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The direct simulation Monte Carlo (DSMC) method is a powerful particle-based method for
modeling gas flows. It works well for relatively large Knudsen (Kn) numbers, typically lar-
ger than 0.01, but quickly becomes computationally intensive as Kn decreases due to its
time step and cell size limitations. An alternative approach was proposed to relax or
remove these limitations, based on replacing pairwise collisions with a stochastic model
corresponding to the Fokker–Planck equation [J. Comput. Phys., 229, 1077 (2010); J. Fluid
Mech., 680, 574 (2011)]. Similar to the DSMC method, the downside of that approach suf-
fers from computationally statistical noise. To solve the problem, a diffusion-based infor-
mation preservation (D-IP) method has been developed. The main idea is to track the
motion of a simulated molecule from the diffusive standpoint, and obtain the flow velocity
and temperature through sampling and averaging the IP quantities. To validate the idea
and the corresponding model, several benchmark problems with Kn � 10�3–10�4 have
been investigated. It is shown that the IP calculations are not only accurate, but also effi-
cient because they make possible using a time step and cell size over an order of magnitude
larger than the mean collision time and mean free path, respectively.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Numerical schemes can be categorized into two kinds: continuum and particle. For real gas flows, a powerful molecular
approach is the direct simulation Monte Carlo (DSMC) method [1] that has been successfully applied to various rarefied gas
flows [2], especially hypersonic situations, e.g. the structures of strong shock waves [3], aerodynamic features of reentry
vehicles [4]. There is a great interest to extend the DSMC method to other situations not only for understanding the mech-
anisms and patterns of gas flows at molecular level, but also for sometimes more conveniently and physically modeling the
microscopic transport process behind macroscopic flow phenomena.

To achieve the goal, an issue that has to be addressed firstly is the limitations of the cell size and time step for the DSMC
method [5,6]. They become stringent when the temporal and spatial scales of a gas flow are much larger than those of molec-
ular motion.

The time step limitation of DSMC results from a core assumption that decouples molecular motion and collisions in a time
step Dt [1]. It is physically reasonable only when Dt < sc, where sc is the mean collision time of molecules. Another essential
feature of DSMC [1] is to select collision pairs based on pairs of molecules, which is reasonable only when the distance
between a pair of molecules is smaller than the mean free path (k). In the conventional DSMC method, pairs of molecules
are formed within a cell, and therefore the cell size needs to be smaller than k. The values of sc and k are usually very small,
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e.g. about 2 � 10�10 sec and 6 � 10�8 m for air in the standard conditions, respectively. Consequently, it is hard to meet the
requirements even for parallel supercomputers, except for relatively large Knudsen number flows where the characteristic
scales are comparable to or less than sc and k.

Many efforts were made to release the time step and cell size limitations for DSMC. One of them tracked the motion of a
simulated molecule (simulator) in a diffusion viewpoint instead of the decoupling treatment of molecular motion and col-
lisions [7,8]. It to certain extent eliminated the sources that results in the limitations of time step and collision-pairs distance
in DSMC. Along this way, a critical point is how to evaluate flow velocity and temperature that are necessary to calculate the
convective motion and diffusive motion of simulators every time step. In previous studies [7,8], they were obtained through
sampling and averaging microscopic velocities. As pointed out by the authors themselves, ‘‘stochastic noise will be the same
for the new model and DSMC’’, and ‘‘difficulties due to noise for low Mach number flows can be expected for both methods’’.

In this paper, we suggest to combine the diffusion approach with the information preservation (IP) method. The IP meth-
od [9,10] was originally proposed to overcome the statistical scatter in DSMC calculating microscale gas flows in MEMS usu-
ally in low-speed. IP assigns each simulated molecule two velocities: one is microscopic velocity, ck,i like DSMC, and the other
is called information velocity, uk,i, that can be understood as the collective velocity of a large number of real molecules rep-
resented by a simulator. In conventional IP method, molecular motion is tracked based on ck,i following the same steps as
DSMC, and uk,i is transported along with molecular motion. When a simulator encounters a computational boundary during
its movement, uk,i takes the boundary value. When two simulators collide, their information velocities are exchanged accord-
ing to the corresponding models. The flow velocity is obtained through sampling and averaging the information velocities,
which avoids the statistical scatter arising from the random part of the microscopic velocities. The IP method has been suc-
cessfully applied many situations, e.g. unidirectional flows [9,10], microchannel flows [11,12], and micro plate aerodynamics
[13,14]. All of them exhibited a good agreement with exact solutions or measured data available. A recent advancement of IP
was a clear theoretical verification that was based on Maxwell’s equation of transfer and established the governing equation
of information quantities [15–17].

Briefly speaking, our idea is to track the motion of simulated molecules in a diffusive view, and obtain the flow velocity
and temperature through the IP quantities. In this paper, a diffusion model in consistence with the IP method is described.
Prior to it, the Langevin equation is briefly reviewed that is a basis to set up the diffusion model. Then several benchmark
problems with small Knudsen numbers are calculated using the present IP method, and the IP results are verified in com-
parison with the DSMC and Navier–Stokes solutions.

2. The Langevin equation

It is well known that the Langevin equation was originally invented to explain the Brownian motion of dust particles,
which can be written as [18–20]
dri

dt
¼ ci; ð1aÞ

dci

dt
¼ �fci þ Ai; ð1bÞ
where ri and ci are the particle position and velocity, fci and Ai are the mean and fluctuating forces acted on the particle by the
surrounding molecules, f = kBT/(mD), kB is the Boltzmann constant, and m, D and T are the molecular mass, diffusion coeffi-
cient, and temperature of the ambient fluid, respectively.

Eq. (1) is a stochastic differential equation, and its solution describes the position and velocity evolution of a particle in a
probabilistic sense. For locally isotropic cases, Eq. (1) has an analytical solution that was firstly obtained by Chandrasekhar
[18]
WðRx; SxÞ ¼
1

2pðFG� H2Þ1=2 exp � R2
x

2F
� ðFSx � HRxÞ2

2FðFG� H2Þ

" #
; ð2Þ
with
Rx ¼ x� x0 � cx0 1� e�ft
� �

=f; ð3aÞ

Sx ¼ cx � cx0e�ft ; ð3bÞ

F ¼ kBT

mf2 4e�ft � e�2ft þ 2ft � 3
� �

; ð3cÞ

G ¼ kBT
m

1� e�2ft
� �

; ð3dÞ
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Fig. 1. Comparison of the molecular position distributions at two time intervals. Symbols: the Chandrasekhar distribution (2); lines: the DSMC results.
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H ¼ kBT
mf

1� e�ft
� �2

; ð3eÞ
where x0 and cx0 are the initial position coordinate and velocity component in the x direction, respectively.
As discussed in details in [18–20], the Langevin equation (1) not only applies to dust particles, but also many other phe-

nomena. For molecular motion interested here, when time is much larger than sc, the force acted on a molecule can also be
divided into two parts: mean and fluctuating. As a result, the Chandrasekhar distribution (2) is also suitable to describe the
position and velocity evolution of a molecule. A numerical comparison is made in Fig. 1 for an argon gas in the standard con-
dition. Initially a group of molecules gathered at x = 0, with a temperature of 273 K and zero flow velocity. We see clearly that
the molecular position distributions at two time intervals (100sc and 500sc) predicted by (2) agree well with the DSMC
results.
3. A diffusive information preservation method

In a diffusive viewpoint, molecular motion can be expressed as follows
rtþDt
k;i ¼ rt

k;i þ ut
k;i � Dt þ DrD

k;i; ð4Þ
where the second and third terms on the right-side hand reflect the convective motion and diffusive motion of a molecule,
respectively.

If we employ the Langevin equation to describe the diffusive motion of a molecule, according to the Chandrasekhar dis-
tribution (2), we have
DrD
k;i ¼ �2F ln Urð Þ1=2 cos ar þ c0k;iðtÞ 1� exp �fDtð Þ½ �=f; ð5Þ

c0k;iðt þ DtÞ ¼ �
2 FG� H2
� �

F
ln Ur

2
4

3
5

1=2

cos ar þ
H � Ri

F
þ c0k;iðtÞ expð�fDtÞ; ð6Þ
where Ur and ar are random numbers uniformly distributed in [0, 1] and [0, 2p], respectively.
A diffusive information preservation (D-IP) method suggests to track the motion of a simulated molecule using Eqs. (4)–

(6), calculate the convective motion in Eq. (4) based on the information velocity, and obtain temperature used in Eqs. (5) and
(6) through sampling and averaging the information temperature every time step. Since the Chandrasekhar distribution is
based on a local equilibrium assumption, the time step of D-IP calculations has to be small enough in comparison with
the characteristic flow time.

Similar to the conventional IP method, there are six steps to implement the D-IP method.

1. Initialization. Each simulator is initially given a position rk,i (k = 1,2, ldots, N), a thermal velocity c0k;i, an information velocity
uk,i, and an information temperature TIP-k according to the initial conditions of a gas flow.

2. Molecular motion. After a time step, simulator k acquires a new position and thermal velocity according to Eqs. (4)–(6).
3. Update information velocity and temperature. After a time step, the information velocity and temperature of simulator k is

updated according to their governing equations derived as follows.
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3.1. Maxwell’s equation of change

The governing equations of information velocity and temperature have been derived based on Maxwell’s transport equa-
tion in Ref. [15–17]. We will follow a similar means to investigate the differences arising from the diffusion model to replace
the molecular motion model in the conventional IP method.

The conservation form of Maxwell’s equation of change can be written as
@

@t
nQ
� �

þ @

@xj
ncjQ
� �

¼ D½Q �; ð7Þ
where the collision term D[Q] is a weighted average of the change in the total value of molecular properties Q before and
after collisions, and the external force term is neglected.

For clarity, the same notations as [15] are explained: the microscopic velocity ci, the information velocity ui, the macro-
scopic velocity of the flow field Ui, and the information temperature TIP. They are connected through velocity fluctuations:
c0i ¼ ci � ui, c00i ¼ ui � Ui, c000i ¼ ci � Ui, and c2 ¼ 3RTIP þ u2.

If Q is set as momentum mci and translational energy mc2/2, then Eq. (7) reads as,
@

@t
nmcið Þ þ @

@xj
nmcicj
� �

¼ D mci½ �; ð8Þ

@

@t
1
2

nmc2

� �
þ @

@xj

1
2

nmcjc2

� �
¼ D

1
2

mc2

� 	
: ð9Þ
It can easily shown that cicj ¼ uiuj þ uic0j þ c0ic
000
j , and cjc2 ¼ cj 3RTIP þ u2ð Þ � c000j 3RTIP þ u2 � c2ð Þ. Substituting them into Eqs.

(8) and (9), respectively, we have
@

@t
nmuið Þ þ @

@xj
nmuiuj
� �

¼ � @

@xj
nmuic0j
� �

� @

@xj
nmc0ic

000
j

� �
þ D mci½ �; ð10Þ

@

@t
nm 3RTIPþu2ð Þ
� �

þ @

@xj
nmuj 3RTIPþu2ð Þ
� �

¼� @

@xj
nmc0j 3RTIPþu2ð Þ
� �

þ @

@xj
nmc000j 3RTIPþu2� c2ð Þ
� �

þD mc2
h i

ð11Þ
Equation (10) governs the evolution of the average of the information velocity. The first term on the left hand side is the
change rate of the momentum. The second term is the changes due to the collective movement corresponding to ut

k;i � Dt in
the diffusion model (4). On the right hand side, the first term is the change due to the thermal movement corresponding to
DrD

k;i in the diffusion model (4). The second term is a microscopic correlation term, and the final term is the collision integral
term. The meaning of each term in Eq. (11) is similar to the corresponding one in Eq. (10).

3.2. Individual information velocity and temperature

To apply Eqs. (10) and (11) to individual simulator, two assumptions suggested in [15] are employed here. One assumed
that a similar connection applies to an individual molecule in the IP method, and the other assumes that the correlation
terms apply equally to individual molecules. Then, the governing equation for individual information velocity and temper-
ature are expressed as follows:
@

@t
nmuið Þ þ collective movement ¼ � @

@xj
nmuic0j
� �

� @

@xj
nmc0ic

000
j

� �
þ collisions; ð12Þ

@

@t
nm 3RTIP þ u2� �
 �

þ collective movement ¼ � @

@xj
nm3RTIPc0j
� �

� @

@xj
nmu2c0j
� �

þ @

@xj
nmc000j 3RTIP þ u2 � c2ð Þ
� �

þ collisions: ð13Þ
3.3. Correlated terms c0ic
000
j and c000j ð3RTIP þ u2 � c2Þ

As discussed in details in [15–17], there are two means to evaluate the correlation terms, namely a local equilibrium ap-
proach and a flux splitting approach. In situations with small Knudsen numbers, because of the temporal and spatial scales
much larger than those of molecular motion, the local equilibrium condition prevails, and the correlated terms c0ic

000
j and

c000j ð3RTIP þ u2 � c2Þ can be simplified as follows [15–17]
nmc0ic
000
j ¼ p; ð14Þ

nmc000j 3RTIP þ u2 � c2ð Þ ¼ �2pUj: ð15Þ
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3.4. Correlated terms uic0j and c0j 3RTIP þ u2ð Þ

Because the information velocity remains unchanged during the diffusive motion of a simulator, the momentum at cer-
tain spatial point Mi(rj, t) = mui(rj, t)n(rj, t) will change only due to the number density, n(rj, t), while n(rj, t) evolves by [18],
nðrj; t þ DtÞ ¼
Z þ1

�1
nðrj � Drj; tÞwðDrj;DtÞdðDrjÞ; ð16Þ
where w(Drj, Dt) is the probability distribution of molecular position after moving through a time interval Dt.
Under a local equilibrium condition, w(Drj, Dt) for a diffusive process governed by Langevin equation (1) can be written as

[18],
wðDrj;DtÞ ¼ 1

4pD�Dtð Þ3=2 exp � Dr2

4D�Dt

� �
; ð17Þ
with D� ¼ kBT
mf2 f� 1� e�fDt

� �
=Dt


 �
.

The momentum change due to molecular diffusion (16) is
Miðrj; t þ DtÞ ¼
Z þ1

�1
Miðrj � Drj; tÞwðDrj;DtÞdðDrjÞ: ð18Þ
Substituting Eq. (17) into (18) and making Taylor’s expansion for Mi(rj–Drj, t), we have
Miðrj; t þ DtÞ ¼ Miðrj; tÞ þ D�Dt
@2Mi

@x2 þ
@2Mi

@y2 þ
@2Mi

@z2

 !
þ O Dt2� �

: ð19Þ
As Dt ? 0, Eq. (19) gives rise to
@ quið Þ
@t

¼ lim
Dt!0

Miðrj; t þ DtÞ �Miðrj; tÞ
Dt

¼ qD�
@2ui

@xj@xj
; ð20Þ
since qD� � qD ¼ 6l=5 under a hard-sphere model for molecular interaction.
According to classical fluid mechanics, the momentum change due to viscosity is
@ quið Þ
@t

¼ l @2ui

@xj@xj
þ l

3
@

@xi

@uj

@xj

� �
: ð21Þ
In the continuum limit, the right hand sides of Eqs. (20) and (21) should be equal. To satisfy the requirement, the first
term on the right hand side of Eq. (12) needs to be modified as follows,
Iu ¼ �wg
@

@xj
nmuic0j
� �

� @

@xi

1
3

wgnmujc0j

� �
; ð22Þ
with wg = l/(qD⁄).
For temperature, similar to the derivations (16)–(22), we have
@ðqTÞ
@t

¼ qD�
@2T
@xj@xj

: ð23Þ
According to fluid mechanics, the temperature change due to thermal conductivity is
@ qTð Þ
@t

¼ j
cv

@2T
@xj@xj

: ð24Þ
In the continuum limit, the right hand sides of Eqs. (23) and (24) should be equal also. To satisfy the requirement, the first
term on the right hand side of Eq. (13) needs a following modification
IT�j ¼ �wj
@

@xj
nm3RTIPc0j
� �

; ð25Þ
with wj ¼ j=ðqcvD�Þ.
The second term on the right hand side of Eq. (13) reflects the energy change due to viscosity. Following a similar analysis

to Eqs. (16)–(22), we have
IT�l ¼ �wg
@

@xj
nmu2c0j
� �

� 2
3

wg
@

@xj
nm�ujc0iui
� �

; ð26Þ
Substituting Eqs. (14) and (22) into (12), and Eqs. (15), (25) and (26) into (13), yields the governing equations of
information velocity and temperature as follows, which are consistent with the diffusion model (4)–(6).
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@

@t
nmuið Þ þ collective movement ¼ �wg

@

@xj
nmuic0j
� �

� @

@xi

1
3

wgnmujc0j

� �
� @p
@xi
þ collisions; ð27Þ
@

@t
nm 3RTIP þ u2� �
 �

þ collective movement ¼ � wj
@

@xj
3RnmTIPc0j
� �

� wg
@

@xj
nmu2c0j
� �

� 2
3

wg
@

@xj
nmUjc0iui
� �

� 2
@

@xj
pUj

� �
þ collisions ð28Þ
4. Information velocity and temperature changes due to collisions. A time step of D-IP is usually much larger than the mean
collision time. This means that a simulator will experience enough collisions during it. Therefore, it is assumed that
the information velocity and temperature at t + Dt is equal to the mean values of its surrounding molecules, i.e.
utþDt
k;i ¼

1
Nk

XNk

j¼1

utþDt
j;i ; ð29Þ
TtþDt
IP�k ¼

1
Nk

XNk

j¼1

TtþDt
IP�j þ

wg

2cvNk

XNk

j¼1

ut2
j �

XNk

j¼1

utþDt2
j

 !
ð30Þ

where Nk is the number of simulators in a neighboring region around simulator k, the region size can be chosen according
to the spatial scales and computational accuracy of flows, and cV is the specific heat at constant volume. The second term
on the right-hand side of Eq. (30) is necessary to satisfy the energy conservation and viscous dissipation.

5. Interact with boundaries. When a simulator encounters a computational boundary during its movement in a time step, its
information velocity and temperature take the boundary values as usual. A criterion whether it interacts with a compu-
tational boundary is described in details in Appendix.

6. Sample and average. The flow velocity and temperature are obtained by sampling the information quantities of simulators
each cell through ensemble average for unsteady cases, and time average for steady cases, i.e.
Ui ¼ ui; ð31Þ
Tc ¼ TIP: ð32Þ
The flow number density is calculated using the mass conservation equation:
@ðnmÞ
@t

þ @ðnmUjÞ
@xj

¼ 0: ð33Þ
4. Benchmark problems

4.1. Couette flow

The Couette flow is a steady flow driven by two infinite and parallel plates moving oppositely along their planes. In the
present study, the flow medium is argon gas in the standard condition (1 atm and 273 K), and the plates move oppositely at
speed of 50 m/s, respectively, whose surfaces are diffusively reflecting and have the same temperature as the gas. The dis-
tance between the plates H ¼ 500k.

Three calculations are performed using the D-IP method. All of them start from a stationary uniform flow field. Different
time steps and cell sizes are employed, which are 10sc and 10k for the first calculation, 20sc and 20k for the second, and 30sc

and 25k for the third. As shown in Fig.2, the velocity profiles of D-IP all agree well with the Navier–Stokes exact solution U/
Uw = 2y/H � 1. The surface shear stresses (N/m2) obtained by the three D-IP calculations are 67.0, 66.8 and 66.8, respectively,
in excellent agreement with value of 67.6 predicted by the Navier–Stokes exact solution sw = 2lUw/H.
4.2. Poiseuille flow

The Poiseuille flow is a steady flow confined between two infinite and parallel plates. It is driven by a pressure gradient
along the plates, dp/dx. In the present study, dp/dx = ap0/H, a = �2.54 � 10�3, p0 = 1 atm, the distance between the plates
H ¼ 500k, while the other computational parameters are the same as those used in the Couette flow.

As shown in Fig.3, the velocity profiles of D-IP from the center to the upper plate in the three calculations all agree well
with the Navier–Stokes exact solution of the equation U ¼ �dp=dx� Hy� y2

� �
=ð2lÞ. The values of the surface shear stress

acting on the upper plate (N/m2) obtained by the D-IP calculations are all 129, and they compare well with the value of
128.7 given by the N–S exact solution sw = 0.5ap0.
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4.3. Rayleigh flow

In the Rayleigh flow, the stationary plate acquires a speed of Uw along the plate direction at the initial time (t = 0). The
impulsive motion induces an unsteady flow of the gas near the plate, for which an ensemble average has to be used in
the D-IP calculation. In the present study, Uw = 50 m/s, and the outer boundary is placed 500k away from the plate to avoid
possible backward disturbance to the flow evolution near the plate during the time interval of the calculation. The time step
and cell size of D-IP are 10sc and 10k, respectively. The other computational parameters are the same as those used in the
Couette flow.

Fig. 4 shows the velocity profile at 500sc, as well as the surface shear stress acting on the plate versus time, obtained by
the D-IP method. They agree well with the Navier–Stokes exact solutions
U=Uw ¼ 1� erf ðy=
ffiffiffiffiffiffiffiffi
4mt
p

Þ; ð34Þ
and
sw ¼ lUw=
ffiffiffiffiffiffiffiffi
pmt
p

; ð35Þ
respectively, where erf denotes an error function, and m = l/q.
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4.4. Thermal Couette flow

Thermal Couette flow is driven by a temperature difference between two infinite and parallel plates. In the present study,
the bottom and top plates have temperatures of 300 K and 273 K, respectively, while the other computational parameters are
the same as those used in the Couette flow in Section 4.1.

As shown in Fig. 5, the number density and temperature profiles of D-IP in the three calculations all agree well with that
obtained by the DSMC method, so do the values of the heat flux (W/m2) given in the fourth row of Table 1. Note that in
Table 1 the CPU hours of Intel i5 2.66 GHz consumed by the D-IP calculations decrease as the time steps and cell sizes in-
crease, and all of them are much less than that of DSMC.
4.5. Thermal Rayleigh flow

In a thermal Rayleigh flow, the stationary plate acquires a temperature increase DTw at the initial time (t = 0). This induces
an unsteady flow of the gas near the plate. In the present study, DTw = 27 K, and the outer boundary is placed 500k away
from the plate to avoid possible backward disturbance during the calculted time interval. The time step and cell size of
D-IP are 10sc and 10k, respectively. The other computational parameters are the same as those used in the Couette flow.

Fig. 6 shows the flow fields at two moments (300sc and 500sc), as well as the heat flux versus time, obtained by the D-IP
method and the DSMC method. They agree well with each other, except the heat flux at the beginning interval where the
time step used in D-IP is too large to resolve the evolving details (Fig. 6d). Due to the time step and cell size used in the
D-IP calculation are much larger than those in the DSMC one, together with the intrinsic advantage of the IP method that
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Fig. 5. Comparison of flow field profiles obtained by D-IP and DSMC for thermal Couette flow (Kn = 0.002).

Table 1
Parameters and results of D-IP and DSMC calculating thermal Couette flow.

Parameters Dt Dy qw (W/m2) CPU (hr)

D-IP 10sc 10k 1.46 � 104 0.27
20sc 20k 1.45 � 104 0.1
30sc 25k 1.45 � 104 0.08

DSMC 0.3sc 0.3k 1.47 � 104 21
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reaches a statistical convergence at a normal sampling size (usually 103–104) even for quite low Mach number flows, the
former consumed the CPU hour greatly less than the latter. In this test case, the D-IP calculation took about 0.05 CPU hour
on a computer with an Intel i5 2.66 GHz, while the DSMC calculation, carried out on a parallel computer, took about
7000 CPU hours if converted to the Intel i5, five order of magnitude more than the D-IP.
4.6. Square cavity flow

A square cavity flow is a steady flow driven by the lid side moving at speed of Ulid along the plate direction (Fig. 7), while
the other three sides keep at rest. In the present study, the flow medium is also argon gas in the standard condition, and the
four sides of the cavity are all diffusively reflecting and have the same temperature as the gas. Three cases with different
Reynolds numbers (Re = UlidL/m) are investigated using the D-IP method, and the computational parameters are given in
Table 2.
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Fig. 7. Schematic diagram of a square cavity flow.
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As shown in Fig. 8, as Re increase, the center positions of the main vortex move toward the geometric center of the square,
and the secondary vortices become large. To verify the accuracy of the D-IP results, a quantitative comparison with the Navier–
Stokes numerical solution of Ghia [22] has been carried out, and excellent agreement are seen clearly in Fig. 9 and Table 3.



Table 2
Parameters used in IP computations of square cavity flows.

Re 1000 3200 10000

L 5000k 16000k 50000k
Ulid (m/s) 37.35 37.35 37.35
Cell size 20k 67k 100k
Time step 20sc 60sc 100sc

Fig. 8. Streamlines of the square cavity flows at three Reynolds numbers given by the D-IP method.
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Compared to the N–S model, the D-IP model provides additional information on microscopic transport mechanism for
various flow patterns, with the computational efficiency as a price. Does the additional information have a fine potential
in solving difficult issues, e.g., laminar–turbulent transition or fully turbulent flows? This is critically important and should
be a focus in further studies of the D-IP model.
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Fig. 9. Perpendicular velocity profiles along AOB (left) and Horizontal velocity profiles along COD (right) in the square cavity flows at three Reynolds
numbers. Solid line: the present results obtained by the D-IP method; circle: the Navier–Stokes numerical solutions by Ghia [22].
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Table 3
Comparison of main vortex centers in square cavity flows at different Reynolds numbers.

Re 1000 3200 10000

x/L (IP) 0.53 0.52 0.51
x/L (Ghia) 0.54 0.52 0.51
y/L (IP) 0.57 0.54 0.53
y/L (Ghia) 0.56 0.55 0.53

Table 4
Compuattaional parameters of D-IP for two-dimensional channel flows.

Case H/k L/k Pin (atm) Cell number Time step

I 200 2 � 104 1.3 200 � 20 10sc

II 10000 1 � 106 1.006 56 � 50 200sc
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Fig. 10. Pressure distributions along the streamwise direction (left) and streamwise velocity profiles at x/L = 0.5 (right) for the channel flows. Circles: D-IP
results; lines: analytical Navier–Stokes solutions [23].
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4.7. Two-dimensional channel flow

A two-dimensional channel flow is a steady flow confined between two finite parallel plates. It is driven by a pressure
difference between the inlet and outlet. In the present study, the flow medium is also argon gas, and the ratio of the channel
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Fig. 11. Shear stress distributions along the channel walls. Circles: D-IP results; lines: analytical N–S solutions [23].
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length (L) to its height (H) is 100. The channel walls are difussively reflecting that have the same temperature of 273 K. Two
cases are investigated, and the corresponding computational paramters are given in Table 4. The outlet pressures for both
cases are of 1 atm, while the inlet temperatures keep at 273 K.

Fig. 10 shows the pressure distributions in the streamwise direction and the streamwise velocity profiles obtained by D-IP
for the two cases. They agree well with the analytical Navier–Stokes solutions of Arkilic et al. [23], so do the shear stress
distributions along the channel walls (Fig. 11). Note that the channel length of Case II is about 6 cm. This exhibits the D-
IP method capable of analyzing gas flows with a common size.

5. Conclusions

The D-IP method has been developed that releases the limitations of time step and cell size associated with conventional
IP calculations of small Knudsen number flows, and enables us to investigate effectively the kind of flows at molecular level.
For benchmark problems such as isothermal unidirectional flows, thermal Couette flow, thermal Rayleigh flow, square cavity
flows, and two-dimensional channel flows with Kn � 10�3–10�4, the D-IP calculations are not only efficient, but agree well
with the DSMC or Navier–Stokes solutions. It is looking forward to applying the D-IP method to more issues like flow insta-
bility and turbulence to promote our understanding of the microscopic nonequilibrium mechanism behind these macro-
scopic nonlinear phenomena.
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Appendix A. Criterion on a simulated particle interacting with a computational boundary

According to the diffusion model, when simulator k has no interaction with a computational boundary during a time step,
its new position and thermal velocity after Dt are determined by Eqs. (4) and (6), respectively. Now let us consider an inter-
action between a simulator and a computational boundary. This consists of two issues. One is to judge whether a simulator
interacts with a computational boundary; the other is how to determine the molecular position and velocity after an inter-
action. The second issue is the same as the conventional IP method, we will focus on the first one.

For the sake of simplicity, a one-dimensional case is considered. For a computational boundary at y = 0, there are two
situations:

(1) Deterministic interaction. If the position of simulator k after a time step is smaller than zero, it interacts with the
boundary during the interval Dt.

(2) Probabilistic interaction. If the position of simulator k after a time step is larger than zero, it still probably interacts
with the boundary during Dt. Our problem can be stated as follows: for a known position y0 > 0 at t, what is the prob-
ability fout(y, y0) in which y is always larger than zero during Dt?

Such a problem was studied well, e.g. in [21], which gave rise to
foutðy; y0Þ ¼
1

2pFð Þ
1
2

exp
ðy� ðy0 þ dy0ÞÞ2

2F

" #
� exp

ðyþ 2akB þ ðy0 þ dy0ÞÞ2

2F

" #( )
; ðA1Þ
where dy0 ¼ c0yðtÞð1� e�ftÞ=f, a = 1.46, kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmf2Þ

q
, and F is defined by Eq. (3c).

According to the Chandrasekhar distribution (2), the probability from y0 to y is
f ðy; y0Þ ¼
1

2pFð Þ1=2 exp
y� ðy0 þ dy0Þ

 �2

2F

( )
: ðA2Þ
Compare the ratio of fout(y, y0) to f(y, y0) to a random number uniformly distributed between 0 and 1. If the ratio is less
than the random number, the simulator interacts with the boundary during the time interval; otherwise, no interaction.
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