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Flaw Tolerance in a Viscoelastic
Strip
Load-bearing biological materials such as bone, teeth, and nacre have acquired some
interesting mechanical properties through evolution, one of which is the tolerance of crack-
like flaws incurred during tissue function, growth, repair, and remodeling. While numerous
studies in the literature have addressed flaw tolerance in elastic structures, so far there has
been little investigation of this issue in time-dependent, viscoelastic systems, in spite of its
importance to biological materials. In this paper, we investigate flaw tolerance in a visco-
elastic strip under tension and derive the conditions under which a pre-existing center
crack, irrespective of its size, will not grow before the material fails under uniform rupture.
The analysis is based on the Griffith and cohesive zone models of crack growth in a visco-
elastic material, taking into account the effects of the loading rate along with the fracture
energy, Young’s modulus, and theoretical strength of material. [DOI: 10.1115/1.4007864]
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1 Introduction

It has been well established that micro- and nano-structured
materials can exhibit drastically different properties compared to
their macroscopic counterparts. For example, while an ideal
defect-free solid could, in principle, attain its theoretical strength
irrespective of the sample size, the load-carrying capacity of a
macroscopic material is always compromised by the inevitable ex-
istence of cracklike flaws. As a result, the actual strength of the
material is usually size-dependent and can only approach theoreti-
cal strength when the sample size is reduced to nanoscale.

The notion that biological systems have achieved flaw tolerance
via size reduction and organized structural hierarchy has been
extensively discussed in the literature [1–8]. A structure is said to
be flaw tolerant if pre-existing flaws do not propagate until it ulti-
mately fails through a uniform rupture near the theoretical
strength of the material. This concept can be related to many clas-
sical studies in fracture mechanics on notch insensitivity, fracture
size effects, large scale yielding, and bridging [9–23] and has
been particularly helpful in understanding the hierarchical struc-
tures of bonelike materials and biological adhesive systems
[1,3–5,7,8,24–32]. It has been shown that biological materials/sys-
tems tend to fail by uniform rupture, rather than by crack propaga-
tion, due to the selection of characteristic sizes in their
hierarchical structures.

Gao and Chen [6] investigated the conditions under which an
elastic strip becomes flaw tolerant. The basic length scale of flaw
tolerance is defined as lft ¼ CE=r2

s , where C is the fracture
energy, E is the Young’s modulus, and rs is the theoretical
strength of the material. According to Gao and Chen [6], the Grif-
fith model of crack growth leads to the following critical structural
size for flaw tolerance

Wft
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j

pb 1� bð Þ2F2 bð Þ

 !

FðbÞ ¼ ð1� 0:025b2 þ 0:06b4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

pb
2

� �s
; b ¼ a

W

8>>>>><
>>>>>:

(1)

where W is the half-width of the strip; a is the half-length of a
pre-existing center crack, so that b ¼ a=W measures an effective
area density of the crack over the cross-section of the strip; here,
j ¼ 1=ð1� �2Þ for the plane strain and j ¼ 1 for the plane stress.
In comparison, the corresponding critical size, according to the
Dugdale–Barenblatt model, is [6]
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Recently, Kumar et al. [33,34] performed in situ TEM experi-
ments of the tensile fracture in thin aluminum strips with a pre-
existing edge notch and observed that the samples sometimes fail
away from the notch and there was no measurable stress concentra-
tion near the notch tip. Other experiments showed that silk fibril
bundles with diameters in the range of 20–150 nm can be scaled up
to form macroscopic silk fibers with outstanding mechanical prop-
erties in spite of the presence of cavities, tears, and cracks [35].

The mechanical properties of protein-rich biomaterials such as
bone are usually time-dependent [36,37] and viscoelastic or poro-
elastic models are often important for biomedical applications
such as developing materials to match the time-dependent behav-
iors of bone for viscoelastic biocompatibility [38]. In fact, almost
all solid biomaterials or tissues exhibit viscoelastic behaviors to
some extent. The reader can be referred to Fung’s book [39] for
numerous examples.

In the present paper, we investigate the flaw tolerance condition
of a center-cracked viscoelastic strip under tension, deriving ana-
lytical solutions based on the Griffith and Dugdale–Barenblatt
models of crack growth in terms of the loading rate and material
constants such as the fracture energy, Young’s modulus, and theo-
retical strength.

2 Model

The model under consideration involves a viscoelastic strip of
width 2W containing an interior center crack of length 2a subject
to a uniaxial, time-dependent tensile loading r1frðtÞ, as shown in
Fig. 1, where frðtÞ is a function representing a time-dependent
loading profile.
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The strip is assumed to obey the standard linear model of vis-
coelasticity (see Fig. 2), with the following uniaxial constitutive
relation

rþ p1 _r ¼ q0eþ q1 _e (3)

where

p1¼
g

E1 þ E2

; q0¼
E1E2

E1 þ E2

; q1¼
E1g

E1 þ E2

; q1>p1q0 (4)

with E1, E2, and g being the spring and dashpot constants shown
in Fig. 2. The solution to Eq. (3) can be expressed in an integral
form as

e tð Þ ¼ J tð Þ �dr tð Þ ¼ r 0ð ÞJ tð Þ þ
ðt

0þ
Jðt� sÞ @r sð Þ

@s
ds (5a)

r tð Þ ¼ E tð Þ �de tð Þ ¼ e 0ð ÞE tð Þ þ
ðt

0þ
Eðt� sÞ @e sð Þ

@s
ds (5b)

where �d denotes the Stieltjes convolution and JðtÞ and EðtÞ are
creep compliance and stress relaxation functions

J tð Þ ¼ 1

q0

� q1 � p1q0

q1q0

e�q0t=q1 ¼ J1 � ðJ1 � J0Þe�t=sr (6)

E tð Þ ¼ q0 þ
q1

p1

� q0

� �
e�t=p1 ¼ E1 � ðE1 � E0Þe�t=s0 (7)

In the preceding expressions, E0 and E1 are the instantaneous and
long-time elastic moduli, J0 and J1 are the instantaneous and
long-time compliances, s0 is the relaxation time, and sr is the re-
tardation time. One can easily verify the following relations

E0 ¼ 1=J0 ¼ E1 (8a)

E1 ¼ 1=J1 ¼ E1E2=ðE1 þ E2Þ (8b)

s0 ¼ p1 ¼ E1sr=E0 ¼ g=ðE1 þ E2Þ (8c)

For simplicity, Poisson’s ratio of the viscoelastic strip is taken
here as a time-independent constant.

3 Flaw Tolerance Analysis Based on Griffith Model

of Crack Growth

3.1 Auxiliary Elastic Model. We first consider the auxiliary
problem of an elastic strip of width 2W containing a central crack
of length 2a, as shown in Fig. 3(a). The corresponding visco-
elastic problem is shown in Fig. 3(b). In the auxiliary elastic
model, re denotes the applied uniaxial stress and re

yðx; 0Þ, ee
yðx; 0Þ,

and ue
yðx; 0Þ denote the normal stress, strain, and displacement

along the crack plane, respectively. In the viscoelastic model,
rvðtÞ denotes the applied load and rv

yðx; 0; tÞ, ev
yðx; 0; tÞ, and

uv
yðx; 0; tÞ are the normal stress, strain, and displacement along the

crack plane, respectively.
The two models satisfy the following relations

rvðtÞ ¼ refrðtÞ ¼ r1frðtÞ (9)

between the applied loads and we have

rv
yðx; 0; tÞ ¼ re

yðx; 0ÞfrðtÞ (10a)

uv
yðx; 0; tÞ ¼ ue

yðx; 0ÞfuðtÞ (10b)

ev
yðx; 0; tÞ ¼ ee

yðx; 0ÞfuðtÞ (10c)

along the crack plane, where frðtÞ and fuðtÞ are the time-dependent
parts of the stress and displacement, respectively.

In fracture mechanics, the energy release rates for the elastic
and viscoelastic models can be written in the form

Ge
I ¼ lim

Da!0

1

Da

ðDa

0

re
y x; 0ð Þue

y x; 0ð Þdx ¼ Ke2
I

jEe
(11)

and

Gv
I tð Þ ¼ lim

DaðtÞ!0

1

DaðtÞ

ðDaðtÞ

0

rv
y x; 0; tð Þuv

yðx; 0; tÞdx (12)

where Ee is the Young’s modulus in the auxiliary elastic problem,

which can be chosen arbitrarily; here, j ¼ 1=ð1� �2Þ for the
plane strain and j ¼ 1 for the plane stress and Ke

I ¼ r1
ffiffiffiffiffiffi
pa
p

FðbÞ
denotes the elastic stress intensity factor under the external load-
ing r1, where FðbÞ is defined in Eq. (1). The energy release rate

Fig. 1 A center-cracked viscoelastic strip of width 2W and
crack size 2a under tension

Fig. 2 The standard viscoelastic model used in the present
study
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associated with crack initiation in the viscoelastic material is cal-
culated by substituting Eqs. (10a)–(10c) into Eq. (12). This leads
to [40]

Gv
I tð Þ ¼ lim

Da!0

ðDa

0

1

Da
re

yðx;0ÞfrðtÞ
h i

ue
yðx;0ÞfuðtÞ

h i
dx¼ Ge

I frðtÞfuðtÞ

(13)

where Ge
I denotes the energy release rate from the corresponding

elastic problem in Eq. (11). The functions fuðtÞ and frðtÞ will be
determined from the correspondence principle between the visco-
elastic and elastic boundary value problems [41,42].

3.2 Energy Release Rate for Crack Initiation in Visco-
elastic Material. Applying the Laplace transform to the stress,
strain, and displacement functions in Eqs. (10a)–(10c) and the
constitutive relation Eq. (3) leads to

�ryðx; 0; sÞ ¼ re
yðx; 0Þ�frðsÞ (14)

�eyðx; 0; sÞ ¼ ee
yðx; 0Þ�fuðsÞ (15)

�uyðx; 0; sÞ ¼ ue
yðx; 0Þ�fuðsÞ (16)

�r 1þ p1sð Þ ¼ �e q0 þ q1sð Þ (17)

Here, an overbar on a variable denotes its Laplace transform.
Equation (17) corresponds to the transformed uniaxial stress-
strain relation.

For a mode I crack, the stress state ahead of the crack tip is
equi-biaxial, i.e., re

y ¼ re
x. In this state, the stress-strain relation

could be written as

ee
y ¼

q
Ee

re
y (18)

where q ¼ 1� v� 2v2ð Þ under plane strain and q ¼ 1� vð Þ
under plane stress.

After the Laplace transform, Eq. (18) becomes

�ey ¼
1þ p1sð Þ
q0 þ q1sð Þq�ry (19)

Substituting Eqs. (14) into (19) leads to

�ey x; 0; sð Þ ¼ qre
y x; 0ð Þ

�fr sð Þ 1þ p1sð Þ
q0 þ q1sð Þ (20)

which, after an inverse Laplace transform, results in

ev
yðx; 0; tÞ ¼ qre

y x; 0ð ÞL�1
�fr sð Þ 1þ p1sð Þ

q0 þ q1sð Þ

� �
(21)

Here, L�1 � � �½ � denotes the inverse Laplace transform of the brack-
eted term.

Combining Eqs. (10c), (18), and (21) yields the following
relation

fuðtÞ ¼ EeL�1
�fr sð Þ 1þ p1sð Þ

q0 þ q1sð Þ

� �
(22)

The time-dependent energy release rate can be obtained from
Eqs. (13) and (22) as

GIðtÞ ¼ Ge
I frðtÞEeL�1

�frðsÞ 1þ p1sð Þ
q0 þ q1sð Þ

� �
(23)

Substituting Eqs. (11) into (23), we have

GI tð Þ ¼
Ke

I

� �2
frðtÞ

j
L�1

�frðsÞ 1þ p1sð Þ
q0 þ q1sð Þ

� �
(24)

3.3 Flaw Tolerant Analysis With Time-Dependent Energy
Release Rate. For the center-cracked viscoelastic strip to be flaw
tolerant, the energy release rate should not exceed the fracture
energy of the material (assumed to be a material constant), i.e.,

GIðtÞ � C (25)

before the strip fails at its theoretical strength ð1� bÞrs, regard-
less of the crack size.

This condition is expressed as

ð1� bÞrs
ffiffiffiffiffiffi
pa
p

FðbÞ½ �2frðtÞ
j

L�1
�frðsÞ 1þ p1sð Þ

q0 þ q1sð Þ

� �
� C (26)

Fig. 3 Analysis of the viscoelastic strip problem with Griffith’s model of crack
growth via the correspondence principle. (a) The auxiliary problem of an elastic strip
of width 2W and crack size 2a, and (b) the corresponding viscoelastic problem.
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For a given b and loading time t0 at which the external loading
reaches the theoretical strength of the strip, Eq. (26) gives rise to a
critical strip width Wcr from GIðtÞ ¼ C as

Wcr¼
Cj

pb 1�bð Þ2F2 bð Þr2
s frðtÞL�1

�frðsÞ 1þp1sð Þ
q0þq1sð Þ

� �
								
t¼t0

; 0�b<1ð Þ

(27)

The flaw tolerant width Wft is then defined as

Wft ¼ min
0�b<1

Wcrð Þ (28)

Introducing an intrinsic length scale [6]

lft ¼
CE1
r2

s

(29)

the flaw tolerant size can be normalized as

Wft

lft

¼ min
0�b<1

j

pb 1� bð Þ2F2 bð Þ

 !
1

frðtÞL�1
�frðsÞ 1þ p1sð Þ

1þ q1s=q0ð Þ

� �
								
t¼t0

(30)

In the preceding equation, the time independent part within the
round bracket on the right side is identical to the solution for the
corresponding elastic problem [6]; the remaining part represents
the effects of the viscoelastic parameters of the strip and the load-
ing rate.

It follows that the flaw tolerant size of a viscoelastic strip is

Wft ¼
vCE1

r2
s

1

frðtÞL�1
�frðsÞ 1þ p1sð Þ

1þ q1s=q0ð Þ

� �
								
t¼t0

(31)

where v ¼ min0�b<1ðj=pbð1� bÞ2F2ðbÞÞ. Taking � ¼ 0:3 yields
v ¼ 2:1 for the plane strain and v ¼ 1:91 for the plane stress.

3.4 A Simple Example Case. As a simple example, consider
a bi-linear loading profile to the theoretical strength
r1 ¼ ð1� bÞrs, as shown in Fig. 4. The applied loading function

r ¼ r1frðtÞ ¼ r1
t

t0
� t� t0ð ÞHðt� t0Þ

t0

� �
; 0 � t <1 (32)

leads to the following displacement function

fuðtÞ ¼ Ee tþ ðt0 � tÞHðt� t0Þ þ ½Hðt� t0Þ þ 1�ðq1 � p1q0Þð1þ e½�q0ðt�t0Þ=q1�Þ
q0t0

(33)

where HðtÞ denotes the Heaviside function: HðtÞ ¼ 0 for t < 0
and HðtÞ ¼ 1 for t � 0.

For viscoelastic materials such as butyl rubber, we take the
material constants as E1 ¼ 115 MPa, E2 ¼ 130 MPa,
g ¼ 0:49 MPa s, C ¼ 0:01 J=m

2
, and rs ¼ 0:61 MPa [43], which

results in s0 ¼ 2 ms. The stress-strain relations for the butyl rub-
ber under different loading rates are shown in Fig. 5, from which
one can see that the stiffness of the viscoelastic material increases
with the loading rate s0=t0. At very low loading rates, the visco-
elastic rubber behaves like an elastic material with a long-time
modulus E1, while it assumes the instantaneous modulus E0 at
very high loading rates. Figure 6 shows the relationship between
the normalized critical strip width for crack growth versus the rel-
ative crack size under different loading rates and plane stress con-
ditions. The flaw tolerance width, corresponding to the minimum
strip width below which cracks of all sizes are tolerated, is seen to
increase with the loading rate. This is consistent with the fact that
a higher loading rate corresponds to a larger Young’s modulus;
hence, a larger flaw tolerant size.

4 Flaw Tolerant Analysis Based on Dugdale Model

4.1 Elastic Solution. Consider the elastic model shown in
Fig. 7, where an elastic strip of half-width W containing a center
crack of length 2a is subject to an applied uniaxial stress r1. The
cohesive zone ahead of the crack is l, leading to an effective crack
length of 2c with a crack tip opening displacement d and

c ¼ aþ l (34)

Within the cohesive zone, the normal traction rðdÞ is related to
the effective range of cohesive interaction dc as follows

Fig. 4 A bi-linear loading profile in the viscoelastic problem
Fig. 5 The stress-strain relationship of a viscoelastic butyl
rubber under different loading rates s0=t0
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r dð Þ ¼
rs; 0 < d � dc

0 ; d > dc



(35)

The flaw tolerance solution corresponds to a uniform distribu-
tion of the normal stress rs outside the crack region. To find the
crack tip opening displacement, the original model is divided into
three subproblems, as shown in Fig. 8: (1) a perfect crack-free
strip subjected to uniform stress r1, as shown in Fig. 8(a), (2) a
center-cracked strip with crack length 2c subject to a uniform nor-
mal compressive stress r1 on the crack face, as shown in
Fig. 8(b), and (3) a uniform normal tensile stress rs in the cohe-
sive zone of length l, as shown in Fig. 8(c). Since there is no
contribution to the crack opening displacement from the first
subproblem, the total crack opening displacement from the other
two subproblems can be found from the classical distributed
dislocation density method as (see the Appendix)

d ¼ 8rsW

pjEe
IðaÞ (36)

where

IðaÞ ¼
ðp=2

h

c0 cos X

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c02 sin2 X
p ln

sin h� sin Xð Þ 1� cosðhþ XÞð Þ
sin hþ sin Xð Þ 1� cosðh� XÞð ÞdX

Here, sin h ¼ a0=c0, a0 ¼ sinðpb=2Þ, and c0 ¼ sinðpa=2Þ. The
normalized effective crack length a ¼ c=W is deduced in the
Appendix as

a ¼ c

W
¼ 2

p
arcsin

sin
pb
2

cos
pr1
2rs

(37)

Using the preceding crack opening displacement, the flaw toler-
ant condition for the elastic strip requires

r1 ¼ 1� bð Þrs; a ¼ 1 (38)

and

d ¼ 8rsW

pjEe
IðaÞ a¼1j � dc ¼

C
rs

(39)

The flaw tolerant width is thus

Fig. 6 The normalized critical strip width W cr=l ft for crack
growth as a function of the normalized crack length b 5 a=W in
the viscoelastic Griffith problem under different loading rates

Fig. 7 A center-cracked elastic strip of width 2W subject to
remote tension r‘. The length of the cohesive zone is l and the
effective crack length is c 5 aþl.

Fig. 8 Superposition scheme used to determine the crack opening displacement in the elastic
Dugdale problem. (a) A perfect strip without crack under applied stress r‘; a strip with crack
length 2c subjected to (b) a uniformly normal compressive stress r‘ on the crack face, and (c) a
uniformly normal tensile stress rs in the cohesive zone.
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Wft ¼ min
0�b<1

Wcrð Þ ¼ min
0�b<1

dcpjEe

8rsIðaÞ a¼1j

� �
(40)

below which, cracks of all sizes are tolerated by the strip. The nor-
malized flaw tolerant width Wft is defined as

Wft

lft

¼ min
0�b<1

pj
8IðaÞ a¼1j

� �
(41)

where lft ¼ CEe=r2
s ¼ dcEe=rs is the previously mentioned intrin-

sic length scale of flaw tolerance.
Figure 9 shows the normalized critical width for crack growth

Wcr=lft versus the relative crack size b. The minimum value of
Wcr=lft yields Wft=lft, which is consistent with the earlier result
given by Gao and Chen [6].

4.2 Viscoelastic Solution. Graham’s extended correspon-
dence principle [44,45] can be used to determine the viscoelastic
solution of the crack opening displacement based on the Dugdale
model. This principle, when applied to a moving crack, states that
the stress distribution in quasi-static plane problems is the same
for elastic and viscoelastic solids under the conditions that: (1) the
crack size does not decrease (dc=dt � 0), (2) the elastic stress nor-
mal to the plane of crack prolongation is independent of elastic
constants, and (3) any dependence of the normal displacement
along the crack face on elastic constants can be written in the sep-
aration form uy ¼ f1ðE; �Þf2ðxÞ.

Consider a center-cracked viscoelastic strip subject to a uniaxial
tensile loading

r x; tð Þ ¼ r1fr tð Þ (42)

where frðtÞ is a monotonically increasing function and
0 � frðtÞ � 1. It can be shown that all three conditions of Gra-
ham’s extended correspondence principle are satisfied in the pres-
ent model.

Replacing the external loading r1 in the elastic solution to the
effective crack length a ¼ c=W by the time-dependent loading in
the viscoelastic model, we obtain the time-dependent effective
crack length directly from Eq. (37)

a tð Þ ¼ c tð Þ
W
¼ 2

p
arcsin

sin
pb
2

cos
pr1fr tð Þ

2rs

(43)

Applying the extended correspondence principle to Eq. (36)
yields the time-dependent crack opening displacement in the
viscoelastic model as

d tð Þ ¼ 8Wrs

pj
J tð ÞI c 0ð Þð Þ þ

ðt

0þ
J0 t� sð Þ @I c sð Þð Þ

@s
ds

� �
(44)

where

I c tð Þð Þ ¼
ðp=2

h tð Þ

c0 tð Þ cos X

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c0 tð Þ½ �2sin2 X

q ln
sin h tð Þ � sin X½ � 1� cos h tð Þ þ X½ �f g
sin h tð Þ þ sin X½ � 1� cos h tð Þ � X½ �f gdX

Here, sinhðtÞ ¼ a0=c0ðtÞ, a0 ¼ sinðpb=2Þ, and c0ðtÞ ¼ sinðpaðtÞ=2Þ.

4.3 Flaw Tolerance Analysis Based on the Dugdale
Model. Since the ultimate load carrying capacity of the visco-
elastic strip is ð1� bÞrs, the load on the remote boundary is taken
to be

r ¼ r1frðtÞ ¼ ð1� bÞrsfrðtÞ (45)

In the state of flaw tolerance, the crack tip opening displacement
remains below the effective interaction range dc, i.e.,

d tð Þ ¼ 8Wrs

pj
J tð ÞI c 0ð Þð Þ þ

ðt

0þ
J0 t� sð Þ @I c sð Þð Þ

@s
ds

� �
� dc (46)

Here, dc is assumed to be a material constant.
For a given b and loading time t0, there is a critical strip width

Wcr for the crack growth, i.e., dðtÞ ¼ dc

Wcr ¼
pjdc

8rs J t0ð ÞI c 0ð Þð Þ þ
ðt0

0þ
J0 t0 � sð Þ @I c sð Þð Þ

@s
ds

� �
								
t¼t0

;

0 � b < 1ð Þ

(47)

The flaw tolerant width Wft is then

Wft

lft

¼ min
0�b<1

Wcr

lft

� �

¼ min
0�b<1

pj

8 ~J t0ð ÞI c 0ð Þð Þ þ
ðt0

0þ

~J0 t0 � sð Þ @I c sð Þð Þ
@s

ds

� �
8>><
>>:

9>>=
>>;

								
t¼t0

(48)

where lft ¼ dcE1=rs is the intrinsic length [6] and ~J is the normal-
ized creep compliance defined as

~J ¼ E1J (49)

Fig. 9 The normalized critical strip width W cr=l ft for crack
growth as a function of the normalized crack length b 5 a=W in
the elastic Dugdale problem
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4.4 A Simple Example Case. Consider the same bilinear
loading profile as in Eq. (32). The normalized effective crack
length is shown to increase with the loading time in Fig. 10. The
theoretical strength is reached as the effective crack length
reaches the strip width. Figure 11 shows the normalized crack
opening displacement versus the normalized loading time for the
case of s0=t0 ¼ 0:5, b ¼ 0:33, and W=lft ¼ 1:83. The crack open-
ing displacement is found to increase monotonously and nonli-
nearly with the loading time. It is seen that even when the external
loading reaches the theoretical strength, the crack opening dis-
placement is still smaller than the effective interaction distance
dc, indicating the strip is flaw tolerant under this loading rate.

Figure 12 plots the normalized critical strip width for the crack
growth Wcr=lft as a function of the normalized crack size b under
different loading rates. For a given loading rate, there always
exists a minimum width indicated by the horizontal dashed line la-
beled as Wft, which is the flaw tolerant width below which cracks
of all sizes are tolerated. The finding that the flaw-tolerance length
scale increases with the loading rate suggests an additional protec-
tion mechanism of biological materials against impact loading: a
viscoelastic material may be more robust against catastrophic fail-
ure at rapid loading rates. This is also consistent with the hypothe-
sis that viscoelasticity could protect bone from dynamic loads
(impact and vibration) by dissipating the parts of mechanical

energy that could otherwise contribute to structural damage proc-
esses [38]. It can also be seen from Fig. 13 that, for very high or
low loading rates, the flaw tolerant width approaches the corre-
sponding elastic solution with the instantaneous or long-time
Young’s modulus, respectively. The result is consistent with the
numerical analysis of flaw tolerant adhesion between a visco-
elastic cylinder and a rigid substrate [31].

5 Discussion

The most elementary level of hierarchical structures of load-
bearing biological materials such as bone exhibits a generic struc-
ture on the nanometer length scale. At the lowest level of bone or-
ganization, type-I collagen (�1.5 nm in diameter) is assembled
into fibrils (up to 15 lm in length and 50–70 nm in diameter), and
apatite crystals, 50	 25 nm in length and width and 2–3 nm in
thickness, are nucleated at specific regions on or within the colla-
gen fibrils [38]. Previous studies have been devoted to investigat-
ing why the elementary structure of biocomposites [1,26,27,46]
along with a superhard nanocrystalline coating [47] is generally
organized at the nanometer length scale. A central hypothesis
adopted in these studies is that the load-bearing biological

Fig. 10 The normalized effective crack length as a function of
the loading time for the viscoelastic problem with b 5 0:2

Fig. 11 The normalized crack opening displacement as a func-
tion of the loading time in the viscoelastic Dugdale problem
with b 5 0:33 and W=l ft 5 1:83

Fig. 12 The nondimensional critical strip width W cr=l ft for
crack growth as a function of the normalized crack length
b 5 a=W in the viscoelastic Dugdale problem under different
loading rates

Fig. 13 The nondimensional flaw tolerance width W ft=l ft as a
function of the total loading time (different loading rates) with
b 5 0:33
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materials have been evolved to tolerate cracklike flaws at multiple
size scales. The optimal state of a material which induces the
maximum strength corresponds to a uniform distribution of stress
at failure, even in the presence of cracklike flaws. In this state, the
material fails by uniform rupture, rather than by crack propaga-
tion. This optimal state can be achieved simply by a size reduction
[1,6,8]. Most of the previous studies have been restricted to purely
elastic structures. However, as emphasized by Gao [8], the me-
chanical properties of bone and bonelike biomaterials should be
time-dependent and Lakes and Katz [48] have analyzed different
physical processes that are responsible for the viscoelasticity
behaviors of bone. Sasaki et al. [49] showed that the viscoelastic-
ity of bone can be attributed to its protein constituents. Inside the
polymeric network of many types of protein, the statistical bind-
ing and rupture of cross links result in a small long-time modulus
but a relatively stiff instantaneous response [26].

Bone, as an organic-inorganic composite, is generally able to
maintain the stiffness of mineral platelets despite its soft visco-
elastic protein constituents. This stiffness paradox has been
explained by a tension-shear chain model of a mineral-protein
composite in which the mineral platelets sustain the tensile load
while protein transfers the load between the platelets via shear de-
formation [26]. The strength of the biocomposite thus hinges upon
the strength of the mineral platelets; the latter was shown, using
the virtual internal bond method [50], to be maximized and insen-
sitive to flaws by their nanoscale size dimension [1,26]. Protein
molecules can undergo large deformations as their domains unfold
during stretching [51] and are thus naturally engineered with long
ranges of deformation that can dramatically enhance the fracture
toughness of the material. Slipping along the protein-mineral
interface can further increase the effective strain to failure. On the
contrary, the effective stress in the material is determined by the
lower bound of the protein strength, interfacial strength, and min-
eral strength. A key to increasing the first two has been attributed
to Ca2þ induced sacrificial bonds in bone [52]. The viscoelasticity
of protein can also help biocomposites dissipate fracture energy
under dynamic loads. For example, de Gennes [53] showed that
the ratio between short-time and long-time elastic moduli plays an
important factor in viscoelastic fracture energy dissipation.

In spite of the aforementioned progress, so far there are still no
viscoelastic models available to understand flaw tolerance in rate-
sensitive materials. In the present paper, fracture mechanics
concepts have been used to investigate the flaw tolerance of a
center-cracked viscoelastic strip based on the Griffith and Dugdale
models of crack growth. The classical correspondence principle
is used in the case of Griffith’s model and Graham’s extended
correspondence principle [44,45] is adopted in the case of
Dugdale’s model. For a given crack size, analytical solutions to
the critical strip width for crack growth, below which the tensile
failure of the strip would not be induced by crack propagation
but by the uniform rupture of material, is obtained for both mod-
els. In contrast to the elastic case, the critical width of the visco-
elastic strip for crack growth is found to increase with the applied
loading rate.

The flaw tolerant width, defined as the minimum critical strip
width below which cracks of all sizes are tolerated, is found to
increase with the loading rate and, in the cases of very high or low
loading rates, coincides with the corresponding elastic solutions
with an instantaneous or a long-time elastic modulus. This agrees
with the previous numerical analysis by Chen et al. [31] on the
flaw tolerance of an adhesive interface between a viscoelastic cyl-
inder and a rigid substrate.

The flaw tolerant size of an elastic structure is usually on the
nanometer length scale. The question of how this concept can be
extended to macroscopic scales through structural hierarchy has
been discussed by Gao [8]. The present analysis suggests that the
loading rate could also be utilized to switch the material between
flaw tolerance and flaw sensitive states. It should be interesting
and challenging to further study the behaviors of hierarchical
structures of rate-sensitive materials such as bone.

Furthermore, the present analysis should be useful for the
design of new implant materials. It is well known that biomateri-
als need to fulfill a series of requirements. Besides interfacial and
biological compatibility, the mechanical properties of an implant
should match, as closely as possible, those of the tissue in contact.
Besides the quasi-static mechanical properties, the need for an
implant material to have similar viscoelastic properties to the tis-
sue is, obviously, important. This means, for example, that an
implant in contact should follow the same time-dependent behav-
ior as the tissue when subjected to the same stress/strain history.
This is a major reason why the viscoelastic properties of new
materials or devices for medical applications should be carefully
evaluated [38]. Since bone is a typically hierarchical and visco-
elastic material, it remains a challenge to develop robust implants
with similar mechanical properties as the natural bone.

Acknowledgment

This work is supported by the National Science Foundation of
China (Grant Nos.10972220, 11125211, and 11021262) and the
Project No. 2012CB937500. The authors would like to thank two
anonymous reviewers for their helpful comments and suggestions.

Appendix: Approximate Solutions to Crack Opening

Displacement and Cohesive Zone Length in a Cracked

Elastic Strip

For a finite Dugdale crack in an infinite space shown in Fig. 14,
the tractions on the crack face are divided into two regions

rðxÞ ¼
�r1; xj j < a

rs � r1; a < xj j < c



(A1)

In order to find the crack opening displacement, the classical
distributed dislocation density method [54] can be used. For a dis-
location density f ðxÞ over � c < x < c, we have the relation

A

ðc

�c

f ðnÞdn
x� n

¼ rðxÞ; xj j < c (A2)

where A ¼ bjE=4p and b is the Burgers vector. Equation (A2)
can be inverted as

f ðxÞ ¼ � 1

p2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � c2
p

ðc

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � c2

p
rðnÞdn

x� n
; xj j < c (A3)

which can be further rewritten as

f ðxÞ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� c2
p

p2A

ðc

�c

rðnÞdn

x� nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2� c2

p
þ 1

p2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� c2
p

ðc

�c

nrðnÞdnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2� c2

p þ x

p2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� c2
p

ðc

�c

rðnÞdnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � c2

p
(A4)

Fig. 14 Dugdale model of a finite crack in an infinite space
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When rðnÞ is an even function of n and f ðxÞ x¼6cj ¼ 0, the second
and third terms in the preceding equation vanish so that

f ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � c2
p

p2A

ðc

�c

rðnÞdn

x� nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � c2

p (A5)

The crack opening displacement is found by integrating the dislo-
cation density from c to a

d ¼ bN ¼ b

ða

c

f ðxÞdx ¼ 2brsa

p2A
ln

c

a
¼ 8rsa

pjE
ln

c

a
(A6)

Meanwhile, the requirement that the third term on the right side
of Eq. (A4) should vanish leads toðc

�c

rðnÞdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � c2

p ¼ 0 (A7)

from which the length of the cohesive zone ahead of the crack tip
can be deduced as

� p
2

r1 þ rs arccos
a

aþ l
¼ 0 (A8)

For a finite-width strip model with a center crack, the solution
to a periodic array of cracks can be adopted to approximate the fi-
nite width problem, as shown in Fig. 15. In this case, we have

A
Xþ1

m¼�1

ðc

�c

f ðkÞdk
x� k� 2mW

¼ rðxÞ � cþ 2mW < x< cþ 2mW

(A9)

Using the following equation

Xþ1
m¼�1

1

x� k� 2mW
¼ cot

pðx� kÞ
2W

(A10)

Eq. (A9) can be simplified as

p
2W

ðc

�c

cos
pk
2W

f ðkÞdk

sin
px

2W
� sin

pk
2W

¼ rðxÞ
A

(A11)

Using the following variable transformations

k0 ¼ sin
pk
2W

; x0 ¼ sin
px

2W
(A12)

Eq. (A11) becomes

ðc0

�c0

Mðk0Þdk0

x0 � k0
¼ r0ðx0Þ

A
(A13)

where Mðk0Þ ¼ f ðkÞ and r0ðx0Þ ¼ rðxÞ .
Since Eq. (A13) has the same form as Eq. (A1), the solution

can be written as

Mðx0Þ ¼ � 1

p2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 � c02
p

ðc

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � c02

p
r0ðk0Þdk0

x0 � k0
;

� cþ 2mH < x0j j < cþ 2mH

(A14)

where c0 ¼ sinðpc=2WÞ.
In a manner similar to the single crack case, the crack opening

displacement is

d ¼ 8rsW

pjE
IðcÞ (A15)

where

IðcÞ ¼
ðp=2

h

c0 cos X

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c02 sin2 X
p ln

sin h� sin Xð Þ 1� cosðhþ XÞð Þ
sin hþ sin Xð Þ 1� cosðh� XÞð ÞdX

Here, sin X ¼ x0=c0, sin h ¼ a0=c0, and a0 ¼ sinðpa=2WÞ.
The length of the cohesive zone in the finite-width strip model

is

� p
2

r1 þ rs arccos
a0

c0
¼ 0 (A16)

which can be rewritten in the form

a ¼ c

W
¼ 2

p
arcsin

sin
pb
2

cos
pr1
2rs

(A17)
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