), and that it can handle any kind of dis-
tributed control problem leading to saddle-point linear systems of the form (3.4) with
K symmetric and positive definite (or semidefinite). Hence, a broad class of elliptic
PDE constraints can be accommodated besides Poisson’s equation.

Remark 3.2 In [35], by making use of certain nonstandard norms the author derived
a general form of block two-by-two preconditioning matrices for the saddle-point
matrices, which specifically lead to the preconditioning matrix B defined in (3.10)
for the symmetric form As of the block two-by-two matrix A in (3.8) and (3.5),
respectively.

Remark 3.3 Of course, we have realized that reducing the block three-by-three
KKT system (3.4) to the block two-by-two linear system (3.5) through eliminating
the Lagrange multiplier is not always possible, as the matrix M could be singular
or rectangular in some cases. For example, if the control and state are discretized
by different finite elements, then the matrix M will be rectangular. We refer to
[27] for several related preconditioners based on Schur complement approximations
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for the saddle-point matrix resulting from the discretize-then-optimize approach to
the distributed control problem (3.1)–(3.3), which may effectively treat the cases
mentioned above.

4 Numerical results

In this section, we use the following example to examine the numerical behav-
ior of the additive block diagonal preconditioning matrix and the corresponding
preconditioned Krylov subspace iteration methods:

Example 4.1 [29] Let � = [0, 1]2 be a unit square and consider the distributed
control problem (3.1)–(3.3), with ∂�2 = ∅, υ1 = u∗ and

u∗ =
{

(2x − 1)2(2y − 1)2, if (x, y) ∈
[
0, 1

2

]
×
[
0, 1

2

]
,

0, otherwise.

To this end, we solve the system of linear equations (3.5) by the GMRES method
preconditioned with the ABD preconditioning matrices B(α) and B, defined by (3.7)

Table 1 Experimental optimal parameters αopt for B(α)- and B(app)(α)-MINRES methods

β h αopt for B(α)-MINRES αopt for B(app)(α)-MINRES

10−2 2−2 [0.07, 0.12] ∪ [0.15, 0.24] [0.07, 0.12] ∪ [0.15, 0.24]
2−3 [0.06, 0.08] ∪ [0.16, 0.21] [0.03, 0.16]
2−4 [0.03, 0.07] ∪ [0.13, 0.22] [0.01, 0.16]
2−5 [0.01, 0.25] 0.01

2−6 [0.01, 0.30] [0.01, 0.87]
10−4 2−2 [0.58, 0.76] ∪ [0.91, 1.02] [0.58, 0.76] ∪ [0.91, 1.02]

2−3 [0.43, 0.47] ∪ [0.52, 0.63] [0.43, 0.47] ∪ [0.52, 0.63]
2−4 [0.51, 0.59] [0.49, 0.54]
2−5 [0.24, 0.89] [0.01, 0.19]
2−6 [0.23, 0.86] [0.01, 0.03]

10−6 2−2 [1.97, 3.00] [1.97, 3.00]
2−3 [1.31, 2.79] [1.31, 2.79]
2−4 [0.94, 1.32] [0.94, 1.32]
2−5 [0.90, 1.10] [0.90, 1.10]
2−6 [0.86, 1.14] [0.54, 0.86]

10−8 2−2 [1.27, 3.00] [1.27, 3.00]
2−3 [0.99, 3.00] [0.99, 3.00]
2−4 [1.88, 3.00] [1.88, 3.00]
2−5 [1.28, 2.20] [1.28, 2.20]
2−6 [0.99, 1.18] [0.99, 1.18]
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Table 2 Experimental optimal parameters αopt for B(α)- and B(app)(α)-GMRES methods

β h αopt for B(α)-GMRES αopt for B(app)(α)-GMRES

10−2 2−2 [0.01, 1.52] [0.01, 1.52]
2−3 [0.01, 0.11] [0.01, 0.11]
2−4 [0.01, 0.03] [0.01, 0.59]
2−5 [0.01, 0.02] ∪ [0.66, 0.70] [0.01, 0.55] ∪ [1.41, 2.34]
2−6 [0.01, 0.02] ∪ [0.65, 0.70] [0.01, 0.69]

10−4 2−2 [0.01, 3.00] [0.01, 3.00]
2−3 [0.08, 0.20] [0.08, 0.20]
2−4 [0.02, 0.03] ∪ [0.28, 0.29] 0.26

2−5 [0.13, 0.16] ∪ [0.39, 0.41] [0.01, 0.05] ∪ {0.33}
2−6 [0.04, 0.11] ∪ [0.25, 0.30] ∪ [0.49, 0.52] [0.01, 0.10]

10−6 2−2 [0.88, 3.00] [0.88, 3.00]
2−3 [2.53, 2.55] [2.53, 2.55]
2−4 [0.80, 0.82] [0.80, 0.82]
2−5 [0.58, 0.65] ∪ [0.74, 0.87] ∪ [1.01, 1.02] [0.58, 0.65] ∪ [0.74, 0.87] ∪ [1.01, 1.02]
2−6 {0.61, 0.77} [0.53, 0.54]

10−8 2−2 [1.53, 1.99] [1.53, 1.99]
2−3 [0.98, 1.02] [0.98, 1.02]
2−4 [0.76, 1.03] ∪ [2.07, 3.00] [0.76, 1.03] ∪ [2.07, 3.00]
2−5 [0.83, 0.98] ∪ [1.33, 1.47] [0.83, 0.98] ∪ [1.33, 1.47]
2−6 [0.73, 0.78] ∪ [0.98, 1.02] [0.73, 0.78] ∪ [0.98, 1.02]

and (3.10), with the PMHSS preconditioning matrices F(α) and F, defined by (3.9)
and (3.11), and with their inexact variants B(app)(α), B(app) and F (app)(α), F (app).
In addition, we also solve the symmetric form (3.8) of the linear system (3.5) by the
MINRES method preconditioned with the ABD preconditioning matrices B(α) and
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Fig. 1 Number of iteration steps versus α for B(α)-MINRES when β = 10−2, 10−4, 10−6 and 10−8,
with h = 2−3 (left) and h = 2−4 (right)
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Fig. 2 Number of iteration steps versus α for B(α)-MINRES when β = 10−2, 10−4, 10−6 and 10−8,
with h = 2−5 (left) and h = 2−6 (right)

B, and their inexact variants B(app)(α) and B(app). In computing the actions of the
inverses of B(app)(α), B(app) and F (app)(α), F (app), the inverses of the approximations
G(app)(α) and G(app) corresponding to the matrices G(α) := αM + √

2βK and
G := M + √

2βK are implemented by 20 steps of Chebyshev semi-iteration
approximation; see [29, 33]. Here, the bounds of the eigenvalues of the matrices G(α)

and G are approximately given by those of the matrices αM and M, respectively; this
is reasonable especially when the regularization parameter β is small.

In our implementations, all iteration processes are terminated once the Euclidean
norms of the current residuals are reduced by a factor of 104 from those of the ini-
tial residuals, and the optimal iteration parameters αopt adopted in the exact and the
inexact ABD preconditioners B(α) and B(app)(α) are experimentally found ones that
minimize the number of total iteration steps of the corresponding iteration processes;
see Tables 1 and 2. The principle adopted for determining such an optimal value of
the iteration parameter α is as follows: Given a stopping criterion, say, 10−4, we can
obtain a number of iteration steps for the designated iteration method at each mesh
point with respect to α in the interval (0, 100] with the meshsize 0.01. Then the values
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Fig. 3 Number of iteration steps versus α for B(α)-GMRES when β = 10−2, 10−4, 10−6 and 10−8, with
h = 2−3 (left) and h = 2−4 (right)
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which lead to the minimal number of iteration steps are the ‘optimal’ values of the
iteration parameter α.

From Tables 1–2 and Figs. 1, 2, 3 and 4 we see that in most cases the optimal
iteration parameter αopt forms an interval or a union of intervals, but not a single
value. We do not pick up a single value as the optimal value of the iteration parameter
because a single optimal value may be changed with the adopted stopping criterion.
However, for all optimal values of the iteration parameter α in the same interval
or the same union of intervals given in Tables 1 and 2, the iteration methods can
almost achieve different orders of the minimal ratios of the Euclidean norms of the
current and the initial residuals, e.g., 10−3 and 10−4. In other words, for different
stopping criteria the ranges of the optimal iteration parameter αopt are about the same;
see Fig. 5.

In Tables 3 and 4, we list the number of iteration steps, the computing time (in
parentheses) and the speed-up (in brackets) with respect to the ABD preconditioner
and its approximate variants, which are employed to precondition the MINRES and
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preconditioned MINRES (right) when β = 10−2 and h = 2−3
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the GMRES methods, respectively. The speed-up is defined as the ratio of the com-
puting times with respect to F(αopt) (or F (app)(αopt) in the approximate variants)
and the referred preconditioner when they are used in proper iterative solvers. The
optimal iteration parameters αopt used in these two tables are chosen from Tables 1
and 2 such that they are, if not single points, the ones closest to 1.0.

From Table 3 we see that the numbers of iteration steps of the B(αopt)- and B-
preconditioned MINRES methods (briefly written as B(αopt)- and B-MINRES) are
roughly independent of the discretization meshsize h = 1√

m+1
for all tested values

of β, those of the B(αopt)- and B-preconditioned GMRES methods (briefly written
as B(αopt)- and B-GMRES) are, however, increasing distinctly as h decreases from
2−2 to 2−6. This phenomenon is well illustrated by the eigenvalue bounds given in
Remark 2.1, that is, the preconditioned matrix B−1A is very ill-conditioning, as the
real and the imaginary parts of some of its eigenvalues are very close to 0 and ±1,
respectively; see Fig. 6.

Also, Table 3 shows that the speed-ups of B(αopt)- and B-MINRES are always
larger than 1.0. They can even reach 2.04 for B(αopt)-MINRES when h = 2−5 and
β = 10−2, and 18.59 for B-MINRES when h = 2−2 and β = 10−8. The speed-ups
of B(αopt)- and B-GMRES are, however, less than 1.0 for many cases of β espe-
cially when h is very small. This phenomenon indicates that the MINRES method
for solving the symmetric saddle-point linear system (3.8) is more effective than
the GMRES method for solving the nonsymmetric saddle-point linear system (3.5)
when both of them are preconditioned by the additive block diagonal precondition-
ing matrix. Moreover, for most cases, B(αopt) shows better preconditioning property
than B in terms of iteration steps, computing times and speed-ups. But there are some
exceptions for which the preconditioner B leads to much smaller CPU times, e.g.,
for h = 2−2. Because the numerical results with respect to B(αopt) are compara-
ble to those with respect to B, counting the elapsed times for numerically searching
the optimal iteration parameters we could simply take the iteration parameter α to
be 1.0 in implementations of the ABD preconditioning matrix B(α), resulting in a
parameter-free method.
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Fig. 6 Eigenvalue distribution of the preconditioned matrix B−1A
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Comparing the results in Tables 3 and 4 we observe that the approximated ABD
preconditioners B(app)(αopt) and B(app) yield the same number of iteration steps but
smaller computing times than the exact ABD preconditioners B(αopt) and B when
β = 10−6 and 10−8. Moreover, from the speed-ups we see that the MINRES meth-
ods preconditioned with B(app)(αopt) and B(app) outperform the GMRES methods
preconditioned with F (app)(αopt) and F (app) in most cases. Because the numerical
results with respect to B(app)(αopt) are comparable to those with respect to B(app),
counting the elapsed times for numerically searching the optimal iteration parameters
we could simply take the iteration parameter α to be 1.0 in implementations of the
approximated ABD preconditioning matrix B(app)(α), resulting in a parameter-free
method, too.

5 Concluding remarks

We have constructed and analyzed a class of additive block diagonal preconditioning
matrices which can be regarded as a simplified variant of the PMHSS precondi-
tioner, proving that it enjoys similar theoretical properties to PMHSS when used to
precondition the block two-by-two matrix A as well as its symmetric form As .

In general, the block two-by-two matrix A ∈ R
2n×2n is nonsingular and Theorem

2.1 holds true even when the matrix αW + T is symmetric, and is either positive or
negative definite, which may allow the real symmetric matrix W or T to be indefinite.
Indeed, if the matrix αW+T is symmetric negative definite, we may simply multiply
−1 through both sides of the linear system (1.1), obtaining a new block two-by-two
linear system satisfying the requirement that αW+T is a symmetric positive definite
matrix. The eigenvalue bounds for the preconditioned matrices given in Theorem 2.2
are valid, however, only when each of the matrices W and T is either positive or
negative semidefinite and when null(W)∩null(T) = {0}. These observations equally
apply to the special case2 V = W of the PMHSS iteration methods introduced and
discussed in [8, 9], i.e., under these weaker conditions the PMHSS-preconditioned
matrices F(α)−1A are unitarily diagonalizable. For more recent discussions on this
topic, we refer to [21] and the references therein.
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