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Abstract Turbulent flows in a pipe with a snowflake fractal shape (SF2) orifice
are investigated using the parallelized, density-based, dynamic mesh and detached
eddy simulation code (DG-DES) (Xia, PhD thesis, 2005; Xia and Qin, AIAA 2005-
106, 2005). For comparison with the laboratory experiment, the flow is essentially
a low Mach number flow. In order to tackle the low speed problem of the density
based method, the SLAU (Simple Low dissipation AUSM) (Shima and Kitamura in
47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, AIAA 2009-136, 2009) is adopted in this paper. The scheme
exhibits low numerical dissipations for low speeds and needs no problem-dependent
“cut-off Mach number”. The results for the flows after the orifice are compared with
those of the corresponding experiment (Chong, PhD thesis, 2008). Comparisons
show good agreements in the mean velocity profiles at the different holes.

1 Introduction—Motivation

Turbulent flows can be found in many industrial processes but remain hard to tackle.
The main tools that have been proposed to understand fluid turbulence are spectral
and to a lesser extend wavelet analyses. They have shown their limits, mainly be-
cause they were just used as post-processing tools, and we are still lacking a good
understanding of the structure of turbulent flows and how they work. Fractal anal-
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yses have been around for a while in fluid mechanics but were not until recently
really related to the physics of turbulence [11] or were used as well more as a post-
processing tool [14, 22, 23] giving interesting interpretations and quantifications of
mixing or interface but links with turbulence properties were difficult to establish.

Recently a different approach has been adopted by [7, 15, 17]. Rather than trying
to understand turbulence ‘ex nihilo’ from the Navier Stokes equations or describing
the flow as an external observer, these new approaches are relying on attempts at
interacting with it from within. Although the physics of turbulent flows is still not
well understood, one property we can be sure of is the multi-scale nature of turbu-
lent flows. So, what better interaction there can be than to interact with turbulence
in a fractal manner; either through a fractal object or a numerical fractal forcing.
This new way of thinking gave rise to many different experiments, see [9] for a
good summary of fractal activities in fluid mechanics. To be complete, KS’s1 new
developments need also to be cited here as participating in that new trend at looking
at the structure of turbulent flows through fractal analysis. Though KS are not real
flows they have benefited from, and in some cases paved the way for, these recent
developments, in particular in terms of straining eddying regions [5] or stagnation
points which are the backbone of KS accuracy and have been investigated in terms
of fractal distribution (see e.g. [4, 6, 24]).

We do not want to go into details in trying to summarize all these studies exhaus-
tively here, our contribution is of a different kind at this stage: more practical than
these fundamental works on turbulence. We do not actually expect to contribute to
this new understanding of turbulence yet but rather more modestly want to use it. At
the same time fractal approaches were taking a new direction, new computational
methods were developing as well. While physicists were trying to understand more
deeply how turbulence works, engineers had to tackle more and more complex ge-
ometries and problems. Old numerical schemes as Reynolds Average Navier Stokes
(RANS) were not doing the job and LES or DNS were still (and are to be for a
long time) too time and memory consuming. Detached Eddy Simulations (DES)
emerged in this context. They were rather empirical in their construction (some
would say rather unphysical) wanting the best from both RANS and LES. By con-
trast to RANS, DES give a richer, more detailed (less averaged) picture of the flow
field but give rise to new problems, how to interface RANS and LES is at the core
of all of them. This inspired us to use DES to investigate turbulence flows in a pipe
with multi-scale fractal-shaped orifices. The use of a pipe flow was in part driven
by engineering applications where multi-scale orifices are known to give more ac-
curate flowmetres. This observation is empirical and no link with fractal geometry
has been proposed so far. In longer term we hope to understand better the physics
underlying this observation [1].

There have been numerical simulations of flows through or around fractals or
fractal forcing [10, 12, 13]. However, the Reynolds numbers achieved in DNS can
not be very high in contrast to laboratory experiments. Hence, in [10] the numerical

1We direct the reader to other papers in this Book Series for details on Kinematic Simulation (KS).
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Fig. 1 Flow setting

results could only be compared qualitatively with experimental results. These com-
parisons were however encouraging showing the need for lower Reynolds experi-
ments and higher Reynolds computations. The former is much easier than the later
and there is need for methods aiming at the modeling of fractal flows. Apart from
DNS, there is one paper [2] on a high-Reynolds number flow over a tree-like frac-
tal using large eddy simulation (LES). A renormalized numerical simulation (RNS)
was needed to model the drag of the unresolved branches of the fractal tree. The
shortcomings of numerical schemes when it comes to model fractals are mentioned
in [9]: all closures rely somehow on a hypothesis of isotropy below certain scales.
DES are no exception but because of their hybrid nature (combination of RANS
and LES-DNS) are much more versatile than other methods and perhaps amendable
because one may be able to limit the closure problem to particular regions of space
and use DNS were it is vital for accurate predictions.

We present preliminary results here in order to validate our numerical scheme
and eventually assess the feasibility of studying the turbulent flows after fractal ori-
fices by the detached eddy simulation technique (DES [19, 21]). We start from a
simple problem with a fractal star based on von Koch’s snowflake. The numerical
experiment is combined with a laboratory experiment reproducing the same con-
ditions [1, 3]. The experimental set up is shown in Fig. 1. We expect later on to
increase step by step the complexity of the fractal keeping the same fractal dimen-
sion. Thus, we do not try to keep the area constant, again our purpose is to test the
reaction of the DES model to the forcing of new scales, so our plan is to keep the
fractal dimension constant and add new scales step by step. The results presented
here are for the simple grid presented in Fig. 2 and are a first validation of the DES
code we are going to use.

The simulation is based on an density-based dynamic mesh and the detached
eddy simulation code (DG-DES) developed by [26, 27] for solving the unsteady
compressible Favre-averaged Navier-Stokes equations and the Spalart and Allmaras
(S-A) equation [20]. It is parallelized by using the Message Passing Interface (MPI)
library and the unstructured mesh partitioning tool METIS [8]. In order to tackle the
low Mach flow, the scheme is replaced by a low dissipation upwind SLAU (Simple

Fig. 2 The fractal orifice SF2
based on von Koch’s curve
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Low dissipation AUSM) scheme [18]. The results are compared with the corre-
sponding experimental results done in [1, 3].

The paper is organized as follows: the governing equations and numerical method
are simply described respectively in the second and third sections. After that, the
method is applied to investigate the turbulent flow after a snowflake fractal orifice
(SF2). The results are presented in the fourth section.

2 Governing Equations

The flows are solved by using a density-based finite volume solver using a detached
eddy simulation (DG-DES). It is known that DES [19, 21] is a combination of Large
Eddy Simulations (LES) and Reynolds Average Navier-Stokes methods (RANS).
Its main feature is that it can be automatically switched to a sub-grid scale (SGS)
model in the LES regions and to a RANS model in the RANS regions by modifying
a distance function.

For density-based methods, the flow is modeled using the unsteady compressible
Favre-averaged Navier-Stokes equations,

∂t

∫
Ω

UdV +
∫

S

FdS = 0 (1)

with the flux vector F = Fc − Fυ ,

Fc = (u · n)U + p

⎛
⎝ 0

n
u · n

⎞
⎠ , Fυ =

⎛
⎝ 0

[τ ]
[τ ] • u + q

⎞
⎠ · n. (2)

Here, U is the state vector (ρ,ρu,E)T , ρ is the fluid density, u is the flow velocity,
p is the static pressure, E is the total energy (E = ρe+0.5ρu2), n is the unit normal
direction of the surface, and [τ ] is the viscous stress tensor,

[τ ] = (μL + μtur)

[
∇u + ∇T u − 2

3
(∇ · u)[I]

]
. (3)

The heat flux q is approximated by the linear relationship

q = (κL + κtur)∇T (4)

where the thermal conduction coefficient is expressed by

κ = κL + κtur = μLcp

PrL
+ μturcp

Prtur
(5)

in which cp is the specific heat at constant pressure, PrL and Prtur are the Prandtl
numbers.

To close the system, the turbulence viscosity in Eq. (3) is calculated by

μtur = fv1ρυ̃ (6)

with the damping function,
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fν1 = χ3

χ3 + C3
ν1

, χ = ν̃

υL

. (7)

The modified viscosity υ̃ is obtained by solving the Spalart and Allmaras (S-A)
equation [20] in the whole field,

∂

∂t

∫
Ω

υ̃ dΩ +
∫

∂Ω

[
υ̃un −

(
1

συ̃

(υL + υ̃)∇υ̃

)
· n

]
dS =

∫
∂Ω

Qtur dS (8)

with the source term,

Qtur = [
Cb1(1 − ft2)S̃

]
υ̃ + 1

συ̃

Cb2(∇υ̃)2 −
(

Cw1fw − Cb1

ϕ2
ft2

)(
υ̃

d

)2

. (9)

The basic idea for DES is to separate the region of RANS and LES by modifying
the distance function in Eq. (9) as,

d̃ = min(CDESΔ,d) (10)

where CDES = 0.65, d is the minimum distance to the wall and Δ = max(Δx,Δy,

Δz) is the largest distance between the cell center under consideration and the cell
center of the neighbors.

The coefficients in these equations are chosen as,

Cb1 = 0.1335, Cb2 = 0.622, σν̃ = 2/3, Cv1 = 7.1, (11)

and

Cw1 = Cb1/ϕ
2 + (1 + Cb2)/σν̃, ϕ = 0.41. (12)

3 Numerical Discretization

To solve Eq. (3), the dual-time technique is used by solving the equivalent equations
[25],

∂t

∫
Ω

UdV + ∂U
∂W

∂τ

∫
Ω

WdV +
∫

S

FdS = 0 (13)

where W is the vector of primitive variables (p u T )T , and ∂U/∂W is the Jacobian
matrix

∂U
∂W

=

⎡
⎢⎢⎢⎢⎣

ρp 0 0 0 ρT

u1ρp ρ 0 0 ρT u1
u2ρp 0 ρ 0 ρT u2
u3ρp 0 0 ρ ρT u3

ρpH − (1 − ρHp) ρu1 ρu2 ρu3 ρT H + ρHT

⎤
⎥⎥⎥⎥⎦ . (14)

In each physical time step, we solve the equation until it reaches a steady state where
the term ∂τ

∫
Ω

WdV could be neglected. Equation (13) can be easily discretized at
each cell c by the multistage Runge-Kutta schemes,
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W(0)
c = Wm−1

c

. . .

W(i)
c = W(0)

c − αi

Δτ

V n

(
1 + Δτ

Δt

)−1(
∂W
∂U

)(i−1)

c

Res(i−1)
c ,

i = 1, . . . , p − 1

. . .

Wm
c = W(p)

c

(15)

Here, αi is the coefficient for the i-th stage, Vc is the cell’s volume, Δτ is the pseudo
time step, Δt is the physical time step, Af is the area of the face f and Resc is the
residue defined as

Resc =
∑
f

Ff

(
W−,W+,n

) · Af + Ui−1
c V n

c − Un−1
c V n−1

c

Δt
. (16)

The numerical flux Ff (W−,W+,n) is a function of the extrapolated left-side
(−) and right-side (+) values of the face f . For example, the numerical flux of
ROE scheme [16, 25] reads

FROE
f

(
W−,W+,n

) = 1

2

[
F
(
W+,n

) + F
(
W−,n

) − Dis
(
W−,W+,n

)]
. (17)

For all-speed flows, the dissipation term of ROE scheme is scaled and expressed
in the following form,

Dis
(
W−,W+,n

) = ∣∣ũb
n

∣∣Δ
⎛
⎝ ρ

ρu
E

⎞
⎠ + ρ̃δũb

n

⎛
⎝ 1

ũ
H̃

⎞
⎠ + δp

⎛
⎝ 0

n
ũb

n

⎞
⎠ (18)

with

δũb
n = M̃∗Δub

n + [
ã∗ − (1 − 2α)

∣∣ũb
n

∣∣ − αũb
nM

∗] Δp

ρ̃ũ2
ref

, (19)

δp = M̃∗Δp + (
ã∗ − ∣∣ũb

n

∣∣ + αũb
nM̃

∗)ρ̃Δub
n, (20)

M̃∗ = |ũ′
n + ã′| − |ũ′

n − ã′|
2ã′ , ã∗ = |ũ′

n + ã′| + |ũ′
n − ã′|

2
, (21)

Δ(·) = (·)+ − (·)−, ũb
n = ũ · n. (22)

The preconditioned velocity in Eq. (21) is

ũ′
n = ũb

n(1 − α) (23)

with

α = (
1 − βu2

ref

)
/2, β = ρp + ρT /(ρcp). (24)
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However, the preconditioned all-speed ROE scheme is unstable and the accu-
racy may be deteriorated in low-speed flow regions since the reference velocity in
Eq. (19) is used and defined as

uref = min
[
a,max

(|u|,K|u∞|)] (25)

where u is the local velocity, u∞ is a fixed reference speed (it is usually set to be free
stream velocity), and a is the local sound speed, K is a constant (which is chosen as
0.5).

In order to consider the low speed flows as well as preserve the accuracy, the
SLAU (Simple Low dissipation AUSM) [18] is employed. It is simple and does
not need the “cutoff Mach number” that other all-speed schemes (ex., ROE) have.
Hence, it can be applied to any low Mach number problem without further problem
dependent adjustments. The numerical flux Ff (W−,W+,n) for SLAU is defined
as

FSLAU
f

(
W−,W+,n

) = 1

2

[(
ṁ + |ṁ|)Υ − + (

ṁ − |ṁ|)Υ +] + pf bn (26)

with

Υ =
⎛
⎝ 1

u
H

⎞
⎠ and bn =

⎛
⎝ 0

n
0

⎞
⎠ . (27)

The mass flow rate and the pressure diffusion term are

ṁ = ρ−(
u−

n + q−) + ρ+(
u+

n − q+) − x
(
p+ − p−)

/af , (28)

and

pf = (
β+ − β−)(

p− − p+) + [
(1 − x)

(
β+ + β− − 1

) + 1
](

p− + p+)
(29)

with

β+ = β+(
M−

n

)
, β− = β−(

M+
n

)
, Mk

n = uk
n/af , k = −,+. (30)

The interface sound speed af and the split Mach number polynomials are defined
as

af = (
a− + a+)

/2, (31)

and

β±(M) =
{

(M±1)2(2∓M)
4 , if |M| < 1

M±|M|
2M

, else
(32)

respectively.
The other functions are defined as follows

qk = (1 − g)|ūn| + g
∣∣uk

n

∣∣, k = −,+, (33)

g = −max
[
min

(
M−

n ,0
)
,−1

] · min
[
max

(
M+

n ,0
)
,1

]
, (34)
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Fig. 3 Mesh for low speed
flow over a cylinder
(128 × 33)

|ūn| = ρ−|u−
n | + ρ+|u+

n |
ρ− + ρ+ , (35)

x = (1 − M̂)2, M̂ = min
[
1,1/af

√(
u−2 + u+2

)
/2

]
. (36)

In order to evaluate the two different schemes and choose which one to use,
the comparisons of the pressure contours between the ROE scheme and the SLAU
scheme for the 2D in-viscid low speed flow (Ma = 0.01) over a cylinder on the O-
type mesh (Fig. 3) are presented in Fig. 4. It is clear that the ROE scheme does not
perform well in this case because of the strong asymmetric nature of the pressure
contours. Whereas, the SLAU scheme shows symmetric contours as expected, so
we opt for this scheme in this paper.

Fig. 4 Pressure contours for the low speed flow (Ma = 0.01) over cylinder
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Fig. 5 Mesh

4 Results

In order to assess the ability of our density-based DES code to predict a subsonic
turbulent flow after a fractal orifice, turbulent pipe flows forced through a multi-
scale fractal-shaped orifice are investigated. A fractal shape is a geometrical shape
where an identical pattern repeats itself at different scales. Here, a snowflake fractal
shape with two iterations (SF2) is used to generate the orifice as illustrated in Fig. 2.
Its construction begins with a triangle of unit length 1, then the middle third of each
side is removed and replaced with two lines each having the same length (1/3). By
repeating this procedure twice, the snowflake fractal shape (SF2) will appear.

The experimental set up is described in more details in [1]. It consists of a wind
tunnel which is composed of two Perspex tubes, each two meter long (Fig. 1). The
two Perspex tubes have the same outer and inner diameters, respectively 150 mm
and 140 mm. A bell-mouth is put at the inlet of the first Perspex tube and the fan
motor is connected to the end of the other Perspex tube via a T-junction. The flow
is controlled in the pipe through an outlet rotating valve placed at the exit of the
Perspex pipe near the fan. The wind tunnel uses a “pull method” of drawing air
from the pipe with a valve to vary the velocity in the wind tunnel. The fractal-
shaped orifice is put after the center position 0.22 m toward the outlet. Velocity time
series are obtained using hotwire anemometry. The measurements are taken through
different holes made on the pipe wall the first one at 70 mm and then every 35 mm
from the fractal grid (see Fig. 1). At a given hole measurements are recorded at
different distances from the wall. This allows us to derive profiles of the different
velocity statistics against which the numerical results can be validated.

To investigate the performance of the present solver for turbulence flows gen-
erated by a fractal-shaped orifice, we run this case in our local cluster Bluegrid.
The mesh consists of 511908 cells as shown in Fig. 5. The inlet velocity is set to
9.4 m s−1. The mean velocity profile is a good indicator of the structure of the turbu-
lent flow. The experimental mean velocity profiles were obtained by calculating the
mean velocity at different points over a long time. To compare with the experimental
results, we export the data at the sections corresponding to the experimental results.
Note that we compare the same quantity which is the average absolute velocity (the
only one a single hotwire can measure).

The comparisons of the mean velocity profiles are conducted from hole 1 to
hole 7. The results are shown in Figs. 6–9. Figures 6 and 7 compare the mean ve-
locity profiles at the locations close to the orifice. The peak value and the shape are
very close to the experiment results although the tip of the profile does not match the
experimental result exactly. It also seems that the measurements show less suction
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Fig. 6 Mean velocity profile
at hole 1

velocity at the position which is closed to the wall. Discrepancy between the com-
putations and the experiment near the wall is less surprising if one remembers that
this is where the experimental results are the less accurate and the single hotwire
technique does not work properly. One has also to bear in mind that it is the average
absolute velocity that is shown so its convergence to zero near the wall is slower
than that of the velocity itself. However, that is one issue with DES that need to be
worked on.

Figures 8 and 9 compare the mean velocity profiles at holes 4 to 7 which are a
little further from the orifice. This time computations agree reasonably well with the
experiment. It could also be easily observed that as expected the profile is influenced
by the fractal shape at the positions which are close to the fractal orifice (Figs. 6
and 7).

Note that in our simulation the geometry is quite complex as the thickness of the
fractal-shaped orifice is very small (0.003 m) when compared to the whole length
of the pipe (4 m). Hence, an unstructured mesh (with 127520 Brick cells, 360956
Tetra cells, and 23432 Pyramid cells) has to be used and unfortunately, such mesh

Fig. 7 Mean velocity profile at hole 2, left and hole 3, right
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Fig. 8 Mean velocity profile at hole 4, left and hole 5, right

Fig. 9 Mean velocity profile at hole 6, left and hole 7, right

can not be guaranteed to be symmetric, especially in the regions which are closed to
the fractal orifice. This explains why the profiles at the holes which are closed to the
fractal are not fully symmetric. This is part of the problems that need to be solved
for using DES. It shows how complicated the flow is near the fractal orifice.

5 Conclusions

In this paper, the turbulent pipe flow through a snow flake fractal shape orifice (SF2)
is investigated by the detached eddy simulation method (DES). In order to tackle the
low speed problem by the density based method, the SLAU (Simple Low dissipa-
tion AUSM) [18] is adopted in this paper. Owing to the low numerical dissipation
in low speeds, the scheme performs well for these speeds when compared to the
ROE scheme. The results for the turbulent flows after the orifice are compared with
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those of the corresponding experiment [1, 3]. They show good agreements in the
mean velocity profiles at different holes. Results need to be improved near the walls
and near the fractal orifice. However, there is scope for using DES to study more
iterations of the fractal grid.
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