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A submerged floating moored structure has a great potential in
ocean engineering applications. The nonlinear dynamics of a sub-
merged floating moored structure subjected to vertical excitation
with possible slackness in the mooing system are investigated by
incremental harmonic balance (IHB) method. Heaviside step
function is introduced to describe the nonlinearity in axial stiffness
arising from loss of mooring tension. The dimensionless governing
equation is derived, and three parameters, frequency ratio h,
damping ratio z and dimensionless net buoyancy W, are found to
be independent. Due to the fact that the restoring force term is
function of the unknown displacement and could barely be
expressed in an explicit form of time, a fast Fourier transformation
(FFT) is implemented in IHB method to simplify the Galerkin
average procedure. Both stable and unstable solutions and both
period-1 and bifurcated solutions are obtained by IHB method. The
stability of the periodic solutions is investigated by Floquet theory.
Parameter study is carried out. Results indicate that the system
nonlinearity becomes stronger as dimensionless the net buoyancy
W and damping ratio z decrease. A path to chaotic motions though
a series of period doubling bifurcations is found. Multiple solutions
are observed, and the domains of attraction are investigated by
interpolated cell mapping (ICM) technique.
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1. Introduction

A submerged moored floating structure has great potential in ocean engineering applications, such
as breakwaters [1–3] or submerged floating tunnels (SFT) [4,5], etc. It provides an alternative for the
cases with poor foundation or large water depth that exclude the possibility of fixed bottom-founded
structures, or the cases with a requirement of a clear water surface. With the crest submerged under
water, it not only allows water surface activities but also avoids generating significant reflected wave
and affecting the nearby structures compared to emerging structures. Besides, it is more favorable from
a viewpoint of economics with relative low expenses, and also from a viewpoint of environment
protection with allowance for the free exchange of sea water comparing to fixed structures.

The mooring system provides a restrain to the submerged floating moored structure to keep it in
position by tether tension. Generally a large initial mooring tension is guaranteed to provide an
effective restrain to the structure in service; while on the other hand, the increase in the static initial
mooring tensionwould be costly as it laysmore strict safety requirements on themooring components.
However, despite a large static initial mooring tension, in an actual sea environment the occurrence of
occasional loss of tension is sometimes inevitable when confronting a rough environment conditions
such as severe sea waves or seismic activities. The loss of mooring tension will introduce a strong
nonlinearity in the mechanical property of mooring system, which is the discontinuity in the tether
axial stiffness, as the mooring components are generally slender structures and can barely resist
compression. Due to the remarkable nonlinear property of the mooring system, some nonlinear dy-
namic phenomena of the cable-body system operating in an alternate slack taut state, such as the so-
called ‘snap force’, which is the impact tension load in the tether, are reported in several experimental
and numerical researches.

Generally the numerical simulation of this type of problem is based on time domain due to the
nonlinear nature. Liu [6] used a two dimensional model to compute snap loads in lifting and mooring
lines. Niedzwecki and Thampi [7] proposed a two-part analysis procedure to predict snap loads
behavior of marine cable-body systems. Huang and Vassalos [8] developed a three-dimensional model
based on lumped-mass-and-spring method to predict the dynamics of marine cables operating in
alternating taut-slack conditions. Patel and Park [9,10] presented an extension of the theory of pulse
buckling for the dynamics of TLP tethers at low tension. Vassalos and Huang [11] studied the dynamics
of small-sagged taut-slack marine cables by Galerkin method. Plaut et al. [12] investigated the three-
dimensional dynamics of a moored cylinder used as a breakwaters with considering the snap loading
in the mooring lines. Lu et al. [13] investigated the slack phenomena in tethers of submerged floating
tunnels (SFT) and proposed a procedure for preliminary slack prediction. Vassalos et al. [14] carried out
a series of model experiments to investigate the dynamics of a marine cables with the occurrence of
slacking. Kunisu et al. [15] investigated the dynamics of a submerged floating tunnel in wave tank, and
analyzed the snap force in the mooring tether.

The semi-analytical method- incremental harmonic balance (IHB) method is used to investigate the
nonlinear dynamics of submerged floating moored structures with possible slackness in the mooing
system. IHB method is a powerful approach recently developed for nonlinear analysis with a great
advantage in dealing with strong nonlinearities comparing to the classic approaches. Moreover it is
remarkably effective in computer implementation for obtaining response with desired accuracy over
a wide range of varying parameter with both stable and unstable solutions. By iteration starting from
the solutions obtained from an adjacent parameter value, a new solution will converge fastly, which
indicates that IHB method is an ideal approach to perform parametric study with high efficiency. The
method was originally proposed by Cheung and Lau [16,17]. Cheung et al. [18] then applied the method
to cubic nonlinearity systems, and adopted an incremental arc-length method with a cubic extrap-
olation technique to trace the response curve. Lau and Zhang [19] extended the method to analyze the
nonlinear vibrations of piecewise-linear system, with the idea thenwidely used in the piecewise-linear
system [20,21]. Leung and Chui [22] applied the method to Duffing oscillators.

In present research, the nonlinear dynamics of a submerged floating moored structure subjected to
vertical excitation with the possible slackness in the mooing system is considered. The Heaviside step
function is introduced to describe the nonlinearity in the axial stiffness arising from the loss of mooring
tension. As the restoring force term could hardly be expressed explicitly as the function of time, IHB
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method with an implement of FFT is used. The non-dimensional governing equation and its IHB for-
mulation are derived. The stability of the periodic solutions is investigated by Floquet theory, and the
transition matrix is calculated by the method in Ref. [23]. Parametric study is carried out, and multiple
solutions are found at certain conditions. The domains of attraction are obtained by interpolated cell
mappings (ICM) method [24].
2. Governing equation

As depicted in Fig. 1, a submerged vertical moored floating structure subjected to a vertical sinu-
soidal excitation is considered. The mass of the floating structure ism (including added mass), and the
net buoyancy is w. A space fixed coordinate is built with its origin point o located at the un-stretched
end of the mooring tether, and the ox axis is parallel to the vertical line. The tensile stiffness of the
tether is k0, while when the motion of the floating structure goes large and the mooring tether become
slack, it will reduce to zero. Therefore the Heaviside step function is introduced to describe the
restoring force term. An linearized fluid drag force model are adopted to calculate the fluid drag force
on the submergedmoored floating structure in present research, the motion of the submergedmoored
floating structure can be expressed as:

m€xþ c _xþ HðxÞk0x ¼ wþ f0sin uf t (1)

in which c is the drag coefficient of the fluid force on the submerged moored floating structure; f0 and
uf are the amplitude and circular frequency of the external excitation respectively; the dots over the
variables denote differentiation with respect to t H(x) is the Heaviside step function:

HðxÞ ¼
�
1 x � 0
0 x < 0 :

The system will degenerate into linear system when the motion of the structure is small and H(x)
remains to be constant 1.

By introducing a dimensionless time scale s ¼ uft, natural frequency un ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
, frequency ratio

h ¼ uf =un, and damping ratio z ¼ c=ð2munÞ, the governing equation of the system Eq. (1) is trans-
formed into:
Fig. 1. A submerged vertical moored floating structure.
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h2x00 þ 2zhx0 þ HðxÞx ¼ w
mu2 þ

f0
mu2sin s (2)
n n

in which x0 ¼ dx=ds; x00 ¼ d2x=ds2.
Defining a static displacement x0 ¼ f0=mu2

n ¼ f0=k0, and then introducing the dimensionless
displacement X¼ x/x0 and non-dimensional net buoyancyW¼w/f0, which is the ratio of net buoyancy
and amplitude of external excitation, we obtain:

h2X00 þ 2zhX0 þ GðXÞ ¼ sin s (3)

GðXÞ ¼ HðXÞX �W (4)

The non-dimensional governing equation (3) indicates that for the present system only three pa-
rameters are independent, that is frequency ratio h, damping ratio z and dimensionless net buoyancy
W; while the amplitude of external excitation force f0 does not appear as an independent parameter.
The influence of amplitude of external excitation is reflected by the dimensionless net buoyancyW and
the amplification of dimensionless displacement X.
3. IHB method with FFT

For a nonlinear system in the general form of:

f ð€x; _x; x; tÞ ¼ 0 (5)

by introducing an increment around the exact solution x0:x¼ x0þ Dx, the incremental formation of the
original equation can be obtained as:

f ð€x0 þ D€x; _x0 þ D _x; x0 þ Dx; tÞ ¼ 0 (6)

expanding equation (6) using Taylor series, we get:

f ð€x0; _x0; x0; tÞ þ
vf
v€x

����
€x0

D€xþ vf
v _x

����
_x0
D _xþ vf

vx

����
x0
Dxþ Higher � order terms ¼ 0 (7)

here Rðx0Þ ¼ �f ð€x0; _x0; x0; tÞ is defined as the residual term, which is zero when is the exact solution.
Neglecting the higher order terms, the incremental form of the original equation (6) is then obtained:

vf
v€x

����
€x0

D€xþ vf
v _x

����
_x0
D _xþ vf

vx

����
x0
Dx ¼ Rðx0Þ (8)

it is assumed that the solution x is in the Fourier series form and its increment is Dx:

xðtÞ ¼ a0 þ
XNH
i¼1

ðaicos it þ bisin itÞ (9)

DxðtÞ ¼ Da0 þ
XNH
i¼1

ðDaicos it þ Dbisin itÞ (10)

in which, NH is the number of the harmonic components in the Fourier series, ai, bi, Dai, Dbi are the
corresponding Fourier coefficients of x(t)and d(Dx) respectively.

Substitute the Fourier expression (9) and (10) of x and Dx into the incremental differential equation
(8), it can be transformed into a group of algebraic equations about the incremental coefficients Dai, Dbi
by applying Galerkin average procedure:
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Z 2p

0

�
vf
v€x

����
€x0

D _xþ vf
v _x

����
_x0
D _xþ vf

vx

����
x0
Dx

�
$dðDxÞdt ¼

Z 2p

0
Rðx0Þ$dðDxÞdt (11)

in which d(Dx)is variation of Dx. Expand d(Dx) of equation (11) with its Fourier form as in (10)

PNH
i¼0

" Z2p
0

�
vf
v€x

����
€x0

D€xþ vf
v _x

����
_x0
D _xþ vf

vx

����
x0
Dx

�
cos it$dt$dðDaiÞ þ

Z2p
0

�
vf
v€x

����
€x0

D€xþ vf
v _x

����
_x0
D _xþ vf

vx

����
x0
Dx

�

sin it$dt$dðDbiÞ
3
5 ¼

XNH
i¼0

2
4Z2p

0

Rðx0Þcos it$dt$dðDaiÞ þ
Z2p
0

Rðx0Þsin it$dt$dðDbiÞ
3
5 (12)

Let the coefficients of the corresponding variation terms d(Dai), d(Dbi)of both sides of the equation
equal, a group of algebraic equations can be obtained

½C�fDqg ¼ fRg (13)

where [C] is the Jacobianmatrix, {Dq} is the vector of incremental coefficients and {R}is residual vector.
While in fact, the coefficient functions vf =v€xj€x0 , vf =v _xj _x0vf =vxjx0 , of the incremental differential

equation (8) are sometimes hardly expressed in explicit forms of time. In the present system, the
restoring force term G(X) is the function of displacement X, which is difficult to be expressed as the
function of time explicitly with X unresolved. Therefore, IHB method with an implement of FFT is used
to simplify the Galerkin average procedure, which has been proved to be of great efficiency. The co-
efficient functions are denoted as:

vf
v€x

����
€x0

¼ 4ðtÞ; vf
v _x

����
_x0

¼ uðtÞ; vf
vx

����
x0

¼ kðtÞ;Rðx0ðtÞÞ ¼ rðtÞ (14)

then applying FFT to these functions using {cosit,sinit} as the bases, we get:8>><
>>:

4ðtÞ
uðtÞ
kðtÞ
rðtÞ

9>>=
>>; ¼

8>><
>>:

40
u0
k0
r0

9>>=
>>;þ

XNFFT
i¼1

0
BB@
8>><
>>:

4c
i

uci
kci
rci

9>>=
>>;cos it þ

8>><
>>:

4s
i

usi
ksi
ri

9>>=
>>;sin it

1
CCA (15)

where NFFT � 2NH.
With the coefficient functions in Fourier form, the incremental differential equation can be

expressed as:"
40 þ

PNFFT
i¼1

�
4c
i cos it þ 4s

i sin it
�#

D€xþ
"
u0 þ

PNFFT
i¼1

�
uci cos it þ usi sin it

�#

þD _xþ
"
k0 þ

XNFFT
i¼1

�
kci cos it þ ksi sin it

�#
Dx ¼ r0 þ

XNFFT
i¼1

�
rci cos it þ rsi sin it

�
(16)

Substitute the Fourier form of Dx as in expression (10) and its differentialsD _x, D€x into equation (16)"
40 þ

PNFFT
i¼1

�
4c
i Ci þ 4s

i Si
�#" PNH

j¼1

�� Dajj2Cj � Dbjj2Sj
�#þ

"
u0 þ

PNFFT
i¼1

�
uci Ci þ usi Si

�#
2
4XNH

j¼1

�� DajjSj þ DbjjCj
�35þ

"
k0 þ

XNFFT
i¼1

�
kci Ci þ ksi Si

�#24a0 þXNH
j¼1

�
DajCj þ DbjSj

�35

¼ r0 þ
XNFFT
i¼1

�
rci Ci þ rsi Si

�
(17)
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where Ci ¼ cosit, Si ¼ sinit.

Apply Galerkin average to both sides of equation (17)

Z 2p

0

8<
:
"
40 þ

XNFFT
i¼1

�
4c
i Ci þ 4s

i Si
�#24XNH

j¼1

	
� Dajj

2Cj � Dbjj
2Sj


35þ
"
u0 þ

XNFFT
i¼1

�
uci Ci þ usi Si

�#
2
4XNH

j¼1

�� DajjSj þ DbjjCj
�35þ

"
k0 þ

XNFFT
i¼1

�
kci Ci þ ksi Si

�#24a0 þXNH
j¼1

�
DajCj þ DbjSj

�35
9=
;$dðDxÞdt

¼
Z 2p

0

"
r0 þ

XNFFT
i¼1

�
rci Ci þ rsi Si

�#
$dðDxÞdt

(18)

Expand the variation of d(Dx) with its Fourier form as in expression (10)
Fig. 2. Flow chart of solving procedure of IHB method with FFT.



Table 1
Maximum residual values at different harmonic terms NH (period-1 solution).

h Rmax

NH ¼ 5 NH ¼ 10 NH ¼ 20 NH ¼ 40

0.1 0.00854 0.00796 0.00316 0.00168
0.5 0.06225 0.03374 0.01602 0.00773
1 0.08245 0.0382 0.01977 0.00956
1.5 4.44089E-16 4.44089E-16 5.55112E-16 6.66134E-16
2 3.33067E-16 3.33067E-16 4.44089E-16 4.44089E-16
2.5 3.33067E-16 3.33067E-16 4.44089E-16 4.44089E-16
3 4.44089E-16 4.44089E-16 5.55112E-16 5.55112E-16
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Z 2p

0

8<
:
"
40 þ

XNFFT
i¼1

�
4c
i Ci þ 4s

i Si
�#24XNH

j¼1

	
� Dajj

2Cj � Dbjj
2Sj


35þ
"
u0 þ

XNFFT
i¼1

�
uci Ci þ usi Si

�#
2
4XNH

j¼1

�� DajjSj þ DbjjCj
�35þ

"
k0 þ

XNFFT
i¼1

�
kci Ci þ ksi Si

�#24a0 þXNH
j¼1

�
DajCj þ DbjSj

�35
9=
;$

XNH
k¼0

½dðDakÞCk þ dðDbkÞSk�dt ¼
Z 2p

0

"
r0 þ

XNFFT
i¼1

�
rci Ci þ rsi Si

�#
$
XNH
k¼0

½dðDakÞCk þ dðDbkÞSk�dt

(19)
Fig. 3. Phase plane diagrams obtained by IHBmethod and numerical integration,W¼ 1, z¼ 0.3. a. h¼ 0.3, b. h¼ 0.5, c. h¼ 1, d. h¼ 2.
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The coefficients of corresponding variation terms d(Dak) d(Dbk) on the both sides of the equation
should be equal, so the following equations can be obtained

Z 2p

0

8<
:
"
40 þ

XNFFT
i¼1

�
4c
i Ci þ 4s

i Si
�#24XNH

j¼1

	
� Dajj

2Cj � Dbjj
2Sj


35þ
"
u0 þ

XNFFT
i¼1

�
uci Ci þ usi Si

�#
2
4XNH

j¼1

�� DajjSj þ DbjjCj
�35þ

"
k0 þ

XNFFT
i¼1

�
kci Ci þ ksi Si

�#24a0 þXNH
j¼1

�
DajCj þ DbjSj

�35
9=
;Ckdt

¼
Z 2p

0

"
r0 þ

XNFFT
i¼1

�
rci Ci þ rsi Si

�#
Ck$dtðk ¼ 0;1;2.NHÞ

(20)

Z 2p

0

8<
:
"
40 þ

XNFFT
i¼1

�
4c
i Ci þ 4s

i Si
�#24XNH

j¼1

	
� Dajj

2Cj � Dbjj
2Sj


35þ
"
u0 þ

XNFFT
i¼1

�
uci Ci þ usi Si

�#
2
4XNH

j¼1

�� DajjSj þ DbjjCj
�35þ

"
k0 þ

XNFFT
i¼1

�
kci Ci þ ksi Si

�#24a0 þXNH
j¼1

�
DajCj þ DbjSj

�35
9=
;Skdt

¼
Z 2p

0

"
r0 þ

XNFFT
i¼1

�
rci Ci þ rsi Si

�#
Sk$dtðk ¼ 1;2.;NHÞ

(21)

then the incremental algebraic equations can be derived from (20) and (21):

½CFFT�fDqg ¼ fRFFTg (22)
Fig. 4. Three-dimensional view of frequency-response curves under different dimensionless net buoyancy.
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in which

½CFFT� ¼

2
66664
C00 A0j B0j

CC
i0 AC

ij BCij

CS
i0 AS

ij AS
ij

3
77775i; j ¼ 1;2;.NH (23)

Dq ¼ fDa0;Da1;.;DaNH;Db1;.;DbNHgT (24)

fRFFTg ¼
n
R0;R

C ;RS
o

(25)
Fig. 5. Frequency-response diagram of W ¼ 0.5: (a) complete diagram; (b) local detail diagram of small h.



Fig. 6. Frequency-response diagram of W ¼ 0.25.
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Subscript FFT denotes the Jacobian matrix and the residual vector is derived by using FFT in the
coefficients of the incremental differential equation.

The elements of Jacobian matrix and residual vector are given by:

C00 ¼ 2pk0

A0j ¼ pkCj � pjuSj � pj24C
j j ¼ 1;2;.;NH

B0j ¼ pkSj � pjuCj � pj24S
j j ¼ 1;2;.;NH
Fig. 7. Lyapunov exponents against h, W ¼ 0.25.
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CC
i0 � pkCi i ¼ 1;2;.;NH

AC
ij þ

p

2

n
kCji�jj þ kCiþj � j

h
uSiþj þ sgnðj� iÞuSji�jj

i
� j2

	
4C
iþj þ 4C

ji�jj

o

isj; i; j ¼ 1; 2;.;NH

AC
ii þ

p
2

h
2kC0 þ kC2i � juS2i � j2

	
240 þ 4C

2i


i
i ¼ 1;2;.NH

BCij ¼ p
2

h
kSiþj � sgnði� jÞkSji�jj þ j

	
uCiþj þ uCji�jj



� j2

	
4S
iþj � sgnði� jÞ4S

ji�jj

i

isj; i; j

¼ 1;2;.;NH

BCii ¼ p
2

h
kS2i þ j

	
2u0 þ uC2i



� j24S

2i

i
i ¼ 1;2;.NH
Fig. 8. Typical stable period-1 response- (i) time series, (ii) poincare map and corresponding fixed points, W ¼ 0.25: (a). h ¼ 0.15;
(b). h ¼ 1.9.
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CS
i0 ¼ pkSi i ¼ 1;2;.;NH

AS
ij ¼

p
2

n
kSjiþjj þ sgnði� jÞkSji�jj � j

	
uCji�jj �uCiþj



� j2

	
4S
iþjþ sgnði� jÞ4S

ji�jj

o

isj; i; j ¼ 1;2;.;NH

AS
ii ¼

p
2

h
kS2i � 2ju0 þ juC2i � j24S

2i

i
i ¼ 1; 2;.NH

BSij ¼
p
2

n
kCji�jj � kCiþj þ j

	
uSiþj þ sgnði� jÞuSji�jj



� j2

	
4C
ji�jj � 4C

iþj


o
isj; i; j ¼ 1;2;.;NH

BSii ¼
p
2

h
2k0 � kC2i þ juS2i � j2

	
240 � 4C

2i


i
i ¼ 1;2;.NH

R0 ¼ 2pr0
Fig. 9. Typical stable period-2 response- (i) time series, (ii) poincare map and corresponding fixed points, W ¼ 0.25: (a). h ¼ 0.11;
(b). h ¼ 0.55.



W. Lu et al. / Marine Structures 31 (2013) 63–81 75
RCi ¼ prCi i ¼ 1;2;.;NH

RSi ¼ prSi i ¼ 1;2;.;NH

The solution at given parameter values can be achieved by an iterative process. An initial value q0 is
first given (usually from a corresponding linear solution), then with an FFT the transformed incre-
mental differential equation (16) and corresponding incremental algebraic equation (22) can be
derived, from which the increment and the renewed solution will be obtained as:

½CFFT�ifDqgi ¼ fRFFTgi (26)

fqgiþ1 ¼ fqgi þ fDqgi (27)

This process will be repeated until the maximum of the relative increment is sufficiently small,
which means the solution is converged:

max
�jDqij
kqk

�
< ε i ¼ 1;2;.;NH (28)

where Dqi is the element of Dq at current step, kqk is the module of q, ε is the permissible error.
Fig. 10. Typical stable period-4 response- (i) time series, (ii) poincare map and corresponding fixed points,W ¼ 0.25: (a). h¼ 0.3; (b).
h ¼ 0.65.



Fig. 11. Typical stable period-8 response- (i) time series, (ii) poincare map and corresponding fixed points, W ¼ 0.25: (a). h ¼ 0.307;
(b). h ¼ 0.72.
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A flow chart of the present solving procedure of IHB method with FFT is given in Fig. 2. As the
previous deriving course in this section and Fig. 2 shows, intrinsically the basic idea of IHBmethod is to
expand a differential equation and transform it to nonlinear algebraic equations with coefficients of
Fourier series as the unknown variables by harmonic balance (Galerkin average procedure). Since
solving the nonlinear algebraic equations directly is generally difficult, so that IHB method introduces
an incremental step, and solve the nonlinear equations by Newton–Raphson iteration.
Fig. 12. Typical stable period-16 response- (i) time series, (ii) poincare map and corresponding fixed points, W ¼ 0.25,h ¼ 0.775.
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As long as the solution at a given parameter is obtained, the solution at a new nearby system
parameter value can be easily obtainedwith this solution as the new initial value, whichmeans that the
parameter analysis can be easily accomplished. Both stable and unstable solutions, and both funda-
mental and subharmonic resonant solutions can be directly obtained from IHBmethod. The stability of
the periodic solutions can be investigated by Floquet theory. The transition matrix of the perturbed
governing equation can be evaluated by the method summarized in Friedmann’s paper [23]. To get the
L-th order subharmonic solutions, we assume the solution and its increment of the form of:

xðtÞ ¼ a0 þ
XNH
i¼1

�
aicos

it
L
þ bisin

it
L

�
(29)

DxðtÞ ¼ a0 þ
XNH
i¼1

�
Daicos

it
L
þ Dbisin

it
L

�
(30)

4. Results and discussions

4.1. Accuracy of IHB method with FFT and comparison with numerical integration results

Table 1 gives the maximum values of the residual term R in a period. It indicates that generally the
maximum residual value can be reduced by adding more harmonic terms in the assumed solution
Fig. 13. Chaotic response at h ¼ 1.2 (simulation time ¼ 2000p): (i) time series; (ii) poincare map and corresponding fixed points; (iii)
fourier spectrum.
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series. While for period-1 solution, merely 5 harmonic terms can achieve a desirable accuracy.
Fig. 3(a)–(d) compare the phase planes of the period-1 solutions obtained by IHB method with the
fourth order Runge-Kutta method, and the results from the two approaches coincide well.
4.2. Effect of dimensionless net buoyancy W, bifurcations and a path to chaotic motions

The frequency-response curves are traced by IHB method with iterative procedure described in
Section 3 at small damping ratio (z ¼ 0.1). The frequency-response curves under different dimen-
sionless net buoyancy W are summarized in Fig. 4. The figure shows plots of the average response
amplitude Xave(¼(Xmax � Xmin)/2) against the frequency ratio h (varying from 0.1 to 3) and the
dimensionless net buoyancy W( varying from 0.25 to 5). It can be seen that the peak value of average
response Xave increases dramatically with the decrease of dimensionless net buoyancy, and the
response amplitude at small frequency ratio h becomes large. It is worth noticing that whenW > 5 the
Fig. 14. Response diagram: (a) W ¼ 0.5; (b) W ¼ 0.25.



Fig. 15. Two coexistent period-1 solution, z ¼ 0.1, W ¼ 2.0, h ¼ 0.7: (i) time series, (ii) domains of attraction (400 � 400 cells).

W. Lu et al. / Marine Structures 31 (2013) 63–81 79
minimum dimensionless displacement Xmin remains positive, which indicates that the nonlinear
system (Eq. (3)) will degenerate to a classic linear system. Themain resonance peak moves towards the
left side of h ¼ 1 as W decreases from 5. When W � 1, Period-1 response is stable.

Fig. 5(a), (b) gives the frequency-response curves whenW ¼ 0.5, inwhich Fig. 4(b) is the local detail
of the left side in Fig. 4 (a) (h ¼ 0.1–0.45). Taking frequency ratio h as bifurcation parameter, Period-1
solution becomes unstable at the marked points of A1 (h ¼ 0.137) and A2 (h ¼ 0.154), C1 (h ¼ 0.49) and
C2 (h ¼ 1.489) in Fig. 5 (a). Between A1-A2 and C1-C2, the Floquet multiplier of the transition matrix
moves out of the unit circle along the �1 direction, which means at these points period-1 solutions
bifurcate to period-2 solution through period doubling bifurcation. Similarly the period-2 solution
further becomes unstable at B1 (h ¼ 0.148), B2 (h ¼ 0.153) and D1 (h ¼ 0.929), D2 (h ¼ 0.966); and
bifurcates to period-4 solution between B1 and B2, D1 and D2.

As the dimensionless net buoyancy W decreases to 0.25, it is shown in Fig. 6 that between E1
(h ¼ 0.105) and E2 (h ¼ 0.12), F1 (h ¼ 0.248) and F2 (h¼ 1.869) the period-1 solutions become unstable
and bifurcate to period-2 solutions. Eventually, between G1 (h ¼ 0.311) and G2 (h ¼ 0.393), H1
(h ¼ 0.779) and H2 (z ¼ 0.1), the system will go to chaotic through a series of period doubling bi-
furcations. The Lyapunov exponents are calculated byWolf’s method [25] as shown in Fig. 7. The figure
shows that between G1 and G2, H1 and H2, the maximum Lyapunov exponents are positive, which
confirms the conclusion that the system goes to chaotic. Typical stable response of priod-1 and
bifurcated solutions obtained by IHBmethodwith FFTare given in Figs. 8–12. The chaotic responses are
Fig. 16. Two coexistent period-1 solution, z ¼ 0.1, W ¼ 1.0, h ¼ 0.364: (i) time series, (ii) domains of attraction (400 � 400 cells).
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obtained by the fourth order Runge-Kutta method. Fig. 13 (a)–(c) show the chaotic motion time series,
Poincare map with corresponding fixed points and the Fourier spectrum respectively at h ¼ 1.2.

4.3. Effect of damping ratio z, existence of multiple solutions

The frequency-response curves are also traced fordifferent damping ratio z. Fig.14 (a) and (b) compare
the response curves of different damping ratio. The diagrams show that the response amplitudes
decrease greatly with the increasing of z. Besides, stability analysis indicates that when z� 0.3, period-1
solution is always stable despite of h and W. Multiple solutions are observed at small damping ratio
(z ¼ 0.1). Two coexistent stable period-1 solutions obtained by IHB method with different initial values
are shown in Fig. 15 (a) and Fig. 16 (a) respectively. The domains of attraction of corresponding solutions
are analyzed by Interpolated Cell Mapping (ICM) technique [24]. The diagrams of domains of attraction
are shown in Fig.15 (b) and Fig.16 (b), inwhich the black dots correspond to the initial conditions ending
in the period one attractor with larger amplitude that plotted in solid lines in Fig. 15 (a) and (b).

5. Concluding remarks

In this paper, the nonlinear dynamics of a submerged floating moored structure subjected to ver-
tical excitation with possible slackness in the mooing system are studied by incremental harmonic
balance method with FFT. By deriving the dimensionless governing equation, it is found that only three
independent parameters, frequency ratio h, damping ratio z and dimensionless net buoyancyW, exists.
Due to the fact that the restoring force term is a function of the unknown displacement and could
barely be expressed in an explicit form of time, IHBmethodwith an implement of FFT is used before the
Galerkin average procedure, which is proved to be of high efficiency and accuracy. The results show
that the dimensionless net buoyancy W, that is the ratio of net buoyancy to the excitation amplitude,
affects the system dynamic characteristics greatly. The response amplitude increases dramatically asW
decreases; when W decreased as small as 0.25, the systemwill go to chaotic through a series of period
doubling bifurcations. The system nonlinearity becomes stronger as damping ratio z decreases; mul-
tiple solutions are observed when z ¼ 0.1. These results provide a profound understanding for the
nonlinear course of this type of structures, and can thus serve as some important references for the
structure design consideration.
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