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An inner seepage face phenomenon is given and a numerical simulation procedure has been developed. It may appear at the 
interface of two materials when an unconfined seepage flows from a porous media to a coarser porous media with a higher 
permeability. Inaccuracy and divergent problems may arise both in a saturated-only and in a variably saturated analysis while 
an inner seepage face is not simulated with a special procedure. The position of the seepage face is determined during the non-
linear iteration process and the flux of the inner seepage face nodes is transferred to the downstream side nodes. Validity and 
efficiency of the procedure are illustrated by the simulation of two dimensional steady state seepage examples of heterogene-
ous zoned dams which is usually used to validate algorithms. An analysis of a three-dimensional earth core rockfill dam is also 
presented here. The procedure can also be applied to general transient seepage problems. 
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1  Introduction 

Numerical methods for the analysis of unconfined seepage 
problems have been a focus of research interest for both 
engineers and scientists because of the strong non-linearity 
and importance in underground water resources, hydraulic 
and hydropower engineering, and other geotechnical engi-
neering since 1960s. The problem with a free surface was 
first solved numerically by Taylor and Brown [1] and Finn 
[2] with the adaptive mesh method which involved itera-
tively modifying a mesh representing only the saturated soil 
domain until it conformed to the geometry of the saturated 
flow region. The adaptive mesh methods often lead to di-
vergent calculations [3,4], and difficulties are usually en-
countered in problems with several types of materials near 

the free surface [5]. To avoid these difficulties, approaches 
which only change the meshes intersecting with the free 
surface while keeping the other meshes unchanged [6–8] 
were presented. Mesh-fixed approaches were also carried 
out, e.g., the residual flow scheme presented by Desai [9], a 
model in which an element intersecting with a free surface 
is treated to be an element with composite materials pro-
posed by Bathe [10]. These approaches which focus the 
calculation on the saturated zone require the locating of the 
free surface by an iterative process. Another group of ap-
proaches uses unsaturated theory and the calculation do-
main involves both the saturated and unsaturated zones 
[11–15]. The conductivity of the material in an unsaturated 
zone varies with the degree of the saturation or the minus 
pore pressure. The problem of the location of the free sur-
face iteration in a saturated-only flow simulation is trans-
formed to the iteration of the conductivity of the materials 
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in the field. Durative efforts have been made to improve the 
convergence, iterative efficiency and accuracy of those ap-
proaches, particularly for problems in the heterogeneous 
field [16–21]. Convergence is often difficult to obtain while 
the free surface crosses the interface of materials with sub-
stantially different hydraulic conductivities [22]. An exam-
ple to simulate the free surface of a rectangular dam with 
two materials (as shown in Figure 1(a)) is commonly used 
to verify algorithms [16–21], however, the locations of the 
free surface near the interface of the materials among these 
algorithms are seemingly different. The largest distance of 
the free surfaces among these algorithms along the interface 
is up to about 40% of the water head difference between the 
upstream and downstream of the model. However, the sim-
ulation results of unconfined homogeneous fields are usual-
ly identical and agree with experiments, for example, the 
position of the free surface of a homogeneous rectangular 
dam is validated both in similar experimental [23] and many 
similar numerical simulations [5,11,23], as shown in Figure 
1(b). An investigation to look inside the seepage phenome-
non of unconfined heterogeneous seepage field is made, an 
inner seepage face is defined and a procedure which can 
improve both the accuracy and iteration efficiency of the 
simulation result is provided in this report. 

2  Investigation of the seepage phenomenon in a 
heterogeneous field 

As noted out by Freeze [11], the zero pressure curve is usu-
ally not a streamline in a heterogeneous earth dam, a large

proportion of the stream tubes may take unsaturated flow 
routes for some part of their traverse. Also, a saturated-only 
analysis which takes the zero pressure curve as a zero flux 
boundary may cause the determined free surface to be quite 
different from the actual situation. As shown in Figure 1, the 
heterogeneous dam in Figure 1(a) is composed with two 
zones. Zone 1 is the same with the dam in Figure 1(b) in 
geometry and material. Zone 2 is the same in geometry but 
is ten times the material conductivity as Zone 1. The water 
head in the rectangular area of ABDC in Figure 1(a) is not 
less than that of in Figure 1(b) because Zone 2 blocks the 
water flow thus raising the water head in the upstream rec-
tangular area. Thus the free surface AE in Figure 1(a) is not 
lower than that of in Figure 1(b). This can also be obtained 
intuitively from the comparison of the similar electrical 
field in Figures 1(a) and (b) under the similar electric poten-
tial boundary. The simulated free surface position in Figure 
1(a) which is below curve AE is then not considered accu-
rate. It is obvious that the flux through CD is not sufficient 
to maintain a free surface in the right area as high as point E, 
becasue the conductivity in the right area is greater than that 
in the left area. Thus there a sharp fall of the free surface in 
Zone 2 next to the interface EF is seen and the simulated 
free surface with a higher level in the left part of Zone 2 
will correspondingly be not accurate. As EF in Figure 1(b) 
is a seepage face on which the water pressure equals to the 
ambient air pressure which is usually set to zero, the water 
pressure at EF in Figure 1(a) is not less than the ambient air 
pressure. Thus, the left area of EF in Figure 1(a) is saturated. 
The top part of the right side of EF is above the free surface. 
If point O is the free surface position in Zone 2, line EO is  

 

 

Figure 1  (Color online) Seepage in (a) a heterogeneous dam and (b) a homogeneous rectangular dam. 
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approximately the boundary between saturated and unsatu-
rated zones. The flux flows through line EO can only flow 
down along the interface within a thin layer as ordinary 
seepage face in the boundary of the field. For general slope 
interface situation, there is only a thin layer of saturated 
soils along EO in the right side of the line in the condition 
of a vertical or positive slope interface; or there is no satu-
rated soils beneath line EO in the situation of a negative 
slope interface, because the water flows from the left side 
either drops down in a discontinuous way or changes to an 
unsaturated flow in the downside of the line. The seepage 
character at line EO is similar to a seepage face at the flow 
boundary. Here EO is a seepage face inside the flow region 
and is termed an inner seepage face. Special consideration 
to deal with a seepage face condition is usually necessary, 
thus giving difficulty in accuracy and convergence in a het-
erogeneous field without it.  

3  Theory of an interface treatment in an un-
confined heterogeneous seepage field 

An boundary of a domain where underground water flow 
out with the zero water pressure condition (equal to the en-
vironmental air pressure which is usually set to zero) is 
named as a seepage face. The mathematical expression is 

 0,  0,  nq  (1) 

where  is the pressure head experessed as the heigh of 
hydrostatic water, qn is the Darcy’s flux of a face. 

Because the seepage feature at the left side of Line EO in 
Figure 2 meets the condition of eq. (1), it can be named an 
inner seepage face which is inside the domain. An inner 
seepage face is also a boundary between saturated and 
un-saturated areas like a free surface, with an essential fea-
ture difference that there is no flux flow out of a free surface 
in a saturated-only simulation, however there is flux comes 
out of an inner seepage face and passed to the next zone. 
The mathematical expression of a free surface is given as: 

 0,  0.  nq  (2) 

Experimental results show that there is no liquid flow from 
a porous material with a higher saturation to a coarser mate-
rial with a larger saturated permeability in an unsaturated 
area [24]. This principle is widely accepted and has been 
applied in the design of nuclear waste dumping engineering 
for decades. Thus, there is no water flows through line CE 
in Figure 2 but the unsaturated pressure from the left side to 
the right side alters sharply at a point on line CE. 

An inner seepage face may appear while unconfined wa-
ter flows from one porous media to another with a higher 
permeability. Both in a saturated-only analysis and in a var-
iably saturated analysis, each node in the seepage face needs 
two numbers, one for the left area and another for the right 

area, because the pore pressure at the left side is zero and it 
is below zero at the right side. The elements located at the 
two sides of a seepage face are separated in this way and the 
flux flows out of the left side is equal to the flux infiltrates 
into the right side. Although the inner seepage face EO in 
Figure 2 is located at the interface line CD, the range is un-
known a priori, changing even with time in transient flow 
problems, and needing to be determined in the course of 
iteration. The elements along the material interface which 
may be within an inner seepage face or above it need to be 
separated by this way. Because of the difficulty to put two 
numbers to a node and separate the elements along an inter-
face by this way using a mesh tool, a layer of elements 
along the interface inside the porous media with the larger 
conductivity, elements in the rectangle CDD’C’ as shown in 
Figure 2, is used as interface elements to separate the two 
areas. The range and flux of an inner seepage face need to 
be determined and the flux needs to be transmitted to the 
right side of the face.  

4  Procedure for unconfined flow in a heteroge-
neous field with an inner seepage face 

Based on the variably saturated seepage method, the proce-
dure for unconfined flow in a heterogeneous field is given 
as follows. 

 

Figure 2  (Color online) Schematic map of interface element and inner 
seepage face.  
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4.1  Finite element algorithm for variably saturated 
seepage method  

Water flowing through porous media with a variably satu-
rated seepage method is described by Darcy’s equation 
written in the following form: 

 r , r ,( ) ( ) ( ) .       i ij j ij jq k K h k K z  (3) 

According to the mass-conservative principle and eq. (3), 
Richards’ equation (1931) which governs the variably satu-
rated flow in a porous media can be stated as: 

 r , ,
( ) [ ( ) ( ) ] .   

    
 ij j ik K z Q
t

 (4) 

In eqs. (3) and (4), q is the Darcy flux vector, r ( )k  is the 

relative hydraulic conductivity, K is the tensor of permea-
bility for saturated media, h=+z is the hydraulic head,  is 
the pressure head in dimension of height, z is the elevation 
above a reference datum,  () is the moisture content and 
Q is the source/sink term. Subscripts , 1, , i j D  are spa-

tial indices of the Cartesian coordinates, D denotes the 
number of spatial dimension (2 or 3) and the summation 
convention is used for repeated indices. 

van Genuchten (1980) [25] equation and Mualem (1976) 
[26] unsaturated relative permeability function are usually 
used to describe the relationship of  () and kr() with . 

The finite element algorithm for eq. (4) given by Wu [15] 
is: 

 1[ ( ) ( )] ( ) ( ) ( ) ,         n n
IJ J J I IJ JK O O F K z  (5) 
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In eqs. (7) and (8):  
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In these finite element equations, l is the node number of 
an element, ij is the Kronecker delta. N is the nodal basis 
shape function of an element and I or J is the serial number 
of a node in the element, n  is the iterative step of the time 
t, m is the iterative step for solving the seepage field at the 
time tn. 

4.2  Procedure for Seepage face iteration 

A seepage face is a boundary of the saturated zone with 
water flow out of the saturated side and the pressure head  
equals to zero as mathematically expressed in eq. (1). Alt-
hough the pressure head  is known to be zero, the position 
of a seepage face is unknown a priori, it being a nonlinear 
boundary condition. An adjustment procedure needs to be 
used during the iterative solution so that zero pressure is 
kept inside the seepage face and negative pressures are 
maintained outside the seepage face, the flux flowing out of 
the face [12]. During the iteration, the nodes at the boundary 
(suspended to be a seepage face) with a positive pressure 
should be altered as Dirichlet nodes with a zero pressure 
value, the prescribed seepage face nodes with a negative 
flux need to be identified and treated as nodes outside the 
seepage face in the next iterative solution of the finite ele-
ment equations [15,27]. The flux of a node can be evaluated 
by 

 ( ) ,   I IJ JQ K z  (12) 

where QI is the flux at node I, z is the elevation above a ref-
erence datum, KIJ is the seepage coefficient tensor assem-
blage of all the elements [15] shown in eq. (6). 

4.3  Procedure for interface elements  

Special treatment of the interface elements is needed in the 
numerical iteration process. All interface elements in the 
area CDD’C’ as shown in Figure 2 are treated as ordinary 
elements as other elements in the field in the first iteration 
step. In the following steps the seepage feature of an inter-
face element can be identified by the pressure values of its 
nodes. An interface element in which more than a half 
nodes with a water pressure no less than zero is treated as an 
ordinary element which is below or crossing the free surface. 
These elements need no special treatment. The other ele-
ments are on an inner seepage face or in an unsaturated area. 
These elements do not participate the seepage coefficient 
tensor assemblage as expressed in eq. (6) at the next itera-
tion step, thus separating the saturated and unsaturated area 
at the interface in the next iterative solution of the finite 
element equations expressed in eq. (5). Nodes on the inner 
seepage face can be determined and its node flux can be 
obtained according to the procedure mentioned above. As 
shown in Figure 2, CE is a zero flux boundary, hence node 
with a negative pressure needs no treatment for no water 
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passes it to the downstream area. The EO is an inner seep-
age face boundary for Zone 1 and the flux boundary for 
Zone 2. The flux of a node on the inner seepage face needs 
to be added to the downstream area, e.g., the flux of node Mj 
adds to the opposite node jM   therefore the mass conser-

vation law is abided in eq. (5). The flux which flows 
through the boundary EO is so small that the flow situation 
from the left side to the right side of the line is similar to the 
infiltration of dry soil. The relative conductivity at a Gauss-
ian integral point in the element with a small infiltration 
flux in the two consecutive iteration step changes suddenly 
during the iteration and the ratio of the conductivity be-
tween neighboring Gaussian points at the element may be 
up to several orders of magnitude. This may cause poor 
iterative efficiency and serious divergent problems. To 
avoid this situation the total flux flow out of the seepage 
face EO can add to a line k kM M   which is proximal to the 

free surface at the downstream side. 
All the undetermined boundary conditions including an 

inner seepage face condition are determined according to 
the pore water pressure obtained by the last iteration step in 
the course of the iteration. The procedure to deal with an 
inner seepage face problem is as follow: (1) An array should 
be set at first to storage the node numbers of all nodes lo-
cated at the interface and their attribute values, 1 for nodes 
below the seepage face which has a positive water pressure, 
0 for nodes on the seepage face and -1 for nodes above the 
seepage face which has a negative pressure. (2) During the 
iteration, the fluxes of nodes on the seepage face need to be 
calculated according to eq. (12), the attribute values of those 
nodes which has a negative flux should be changed from 0 
to 1 as a non free surface node. (3) The attribute value of 
nodes with a positive pressure and 1 value need to be 
changed to 1 as a free surface node. (4) An interface ele-
ment which more than a half of the total element nodes are 
non negative pore pressure nodes are marked as a normal 
element, non normal elements do not participate the seepage 
coefficient tensor assemblage at the next iteration step. (5) 
Node on the interface with 0 attribute value are treated as 
Dirichlet boundary node with 0 pore pressure and the flux 
of the node is added to downstream nodes as described in 
the previous paragraph. 

5  Procedure validation and simulation results 
comparison with the former analysis 

The performance of the procedure is illustrated by the sim-
ulation of three steady seepage examples. The first is the 
rectangular zoned dam mentioned above, the second a trap-
ezoidal zoned dam, and the third a three dimensional earth 
core rockfill dam. The results of the analysis are also com-
pared with the former methods in the first and second ex-
amples. The procedure can be applied to transient seepage 

problems for its generality.  

5.1  Example 1: steady seepage field of the rectangular 
zoned dam 

As shown in Figure 2, 4 nodes square elements with a 
length of 0.25 m are used to mesh the domain. It is the same 
mesh used by Borja et al. [17] and Bardet et al. [18]. The 
relative permeability of the unsaturated media in Zones 1 
and 2 are given in Figure 3. Figure 4(a) shows that the 
pressure head below the zero pressure line is continuous 
with a positive pressure, discontinuous at the upper part of 
the interface of the zones. The position of the zero pressure 
line differs from that determined in the classic analysis 

[16–21] as shown in Figure 4(b), and the conflict of the po-
sition of zero pressure line with the principle described in 
section 4 together with Figure 1(b) in the former analysis 
eliminates. Figure 5 shows that the largest pressure head 
difference of nodes between two consecutive iteration steps 
(iterative error) reduces rapidly in the simulation process, 
indicating a good iteration efficiency of the procedure. If the 
inner seepage face procedure is not adopted, the iteration is 
divergent.  

If the inner seepage procedure is not adopted by chang-
ing the interface elements to ordinary elements, the iterative 
error with the iterative number and the zero pressure curves 
in the field calculated in three consecutive iterative steps are 
shown in Figures 6 and 7 respectively. It shows that the 
iterative error does not reduce with the iterative number and 
the convergence is not obtained. 

The zero water pressure lines simulated by the method 
with or without an inner seepage face procedure in the case 
of coarse mesh are compared in Figure 8. The result simu-
lated with the procedure is coincided with that of in the case 
of fine mesh as shown in Figure 4(a). Although the simu-
lated result without the procedure is obtained without con-
vergent problem in this coarse mesh case (it is not conver-
gence in the above fine mesh case), the zero pressure line  

 

Figure 3  Relative permeability vs. negative pore pressure head (in height 
of the hydrostatic) of the media in Zones 1 and 2. 
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Figure 4  (Color online) Pressure head contour or zero pressure line in a heterogeneous dam.

 

Figure 5  Largest pressure head error between two consecutive iteration 
steps vs. iterative number. 

simulated is obviously not reasonable. Many similar results 
like the dotted zero pressure line in Figure 8 which does not 
share a part with the interface of the materials can be found 
in other reports [16–21].  

5.2  Example 2: steady seepage field of a trapezoidal 
zoned dam 

Figure 9 shows the zero curve results of a trapezoidal zoned 
dam. The relative permeability of the unsaturated soil in 
Zones 1 and 2 is the same with that in Example 1 as given 

in Figure 3. The zero curves are coincident with that in the 
saturated-only analysis [21] while the permeability ratio 
k2/k1 equals 1.0, whereas it differs in the cases of k2/k1 is 
larger than 1.0. The result obtained with an inner seepage 
procedure is apparently more reasonable than that in the 
saturated-only analysis [21] for the zero pressure curve is 
not a streamline in the interface. Reasonable simulation to 
the inner seepage face is important to the seepage simula-
tion, otherwise not only is the water table position not rea-
sonable, but more importantly, the seepage gradient at the 
interface of materials which is used to distinguish the inter-
nal soil erosion is incorrect.  
 

 

Figure 6  Iterative errors vs. iterative number in the classic analysis.  
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5.3  Example 3: A three dimensional earth core rockfill 
dam 

Shuang-Jiang-Kou hydropower station is located in Sichuan  

 

Figure 7  Zero pressure curves in three consecutive iterative steps in 
analysis without inner seepage procedure.  

 
Figure 8  Zero pressure lines by elements with a length 1.25 m and inner 
seepage face not adopted. 

 

Figure 9  Zero pressure line of the heterogeneous trapezoidal zoned dam. 

Province, China, on the upstream of the Dadu River. The 
power generation workshop is in the underground of the left 
side bank and the water retaining structure of the reservoir 
is an earth core rockfill dam with a height of 314 m. A sim-
plified seepage model of the dam is shown in Figure 10, a 
by-pass seepage elements on the core base is used to simu-
late the by-pass flux through the bed rock separated by a 
concrete layer around the core with the same flux going to 
the downstream riverbed calculated by a large scale model 
which is 4 km2 in a horizontal plane. The permeability of 
materials is shown in Table 1, in which the permeability of 
the by-pass elements is derived from the flux through the 
base rock. The relative permeability in unsaturated zone 
involved in this model is given in Figure 11. The pressure 
contours of the cross sections of the centre valley and of the 
downstream face of the earth core are shown in Figures 12 
and 13, respectively. An inner seepage face appears and 
occupies a large range of the downstream interface between 
the core and the filter layer. It can be seen that the inner 
seepage face procedure is available in three dimensional 
simulations. Although the ratio of the permeability between 
the filter and the transition layer and that of between the 
transition layer and the rockfill layer are also large than 1.0, 
there is no seepage face appear at their interfaces. Therefore 
an inner seepage face does not always appear while water 
flows from a porous material to a coarser porous material.  

6  Conclusion 

An inner seepage face may appear at materials interface in 
an unconfined heterogeneous seepage field where saturated 
water flow out of a porous media and goes to a coarser po-
rous media with a higher saturated permeability. A proce-
dure to deal with an inner seepage face is presented. Inter-
face elements and seepage face procedure are used to han-
dle the materials interface. If a special procedure is not 
adopted to deal with the inner seepage face in this situation, 
divergent problems will arise usually in a fine mesh, or the 
simulated results will be inaccurate in a course mesh both in 
a saturated-only analysis and in a variably saturated seepage 
analysis. Good iterative efficiency and more reasonable 
results simulated in the 2-D zoned dams are obtained by the 
procedure compared with simulations in other reports. The  
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Table 1  Permeability of materials in the earth core rockfill dam 

Material Core Filter layer Transition layer Rockfill Covering layer By-pass seepage elements Concrete 

Permeability (m/s) 7.0×108 1.8×105 8.0×104 1.0×102 1.0×104 1.1×104 1.0×1011 

 
 

 

Figure 10  (Color online) Meshes of the earth core rockfill dam. 

 
 
 
 
 
 
 

 

Figure 12  (Color online) Pressure contour in the cross section of the 
centre valley. 

 

Figure 11  Relationship between relative permeability and negative pore 
pressure head. 

 

 

 

Figure 13  (Color online) Pressure contour in the downstream face of the 
earth core. 

 
simulation of the 3-D dam example shows the effectiveness 
of the procedure. 
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