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A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is
performed and the results obtained are used to study the turbulent flow field and its generated noise. In the present simulation,
the numerical techniques of absorbing buffer zones, artificial convection velocity and spatial filtering are used to achieve non-
reflecting boundary conditions. The self-similarity is used to validate the present numerical simulations. The large-scale coherent
structures are plotted together with the acoustic waves, which demonstrates the directivity of acoustic waves. The Lighthill’s source
and space-time correlations are further investigated. The main contributions to mixing noise are identified in terms of large-scale
coherent structures, Lighthill’s source and space-time correlations.
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1 Introduction

A mixing layer is the turbulent flow that forms between two
uniform and parallel streams of different velocities. It is the
simplest model for initial shear layer regions of jets and the
flows past a splitter in wind tunnel with many engineering ap-
plications [1]. Mixing layers are often used to study turbulent
mixing and turbulence-generated noise, since the free shear
effects could be fully displayed without any other complexity.
Mixing layers are characterized by their self-similar states
and large-scale coherent structures. The instability wave the-
ory of sound generation is closely associated with the evo-
lution of coherent structures in turbulent flows: small distur-
bances are amplified into large-scale coherent structures via
the instability mechanism of shear layers and become large-
scale structures that lose their coherence to generate acoustic
waves.

*Corresponding author (email: hgw@lnm.imech.ac.cn)

Lighthill [2,3] proposes an acoustic analog to relate the
far-field noise with the flow fields. In the Lighthill acoustic
analogy, the Lighthill stress tensor is directly calculated from
the flow fields and plays a role of sound sources. Therefore,
the Lighthill stress tensors are conventionally used to study
sound sources. Lighthill acoustic analogy implies that the
sound power spectra are dependent on the space-time corre-
lation of velocity fluctuations. This suggests that space-time
correlations can be used to identify the contributions of flow
structures to far-field noise. Different models were developed
for space-time correlations [4–10]. Fleury et al. [11] experi-
mentally measured the space-time correlations in jets using
dual particle image velocimetry(dual PIV). Cavalieri et al.
[12] numerically compared the noise-controlled mixing lay-
ers with uncontrolled ones for noise reduction. Comparisons
of direct numerical simulation with large eddy simulation of
the mixing layer were also performed [13]. Freund et al. [14–
17] investigated compressibility effects in a turbulent annular
mixing layer and noise radiated by turbulent jets systemat-



1158 Li D, et al. Sci China-Phys Mech Astron June (2013) Vol. 56 No. 6

ically. Direct numerical simulations of noise generated by
a mixing layer with shock-cell structures were performed to
investigate noise generated by the interaction between shock
wave and vortex structures [18,19].

In this paper, we use the direct numerical simulation
(DNS) method to study the noise generated by the mix-
ing layer and the related large-scale coherent structures,
Lighthill’s source and space-time correlations. In the second
section, we will describe the numerical method. In the third
section, we will present our numerical results and the final
section is devoted to the summary.

2 Numerical method

2.1 Governing equations

The fluid is assumed to be a perfect gas with constant spe-
cific heat. In this case, the three-dimensional compress-
ible Navier-Stokes equations can be written in the non-
dimensional form of

∂U
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+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
= H, (1)

where the capital vectors U, E, F,G and H represent
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The non-dimensional variables are x = x∗/δ0∗
ω , u =

u∗/a∗∞, t = t∗a∗∞/δ0∗
ω , ρ = ρ

∗/ρ∗∞, p = p∗/(ρ∗∞a∗2∞ ), T =
[1/(γ − 1)]T ∗/T ∗∞, μ = μ∗/μ∗∞. The superscript ‘*’ denotes
dimensional variables and the subscript ‘∞’ denotes the vari-
ables associated with free-stream. The Reynolds number
based on sound speed is Rea = (ρ∗∞δ0∗

ω a∗∞)/μ∗∞. δ0∗
ω is the di-

mensional vorticity thickness of the laminar shear layer at the
inlet. The specific heat ratio γ = c∗p/c∗v = 1.4 is constant and
the specific inner energy e∗ = c∗vT ∗ is non-dimensionalized
as e = T/γ taking note of the definition of non-dimensional
temperature. The specific total energy is defined as the sum
of specific inner energy and kinetic energy et = T/γ+ uiui/2.
Thus, the non-dimensional state equation of ideal gas is given
below
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γ − 1
γ
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(
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2
ρuiui

)

. (3)

The non-dimensional viscosity obeys a power law in the form

μ = (T ∗/T ∗∞)n

= [(γ − 1)T ]n. (4)

Here the exponent n = 0.666. The viscous stress tensor is
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with the ratio of bulk viscosity to the dynamic viscosity be-
ing μB = 0.6. The Fourier law of heat conduction q∗i =−k∗(∂T ∗)/(∂x∗i ) is used to express the heat flux vector:

qi = − k∗
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where the Prandtl number is defined as Pr = (c∗pμ∗)/k∗ = 0.7
with k∗ being the dimensional coefficient of thermal conduc-
tivity. Now the eqs. (1), (3) and (6) are closed for the hydro-
dynamical and thermodynamical variables.

2.2 Spatial and temporal discretization

An optimized sixth order compact (OPT6) finite difference
scheme with spectral-like resolution is used in the stream-
wise and normal directions and a Fourier spectral method is
used in the spanwise direction. The method ensures the pre-
cisions and dissipations required by noise predicting. The de-
tails on the used method can be found in reference [20]. The
present scheme on boundaries should be specially treated: a
third order compact asymmetric scheme is used right at the
boundaries, a fifth order compact asymmetric scheme is used
at the next-to-boundary nodes and a sixth order compact sym-
metric scheme is used at the second next-to-boundary nodes.
The skew-symmetric form for the nonlinear convection terms
is used to control the aliasing errors [18,21]
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1
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. (7)

A two-step, fourth-order low dissipation and dispersion
Runge-Kutta scheme [18,22] is used to advance in temporal
direction.

du
dt = f (t, u(t)),

ti−1 = tn−1 + ci�t,
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(8)

The CFL number can be calculated from
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(9)
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where kx, ky, kz are the maximum scaled wave numbers that
can be resolved in three directions. Uc is the artificially added
convection speed in outflow sponge.

2.3 Boundary conditions

For the purpose of sound calculation, the efficient non-
reflecting boundary conditions are needed. We will use the
absorbing buffer zones in combination with an artificial con-
vection term and a spatial fitting method to conform the non-
reflecting boundary. A combination of Thompson’s boundary
conditions [23,24] and the damping sponge zones [18] is used
for the lower and upper boundaries. In the absorbing sponge,
an artificial term is added to the Navier-Stokes equations

∂Q
∂t
= Navier-Stokes terms − σy(y)(Q − Qref ). (10)

Here, the sponge strength σy(y) is chosen to be identically
zero within the physical domains and takes a finite value at
the boundaries and decays gradually to zero in the sponge
zones. To minimize transients that may influent noise pre-
diction, we solve the steady, two-dimensional, compressible
boundary layer equations to give the initial flow field. The
reference state is the same as the initial flows, which are lam-
inar and steady. The outflow boundaries are required to avoid
turbulence-generated acoustic reflection at the exit of phys-
ical domain. In meeting this goal, an explicit spatial filter
is taken to dissipate disturbances and an artificial convec-
tion term is added to the right-hand-side of the Navier-Stokes
equations.

∂Q
∂t
= Navier-Stokes terms − Uc(x)

∂Q
∂x
. (11)

At the inlet, a disturbance is imposed on the steady states
in the sponge zones. The inflow disturbance is added based
on the linear stability theory. The single instability wave
has a formation Q̂(y) exp[i(αx + βz − ωt)], where Q̂(y) is
the eigenfunction in the normal direction, α and β are the
wave numbers in the streamwise and spanwise directions and
ω is the temporal frequency of the instability wave. Given
a large number of these instability waves, the disturbances
grow quickly along the streamwise direction.

The computational meshes are plotted in Figure 1 in the
streamwise and normal direction with a grid skip of 8.
The computational domain is taken as 130δ0

ω, 65δ0
ω, 5δ0

ω in
streamwise, normal and spanwise directions, respectively.
The grids in each direction are 704, 320, 48. The physical
domain ranges from 20δ0

ω to 90δ0
ω in the streamwise direc-

tion and from −10δ0
ω to 45δ0

ω in the normal direction. The
meshes are dense in the mixing regime to resolve larger ve-
locity gradients and small-scale vortex structures. The grids
in the spanwise direction are uniformly distributed.

3 Numerical results

We perform a direct numerical simulation of the three-
dimensional compressible mixing layer. The numerical set-
up is described as follows: the lower stream has a Mach num-
ber 1.2 and the upper stream is set to be quiescent, which
facilitates the observation of local acoustic waves in the coor-
dinate systems fixed in the laboratory. The Reynolds number
based on the velocity difference between the two streams and
the inflow vorticity thickness is 500. The temperature and
pressure ratio of the two streams are unity. As the flows be-
come statistically stationary, a total of 1800 flow fields with
time interval 0.1δ0

ω/a∞ are used to calculate the statistical
quantities. The ensemble averaging is taken over the 1800
flow fields along the temporal and spanwise directions. The
validations of current simulation are given briefly in the first
subsection and local flow structures are analyzed in the sec-
ond subsection. Results about noise generated by mixing
layer, Lighthill’s source and space-time correlations are also
discussed.

3.1 Self-similarity

In this subsection, we will present our numerical results of
the self-similar states of mixing layer to validate our numer-
ical simulation. Figure 2 plots the contours of mean stream-
wise velocity 〈ux〉 with their contour levels from 0.1 to 1.1
with each increment 0.1. The thickness of mixing layer grows
nearly linear along streamwise direction, which is consistent
with the theoretical predictions. Figure 3 shows the rescaled
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Figure 1 Sketch of the mesh set in the x-y plane.
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Figure 2 Mean streamwise velocity ranges from 0.1 to 1.1. The increment
between contours is 0.1.
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Figure 3 Self-similarity of velocity profiles. δ0ω is the initial vorticity
thickness. δω and ΔU are vorticity thickness and velocity difference across
the shear layer respectively. y0 is defined as the transverse location where
〈ux〉(y0) = 1/2ΔU . Data of incompressible flow: �, Bell & Mehta(1990)
[25]; Data with convection Mach number 0.64: �, Samimy & Elliot(1990)
[26].

mean streamwise velocities at three different streamwise lo-
cations. For comparison, we also plot the mean velocity pro-
files of incompressible flow from Bell & Mehta [25] and the
convection Mach number 0.64 one from Samimy & Elliot

[26]. All of those curves collapse onto a single one, which
validates our numerical simulation.

3.2 Large-scale coherent structures and acoustic waves

Figure 4 displays the near-field vortex structures and acous-
tic fields with time interval �t = 2δ0

ω/a∞. The local vortex
structures are visualized using the colored contour of vortic-
ity and the acoustic waves are visualized by dilatation. The
dilatations are rendered in different levels of darkness while
the positive (negative) dilatations beyond the thresholds are
plotted as white (black).

Obviously, the vortex structures in the lower side (indi-
cated by small red arrows in Figure 4) are convected to down-
stream quickly by mean flow while the convection effect is
much smaller for the vortex in the upper side (indicated by
small blue arrows in Figure 4). Meanwhile, the vortex struc-
tures in the mixing range rotate in anticlockwise direction
with deformation and breakdown along the streamwise direc-
tion. The directivity of acoustic waves in the upper left cor-
ner can not be observed in Figure 4. The directional acous-
tic waves are obvious in the upper right corner and propagate
with angles ranging from 30 to 40 degrees as sketched in Fig-
ure 4(a). It is also observed that these directional acoustic
waves are mainly generated by the turbulent structures in up-
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Figure 4 Evolution of vortex structures and acoustic field. Colored contour of vorticity and grey scale map of dilatation are plotted together. (a)–(d) give the
variations from t = 587δ0ω/a∞ to t = 593δ0ω/a∞.
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stream, which implies that the directional acoustic waves
mainly come from the breaking down of large structures. The
inlet disturbances in the form of instability waves radiate little
noise. This implies that the inlet disturbances are acoustically
quiet and the inlet conditions in present simulation are well-
imposed. Furthermore, there is no reflected wave observed in
the plots, which indicates that the non-reflecting boundaries
work well.

3.3 Turbulence-generated noise

We extract the pressure signal at the plane y = 30δ0
ω, where

pressure fluctuations are used to represent acoustic signals.
Figure 5 shows pressure intensity levels along the streamwise
direction. The sound speed and density of free-stream are set
as a∗∞ = 340 m/s and ρ∗∞ = 1.29 kg/m3 respectively. The di-
mensional pressure is p∗ = pρ∗∞a∗2∞ and the sound pressure
level is calculated from

SPL(dB) = 10 log10
〈p′∗2〉
p∗2ref

, (12)

where p∗ref = 20 μPa is the lowest noise pressure level for the
human ears. The location x/δ0

ω 	 35 gives a turning point
of sound intensity. The intensity of sound waves increases
slowly before this point. After this point, the line goes up
quickly.

We use the Kirchhoff integral formula [27] to calculate the
noise at far-field. This formula utilizes the surface integrals,
instead of volume integration, to calculate far-field noise: a
planar surface is taken at y = 30δ0

ω and the pressure fluctua-
tions on this surface are collected for the calculation of far-
field noise. The effects of open Kirchhoff surface are limited
to the upstream and downstream corners.

Figure 6 shows the far-field directional coefficients against
the angle of observation. The origin point of observation is
set at x = (55δ0

ω, 0) and the radial length is 100δ0
ω. The incre-

ment of angle is θ = 5◦ with the starting angle θ = 45◦ and
ending angle θ = 135◦. The directional coefficient is defined
as:

d(θ) =
SPL(θ)

SPL(θ = 135◦)
. (13)

The noise intensity goes up when the angle decreases. The
directional coefficients are about 1.11 for θ = 90◦ and 1.28
for θ = 45◦.

A window function f (t) is induced in the following form
to get spectra of pressure fluctuations in the range [t0, tn].

f (t) =
1
2

[

tanh

(

5
t − t1
t1 − t0

)

+ tanh

(

5
t2 − t
tn − t2

)]

, (14)

where t1 and t2 are set as the 5% and 95% points in time se-
ries. The pressure fluctuations p′(t) are multiplied by f (t)
and Fourier transformed to frequency space. Figure 7 gives
the spanwise-averaged pressure spectra of two points. The
fluctuations at point x = (60δ0

ω, 0) represent local turbulence
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Figure 5 Distribution of sound pressure levels at the surface y = 30δ0ω
along the streamwise direction. The location x/δ0ω 	 35 gives the turnning
point of sound intensity.
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Figure 6 Directional coefficients of far-field sound pressure levels from
the integration of Kirchhoff method. The observation is set as: origin of
coordinates x = (55δ0ω, 0); radial length r = 100δ0ω; increment of angle in
anti-clockwise direction.

in the near field and the fluctuations at point x = (60δ0
ω, 40δ0

ω)
can be regarded as acoustic signals in the far field. A slope
−5/3 is also plotted to give the reference of decaying rate.
There is no obvious power-law range expected in Figure 7
because of the low Reynolds number and limited spanwise
length in the current simulation.

3.4 Lighthill’s source

The so called Lighthill’s equation can be expressed as follows
[2,3]:

(
∂2

∂t2
− a2
∞
∂2

∂xi∂xi

)

(ρ − ρ∞) =
∂2Ti j

∂xi∂x j
. (15)

The Lighthill stress tensor is

Ti j = ρuiu j +
[
(p − p∞) − a2

∞(ρ − ρ∞)
]
δi j − σi j, (16)

where δi j is the Kronecker delta and σi j is the viscous stress
tensor. The term

∂2Ti j

∂xi∂x j
, (17)
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Figure 7 Spanwise-averaged pressure spectra. Solid line: x = (60δ0ω, 0) in
the near field; dashed line: x = (60δ0ω, 40δ0ω) in the acoustic field.

is regarded as Lighthill’s source [16]. We will plot four com-
ponents of Lighthill’s source to identify their contributions
to far-field noise. The viscous term is neglected because it’s
usually small compared with other terms. The selected com-
ponents are ∂2(ρuxux)/∂x2, ∂2(ρuyuy)/∂y2, ∂2(ρuxuy)/∂x∂y
and ∂2(p − a2∞ρ)/∂x2 corresponding to (b), (c), (d) and (e)
in Figure 8, respectively. The local flow structures are also
plotted as reference in Figure 8(a).

It is observed that the first component makes the largest
contribution among the four components. The structures of
the component in Figure 8(b) are similar to local vortex struc-
tures in Figure 8(a). The contour values in Figure 8(d) are
smaller than the values in Figure 8(b) but larger than the
term in Figure 8(c), which suggests that streamwise fluctu-
ating velocity is the main sound source. The large struc-
tures in the downstream direction are abundant in Figures
8(b) and (d) and rare in Figure 8(c). Although the contour
values in the upstream are small, the structures are usually
more anisotropic, which could lead to apparent noise radia-
tion. The term drawn in Figure 8(e) is responsible for the
momentum transfer by pressure. This term is the smallest
one compared with the other terms.

3.5 Space-time correlations

Intensity and spectrum of far-filed noise can be obtained by
integrating the four-dimensional power spectral density ten-
sor, which is associated with the space-time correlations of
local flow velocities. Fleury et al. [11] gave the space-time
second-order velocity autocorrelation function from dual PIV
measurements. This autocorrelation function is defined as:

Rii(x, ξ, τ) =
u′i(x, t)u′i(x + ξ, t + τ)

[ūi(x)ūi(x + ξ)]
, (18)

with ūi(x) being
√

〈u′2i (x, t)〉 and ūi(x + ξ) being
√

〈u′2i (x + ξ, t)〉.
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Figure 8 Contour plot of local vortex structures and components of
Lighthill’s source at t = 617.7δ0ω/a∞. (a): vorticity of fluid field; (b)–(e):
The contour lines for Lighthill’s source with a rendering range [−1.0,1.0].
The maximum contour values of (b), (c) and (d) exceed this range: (b)
[−7.4,10]; (c) [−2.8, 1.5]; (d) [−5.2, 3.8]; (e) [−0.89, 0.94].

Figure 9 shows the spanwise-averaged space correlation.
The correlation levels are 0.8, 0.6, 0.4, 0.2, 0.05, −0.05 and
−0.1, the same levels that are plotted in the experimental
measurements [11]. The contour lines are stretched and the
stretched lines are more obvious for small iso-correlation lev-
els. The negative correlation levels exist and their values are
not ignorable, which is in agreement with the experiments
[11].

Figure 10 plots the spanwise-averaged streamwise veloc-
ity correlation at point x = (60δ0

ω, 0) with spatial separation
along the streamwise direction. The contour lines with larger
values have the shape of ellipse. Negative values of correla-
tion contour are also observed in the corner.

Figure 11 shows the integral scales of directional correla-
tions for R11(x, ξ, τ) at point x = (60δ0

ω, 0) with spatial sepa-
ration along the streamwise direction [28]:

L(α) =
∫

ξx/τ=tanα

√
1 + tan2 αR11(x, ξx, τ)dτ. (19)

The directional correlation is calculated from the value of
space-time correlation along a straight line ξx/τ = tanα with
0 � α � π. The integral scale of directional correlation gives
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the decorrelation length scale of the space-time correlation
along a given direction. The position of its peak corresponds
to the convection velocity at x = (60δ0

ω, 0).
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Figure 9 Spanwise-averaged space correlation R11(x, ξ, τ) with x = (60δ0ω,
0) and τ = 0. The correlation levels are 0.8, 0.6, 0.4, 0.2, 0.05, −0.05 and
−0.1 with solid lines for positive values and dashed lines for negative values.
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Figure 10 Spanwise-averaged space-time correlation R11(x, ξ, τ) with x =
(60δ0ω, 0). The correlation levels are 0.8, 0.6, 0.4, 0.2, 0.05, −0.05, −0.1 and
−0.2 with solid lines for positive values and dashed lines for negative values.
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Figure 11 The integral scales of the directional correlations for R11(x, ξ, τ)
with x = (60δ0ω, 0).

4 Conclusions

We perform a direct numerical simulation of spatially devel-
oping three-dimensional compressible mixing layer. The lin-
ear growth of mixing layer thickness and self-similar states
are obtained from the present simulation, which validates the
present numerical results. We directly calculate the near-field
noise and use the open Kirchhoff surface integration to com-
pute the far-field noise. It is observed that there exists a turn-
ing point where the SPL increases from a plateau to a slope.
We further find that the upper structures in the mixing layer
mainly undergo distortion while the lower structures are con-
vected downstream with distortion. We compare the com-
ponents of Lighthill’s source in the near field: the stream-
wise fluctuating velocity makes larger contributions while the
component responsible for momentum transfer by pressure
makes smaller contribution. In the present study, the second-
order space-time autocorrelation functions are calculated and
compared with experimental measurements and the geome-
tries of iso-correlation lines are discussed.
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