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This paper presents a set of gaskinetic solutions to the problem of unsteady collisionless
round plume development: startup and development to a steady flow; steady flow; and
shutting down from a steady flow. This can find applications in studying similar transient
plume flows from space propulsion devices. Different from many past studies, here we
consider the general situation that the average exit gas speed can be larger than zero, and
detailed geometry of the nozzle exit radius is included. A fundamental space–velocity–
time relation is adopted in this study and it plays a crucial role to obtain the complete
flowfield properties of density, velocity, pressure and temperature. This study reveals that
there are some internal complementary relations on density and momentum among these
three processes. The results involve complex integrations involving factors of time,
geometry, and specific speed ratio. Several numerical simulations with the direct
simulation Monte Carlo method validate these analytical exact results.

Published by Elsevier Ltd. on behalf of IAA
1. Introduction

High speed collisionless flows from small holes are
a fundamental fluid dynamic problem with many applica-
tions, including electronic beams [1,2], materials proces-
sing inside vacuum chambers [3], spacecraft design,
gaseous sprays, electric propulsion [4], micro-propulsion
[5], and metrology gas flows. Many investigators have
presented analytical expressions for the gas mass flow
rate through an orifice expanding into a vacuum. Just to
name a few, one of the earliest to report the efflux of gases
through circular apertures was by Liepmann [6]; Nara-
simha [7] further obtained the exact solutions of density
r Ltd. on behalf of IAA

x: +1 575 646 6111.
and velocity distributions for free molecular flows
between two chambers with different background pres-
sures, and steady state gas out of a one-dimensional exit
[8]; Brook [9] studied the gas leakage effect from a mis-
sealed spacecraft hatch by using free molecular flow from
an annulus, he assumed that the average exit velocity was
zero. Woronowicz presented [10] some concise results
for one-dimensional unsteady free jet expansion into a
vacuum. There are many existing experimental measure-
ments and numerical simulations of plasma plumes, e.g.
for materials processing. The widely used cosine law or the
Boynton/Simons plume model [11,12] provides us an
approximate farfield density distribution which takes
a form of a cosine function. However, in the literature
there are very rare analytical formulas that consider the
detailed exit geometries, high exit speed, and time. Most of
the previous work concentrates on free molecular flows
out of a highly simplified geometry and with a zero
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Fig. 1. Illustrations for the problems of round jet flow and the computa-
tion domain.

Fig. 2. Illustration for the velocity phase domain, round jet starting
up scenario.
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average exit velocity, U0 ¼ 0. In addition, many of these
results only offered farfield flow predictions and neglected
the influence of exit geometries. Dettleef [13] provided a
detailed review for plume and plume impingement in
space engineering.

There are some recent interesting developments on
analytical, high speed steady free molecular flows out of
a round exit [14]. For many applications, the jet/plume
flows are highly rarefied and the average velocities at the
exit are high, examples include electric propulsion plume
flows, e.g. jet flows from an ion thruster or a Hall thruster,
a Pulsed Plasma Thruster (PPT), and materials processing
with thin file depositions inside a vacuum chamber.
A recent study [15] indicates that for high speed jet/plume
flows, we can use the high Knudsen(Kn) number flow
solutions [14] to approximate them, even though these jets
or plumes are near continuum. This is due to the general
relation among Kn, Ma and Re numbers

Kn∼Ma=Re; ð1Þ
or physically, if the exit speed is high, molecules flow
downstream-wise so quickly that they do not have time to
collide and diffuse vertically. Indeed, it was illustrated that
even if the Knudsen number changes four or more orders,
from 100 to 0.01, the jet flowfield does not change much
[15]. This conclusion is obtained from the steady collision-
less flow situation, however, we do not see a reason that
it would not be right for an unsteady jet or plume flow.

This paper is a continued effort to further investigate
the full set of exact solutions to a high speed, round colli-
sionless jet flow, and the solutions are valid for the whole
flowfield. Because the results are very complex, we also
included several numerical validations with the direct
simulation Monte Carlo (DSMC) method [16]. The motiva-
tion for this work is very simple: there are many unsteady
jet flows cannot be well approximated with steady flow
solutions; every gaseous jet/plume flow must have a
startup process and a shut down process, even though it
is not necessary to have a steady flow state. One good
example is Pulsed Plasma Thruster (PPT) plume flows. The
results in this papers will supersede the past steady jet
flow solutions [14], by further including the factor of time;
therefore the results are more realistic and general. We
adopted a relation among velocity, location and time,
allowing us to perform a mathematical variable transfor-
mation from velocity phase ðu; v;wÞ to the round nozzle
exit geometry.

Section 2 presents the problem to be studied, and a
brief summary of some recent steady flow results; Section 3
presents the solutions to the problems of collisionless jet
startup and shutting down; Section 4 compares the analy-
tical and DSMC simulation results; and Section 5 sum-
marizes this study.

2. Steady round jet flowfield solutions with an average
exit speed U040

The flows considered in this study are transient free
molecular gases leaving a round/annular exit into a vacuum,
the exit speed is larger than zero. They include three stages:
starting up and developing towards a steady flow; steady
flow; and shutting down from a steady state. The founda-
tions and solutions to the jet startup and shutting down
process problems are the steady state flow problem. As
such, first we perform a brief review on the steady jet flow
problem and solutions.

Fig. 1 illustrates molecules flow out of a circular exit of
a radius of Rn, with an average exit velocity U0. Round jet
flows are special because they are most commonly used,
and the easiest duct shape to manufacture. An annular exit
is a more general scenario than a round jet but an annular
one can illustrate the results better with more variations in
flowfield patterns. The methods and results in this study are
applicable to both round and annular exits. The coordinate
system is common in the field, with the jet moving along
+X-axis, being normal to the exit plane and ð0;0;0Þ the
center point of the exit. To simplify the problem, we assume
that the gas at the exit is in equilibrium with a Maxwellian
velocity distribution function (VDF) which is characterized
with a uniform static temperature T0 and a uniform number
density n0, and we concentrate on the results for a flowfield
point PðX;0; ZÞ due to the symmetry [14,15].

Fig. 2 illustrates the velocity spaces for a point PðX;0; ZÞ
in front of the exit. This figure actually can display
the three jet flow problems. For a steady flow state, the
velocity domain Ω must be an infinitely long, full oblique
cone extending to the right, and it is symmetric about the
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Fig. 3. Planar jet centerline density: analytical (collisionless), DSMC
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model (continuum).
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v¼0 plane. The vertex point of the oblique-cone alike
velocity shape in the figure is shifted to the left by U0 [14].
From a point on the exit, only particles with unique
velocity components can arrive at a specific point
PðX;0; ZÞ in front of the exit. The related VDF to be
integrated is [14]

f ðu; v;wÞ ¼ n0
β0
π

� �3=2

e−β0ðu
2þv2þw2Þ; u; v;w∈Ωp;

0; u; v;w∉Ωp:

8><
>: ð2Þ

With a known velocity distribution f ðu; v;wÞ at a point
PðX;0; ZÞ, we can obtain the average flowfield properties of
number density, velocity, and pressure. The velocity com-
ponents of those particles which start from a point ð0; y; zÞ
at the circular nozzle and arrive at point PðX;0; ZÞ must
satisfy the following constraint condition [14,15]:

X−0
uþ U0

¼ 0−y
v

¼ Z−z
w

; ð3Þ

here, y¼ r cos θ, z¼ r sin θ; r; θ are the polar coordinate
variables for the exit plane. Bearing in mind that the
velocity phase for point PðX;0; ZÞ has an oblique-cone
shape with an infinite length, it is desirable to utilize a change
of variables to transform the infinite integration domain of
velocity to a finite one of the exit. From the above constraint
condition, we have

v¼ −r cos θ

X
ðuþ U0Þ; w¼ Z−r sin θ

X
ðuþ U0Þ; ð4Þ

and

du dv dw¼ ðuþ U0Þ2
X2 r du dr dθ;

then the final results for the flowfield density, velocity and
temperatures are [14,15,17]

nsðX;0; ZÞ=n0 ¼
e−S

2
0ffiffiffiffiffi

π3
p

X2

Z π=2

−π=2
dθ
Z Rn

0
rK dr; ð5Þ

UsðX;0; ZÞ
ffiffiffiffiffi
β0

p
¼ e−S

2
0ffiffiffiffiffi

π3
p

X2

n0

ns

Z π=2

−π=2
dθ
Z Rn

0
rM dr; ð6Þ

WsðX;0; ZÞ
ffiffiffiffiffi
β0

p
¼ e−S

2
0ffiffiffiffiffi

π3
p

X3

n0

ns

Z π=2

−π=2
dθ
Z Rn

0
ðZ−r sin θÞrM dr;

ð7Þ

TsðX;0; ZÞ=T0 ¼−
U2

s þW2
s

3RT0

þ4
3

e−S
2
0ffiffiffiffiffi

π3
p

X2

n0

ns

Z π=2

−π=2
dθ
Z Rn

0
Nr dr; ð8Þ

with the following integrand factors:

Q ¼ X2

X2 þ Z2 þ r2−2Zr sin θ

¼ cos 2 ψ ∑
∞

n ¼ 0
Pnð sin ψ sin θÞ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Z2
p
 !n" #2

; ð9Þ

K ¼Q2S0 þ
1
2
þ QS20

� � ffiffiffiffiffiffiffiffiffi
πQ3

q
½1þ erfðS0

ffiffiffiffi
Q

p
Þ�eS20Q ; ð10Þ
M¼ Q2 QS20 þ 1þ S0
3
2
þ QS20

� � ffiffiffiffiffiffiffi
πQ

p
½1þ erfðS0

ffiffiffiffi
Q

p
Þ�eS20Q

� �
;

ð11Þ

N¼ S0Q
2 5

4
þ QS20

2

" #
þ 1

2

ffiffiffiffiffiffiffiffiffi
Q3π

q
3
4
þ 3QS20 þ Q2S40

� �

½1þ erfðS0
ffiffiffiffi
Q

p
Þ�eS20Q ; ð12Þ

where “s” represents steady state properties. PnðÞs are the
Legendre polynomials, ψ ¼ arctanðZ=XÞ, S0 ¼ U0=

ffiffiffiffiffiffiffiffiffiffiffi
2RT0

p
.

These formulae illustrate that the free plume flowfield solu-
tions contain geometry factors of Rn;X; Z, and the velocity
factor S0. As can be seen, the problem of a three-dimensional
rarefied free plume expanding from a circular exit has
compact solutions. The flowfield solutions are complete with
ρ;U;W ; P; the integration is fast because the finite integration
domain is two-dimensional, not three-dimensional; also the
integration accuracy is enhanced because the integration
domain is finite with geometry factors rather than an open
domain with an infinite length.

It is worthwhile to compare these round jet results
with some past popular plume models. Eqs. (5)–(8) are
exact solutions to collisionless flows, but they are extend-
able to near-continuum high speed flows into a vacuum,
for the whole flowfield. While the past widely used cosine
law/Boynton/Simons plume model is a point source approx-
imation for a far-field plume, and for density only

ρðr; θÞ
ρs

∼
1
rn

cos κ π

2
θ

θmax

� �
; ð13Þ

where r; θ are the polar coordinate variables formed by
a field point and the exit origin point; κ is the so-called
beam factor, different people used κ¼ 2, 1=ðγ−1Þ, or 2=ðγ−1Þ
for different problems.

One recent paper provided some detailed comparisons
among exact analytical solutions, Eqs. (5)–(8), and several
less rarefied plume DSMC simulations [15]. In addition to
that, here we present some brief comparisons on planar jet
scenario.

Fig. 3 compares some plume flow centerline density
profiles, predicted by exact analytical solutions
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(collisionless flows), less rarefied plumes (even including
continuum flows) simulated with the DSMC method, and a
Boynton/Simons alike formula(continuum). Along the jet
centerline, the cosine law/Boynton/Simons model degener-
ates to ρðr;0Þ∼1=rn. From this figure, we can observe that:
(i) the Boynton/Simons model diverges at the nozzle exit
due to the 1=rn factor; (ii) the curvature of the Boynton/
Simons model is opposite to all other curves; (iii) the
analytical solution and the DSMC simulation results share
the same starting value and follow similar trends. We can
fairly conclude that the analytical solutions can represent
the real steady, high speed, rarefied, round jet flows into a
vacuum better.

Fig. 4 shows comparisons of density profiles from
a planar jet, along a vertical lines of X ¼ 2 m. It includes
some DSMC simulations, the analytical collisionless flow
solutions, and a Boynton/Simons alike plume model results.
As can be seen, the analytical results can be used to
approximate near continuum flows: even the Kn numbers
are different, the normalized off-centerline density profiles
degenerate and merge into one curve. By comparison, the
Boynton/Simons alike model has different profiles due to
different beam factors. Due to the real Kn number effects,
the numerical simulation results have different centerline
starting values, but it is possible that we correct these
values by using a modification factor which is related with
the Kn number.

These two figures illustrate that the cosine law plume
model is not ideal to simulate the problem of high speed,
rarefied jet into a vacuum, but the exact collisionless flow
solutions can approximate the jet flows much better.

3. Unsteady collisionless round jet startup and shutdown

This section discusses the other two problems of jet
startup and jet shutting down, first we revert to Fig. 2 to
discuss a jet starting up. Particles starting from a point
ð0; y; zÞ at the exit arrive at point PðX;0; ZÞ at time t if their
velocity components satisfy the following extra relations:
X=ðuþ U0Þ ¼ τ, ð0−yÞ=v¼ τ and ðZ−zÞ=w¼ τ, with τot.
They actually split the large oblique cone alike velocity
phase in Fig. 2 into two parts. The left side of the cone with
dashed lines is for those molecules that have not arrived at
point PðX;0; ZÞ due to their slow speeds. As such, the left
side of plane ED can be used to represent the shutdown
portion of particles, when the ED plane moving to the left.
The right portion of the oblique cone, represents those fast
molecules that have already reached PðX;0; ZÞ and con-
tribute to the flowfield properties. By merging these three
constraining relations, we obtain the following velocity–
space–time relation:

X
uþ U0

¼ Y−y
v

¼ Z−z
w

¼ τ: ð14Þ

This relation restricts the integration domain to the left
portion of the oblique cone-alike velocity phase,
u∈ð−U0;X=t−U0Þ. It can be proven, similar to the steady
flow case, the properties for an unsteady shutting down
process, at point PðX;0; ZÞ and time t is

neðX;0; Z; tÞ

¼ 2n0e−S
2
0ffiffiffi

π
p 3X2

Z ffiffiffiffi
β0

p
X=t

0

Z Rn

0
r dr

Z π=2

−π=2
dθ s2e−s

2=Qþ2sS0 ds;

ð15Þ

ðneUeÞðX;0; Z; tÞ
ffiffiffiffiffi
β0

p
¼ 2n0e−S

2
0ffiffiffi

π
p 3X2

Z ffiffiffiffi
β0

p
X=t

0

Z Rn

0
r dr

Z π=2

−π=2
dθ s3e−s

2=Qþ2sS0 ds;

ð16Þ

ðneWeÞðX;0; Z; tÞ
ffiffiffiffiffi
β0

p
¼ 2n0e−S

2
0ffiffiffi

π
p 3X3

Z ffiffiffiffi
β0

p
X=t

0

Z Rn

0
r dr

Z π=2

−π=2
dθðZ−r sin θÞs3e−s2=Qþ2sS0 ds;

ð17Þ

Pe

p0
ðX;0; Z; tÞ ¼−

U2
e þW2

e

3RT0

ne

n0

þ 4
3

e−S
2
0ffiffiffi

π
p 3X2

Z ffiffiffiffi
β0

p
X=t

0

Z Rn

0
r dr

Z π=2

−π=2
dθ

s4

Q
e−s

2=Qþ2sS0 ds:

ð18Þ
Here “e” represents a shutting down process property over
a domain, it contains factors of exit geometry, time and
speed ratio. The above results are convenient for computer
evaluations. To reduce the computation cost, we can
further integrate those “s” factors out and obtain several
finite integrations. However, the results are very complex.
By using those complex integration formulas in the appendix,
we have

neðX;0; Z; tÞ ¼
2n0e−S

2
0ffiffiffi

π
p 3X2

Z Rn

0
r dr

Z π=2

−π=2
dθ

Q2S0
2

"

−
Q

ffiffiffiffiffi
β0

p
X

2t
þ Q2S0

2

 !
e−β0X

2=t2Qþ2
ffiffiffiffi
β0

p
X=tS0

þ

ffiffiffiffiffiffiffiffiffi
πQ3

q
4

ð1þ 2S20Q ÞeS20Q erf

ffiffiffiffiffi
β0

p
X

t
ffiffiffiffi
Q

p −
ffiffiffiffi
Q

p
S0

 !
þ erfð

ffiffiffiffi
Q

p
S0Þ

" #35;
ð19Þ
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ðneUeÞðX;0; Z; tÞ ¼
2n0e−S
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π
p 3X2

Z Rn
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�dθ −
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These new formulas reduce the integration domain, from an
open three-dimensional ðu; v;wÞ (extending to infinity), to
one finite range evaluation of r; θ for the exit. Hence both the
computation accuracy and the speed are greatly enhanced. It
is also observable that when time is infinitely long, all
properties approach to zero. This means the jet completely
stops. This state will never reach because there will always be
extremely slow particles from the exit to arrive this
flowfield point.

From Fig. 2 actually we can observe some internal
relations among the processes of jet startup and shutting
down: their unsteady phase velocity domains are the two
parts of a full cone alike domain for a steady jet, as such,
they are complementary. From this relation and the gaski-
netic definitions of density and momentums, we can imme-
diately obtain that their summation shall be the steady state
results. However, we shall not use this relation for pressure
computations.

The startup process can be computed similarly and the
results are

nbðX;0; Z; tÞ ¼ ns−
2n0e−S

2
0ffiffiffi

π
p 3X2

Z ffiffiffiffi
β0

p
X=t

0

Z Rn

0
r dr
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dθ s2e−s

2=Qþ2sS0 ds; ð23Þ
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r dr
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dθ s3e−s

2=Qþ2sS0 ds; ð24Þ
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dθðZ−r sin θÞs3e−s2=Qþ2sS0 ds; ð25Þ

PbðX;0; Z; tÞ
p0
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b þW2
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3RT0
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n0
þ Ps−PeðX;0; Z; tÞ

p0

þ U2
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s

3RT0

ns

n0
−
U2

e þW2
e

3RT0

ne

n0
; ð26Þ

where “b” represents a starting up process property. These
unsteady results are more general than the steady solu-
tions, Eqs. (5)–(8), due to the unsteady term. Meanwhile,
these results are applicable for the entire flow field in
space.

The above results of jet starting up are different from
the past results by Bender [18]. First, our results are based
on the past solutions for high speed, high Kn number,
steady, round jet; second the new results of start up are for
the whole flowfield while Bender results are limited to
centerline; third, the results in this paper can fully inte-
grate out the time factor but reserve the θ factor; while
Bender's results keep the time factor as an integral variable
but integrate the θ out, which only holds along the
centerline.

Before we proceed to the next section for validations,
we compare several formulas for the density distribution
along the jet centerline, to demonstrate the difference
among this paper and the previous ones in the literature.

The first one is the traditional, zero exit average velocity
S0 ¼ 0, collisionless, steady, circular hole problem with
Rn¼0, in the literature (e.g. [16]):

n1ðXÞ
n0

¼ 1
2

1−
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ R2
n

q
0
B@

1
CA; ð27Þ

the second one is the traditional one-dimensional, zero
average exit velocity S0 ¼ 0, collisionless, unsteady, circular
hole with Rn¼0, shutting down problem, in the literature
[16]:

n2ðX; tÞ
n0

¼ 1
2
erfc

ffiffiffiffiffi
β0

p
X

t

 !
; ð28Þ

the third one is the non-zero average exit speed, S040,
collisionless, steady, from a finite size circular exit with
Rn40, obtained recently [14]:

n3ðXÞ
n0

¼ 1
2
þ 1
2
erfðS0Þ−

X

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ R2

n

q e−S
2
0=ðX=RnÞ2þ1
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the fourth one is the non-zero average exit speed, S040,
collisionless, unsteady, circular exit with Rn40, jet shutting
down problem, from this paper
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here we define Q1 ¼ X2=ðX2 þ r2Þ.

4. Simulations and discussion

Although the above complex results involve several
integral terms that cannot be explicitly evaluated, to eval-
uate these concrete and explicit formulas is relatively faster
and convenient than numerical simulations. Because the
flows in this study are highly rarefied, the DSMC method is
one of the most feasible simulation methods. Experimental
results are not ideal because collisions are inherently
included. In this study, we used a specific DSMC package
named GRASP-P [19], which was developed with Objected-
Oriented-Programming style, to perform the simulations.
The collision function in GRASP is turned off. As the results,
the value of the molecular exit number density is irrelevant
and true free molecular flows are created. Here we empha-
size that this paper is about analytical studies or develop-
ment on new unsteady jet flows into a vacuum, and
numerical simulations are only used to validate the results
—readers shall not consider this paper on computational
fluid dynamics.

We chose round and/or annular exit shapes to perform
the simulations. The simulation domain is illustrated in
Fig. 1, and the boundary conditions are very simple: the
bottom side is an axis symmetric line; the left bottom
corner is an inlet to the flowfield with zero exit thickness,
i.e., the exit nozzle has no length, representing a round or
an annular exit; while the rest portion of the left side, the
top and the right sides are set to vacuum conditions. At the
inlet, we assume that the gas is at equilibrium state and
it is approximated with a Maxwellian distribution function
which is characterized by number density, temperature
and average exit velocity.

For the DSMC simulations, the characteristic exit speed
ratio is set to S0 ¼ 2:0, at exit the gas temperature is set to
T0 ¼ 300 K. The circular radius or the annular width is set
to 0.5 m. These analytical results we obtained and listed in
the previous sections are exact from a mathematical point
of view, but they highly depend on the incoming boundary
conditions.

For a steady jet flow, to reduce the statistical scatters in
the DSMC simulation results, we can use many sampling
steps. For the unsteady flows of jet starting up and
shutting down, we cannot use too many time steps,
neither a large time step, during the sampling process;
instead we used a relatively large number of particles,
fewer sampling steps, and a shorter marching time incre-
ment for sampling. A large sampling size requires a larger
computing machine, or we shall use an improved DSMC
method; both are active research topics right now. Bearing
these challenges in mind, these new analytical formulas
show their outstanding features over DSMC simulations:
e.g. for our first test case with t=Tn ¼ 0:25, it only took
several seconds to evaluate, but with the same computer, it
took more than 10 min to evaluate with the DSMC methods.
Of course, the later depends on different number of particles
and time steps. The present DSMC results are time-averaged
results over a small time span, and the time span will be
given wherever needed.

Fig. 5 shows the steady state number density for
a round jet flow with Kn¼ 100. The results include DSMC
simulation data, analytical formula (Eq. (5)), and the cosine
law plume model. In general, the DSMC and analytical
results have essentially identical agreement, but the cosine
law/Boynton/Simons plume model has problems at the jet
exit plane. The plume expands quickly into a vacuum and
the exit lip is a singularity point with very large gradients.

Fig. 6 shows the steady state U-velocity component.
Without any inter-molecule collisions, all particles from
the jet exit move forward, and no negative U-velocity
component observed. This picture also shows symmetric
patterns at the centerline axis, with ∂ðUÞ=∂n¼ 0. The exit
lip is still a s ingularity point because the velocity compo-
nents change from very large values to almost zero just
above the lip because of no particles moving upward. This
picture also illustrates that a large portion of diffusion
is due to the differences among particle velocities, rather
than inter-molecular collisions. Inside the plume core, the
average molecule speeds approach to an asymptote.

Fig. 7 illustrates the V-velocity component for a round
jet into a vacuum. Results from the analytical expression of
Eq. (7) are on the top while the DSMC simulation results
are at bottom. Along the axis centerline, the V-velocity
component must be zero due to the symmetric boundary
condition. Along the vertical line above the exit, the
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V-velocity component must also be zero because no
particles can reach that location without inter-molecular
collisions. In the plume core around the centerline, the
forward moving particles are dominating because of the
high exit speed. Even though there are molecules with
V-velocity component larger than zero, the small time
period does not allows them to move upward too much.

Fig. 8 shows the steady jet pressure contours.
The DSMC simulation and analytical results are almost
identical, and the flow patterns are very similar to the
density contours.

For the above contours we just discussed, the flowfield
is steady, the scatters are low because we can achieve large
sampling size by using both many time steps and also
many particles, theoretically we can achieve an infinitely
large sampling size so the flowfield has zero statistical
scatters. However, for the unsteady flowfield evolution,
the situations are different. The sampling size is limited by
the number of particles we used during the simulation,
and the time steps we used for sampling. The former
is limited by the computer memory. As to the time steps,
because it is very difficult to use ensemble simulations, we
need to sample, starting earlier and ending later, than the
time that we want to capture the flowfield. For example,
if we want to capture the jet starting up flowfield at the
very moment of t=Tn ¼ 1:0, where Tn is the characteristic
time period defined as Tn ¼ ðR2−R1Þ=

ffiffiffiffiffiffiffiffiffiffiffi
2RT0

p
for an annular

exit in this paper, we may need to sample within
0:95ot=Tno1:05. The results for unsteady flowfield may
have larger statistical scatters due to an insufficient sam-
pling size, and we can only expect the analytical and DSMC
simulation results with fair agreement in this paper.

The next pictures are about unsteady round or annular
jet starting up or shutting down flows into a vacuum.
Figs. 9–12 show the unsteady development of jet shut-
down at the time t=Tn ¼ 0:25. Compared with the steady
state, the DSMC simulation results have large statistical
scatters. Because faster molecules leave the simulation
domain quickly, the remaining particles have lower macro-
scopic velocities which result in relatively larger the
scatters. By comparisons, the analytical results offer us
zero statistical scatter results, which theoretically can only
be obtained by DSMC with an infinitely large sampling
size. All the flowfield patterns on the left close to the exit
are mild or smooth, and no singularity points exist. These
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smoother flow patterns indicate that the flowfield contains
more uniform speed particle after a shutdown process
starts, in fact, only slow particles can stay in the flowfield
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with a longer time. Figs. 13–16 show a startup process
of density, X-, Y-momentum and pressure development at
t=Tn ¼ 1:0. As time goes by, a jet expands into a vacuum,
the analytical, DSMC simulation results are sufficiently
close to validate the startup stage formulas.

5. Summary

In this study, a gaskinetic model for unsteady, high
speed, free molecular gas flowing out of a circular/annular
exit is investigated analytically and the results are validated
by DSMC particle simulations. One velocity–position–time
relation, Eq. (14), guided us to obtain the unsteady flowfield
solutions. The time factor works as a limiter to determine
the integration domain. This study yielded a full set of
analytical solutions for the properties at an arbitrary flow-
field point. These analytical and particle simulation results
capture salient features of the entire flow field.

Because these analytical results include exit geometry,
R1 and R2, time, and exit speed ration S0, as such they are
for the full flowfield and more comprehensive than many
current plume models. For example, the widely used tradi-
tional cosine law/Boynton/Simons plume model is merely a
point source, density only, stead plume model.

This study also revealed that there are very simple
complementary relations among the density, momentum
properties for the jet startup, steady, and shutdown
process, although these results themselves are very com-
plex. The solutions can find applications in micro-manu-
facturing, materials processing, and space engineering.
They offer physical insights into the transitional gas flow
regime (from collisionless to near continuum), less com-
puter memory, zero statistical scatters, and a reduction in
computation time.
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Appendix: Several used complex integrations

Z a

0
e−s

2=Qþ2sS0 ds¼
ffiffiffiffiffiffiffi
πQ

p
2

eS
2
0QA; ð31Þ

Z a

0
se−s

2=Qþ2sS0 ds¼ Q
2
½1−B� þ S0

ffiffiffiffiffiffiffiffiffi
πQ3

q
2

eS
2
0QA; ð32Þ

Z a

0
s2e−s

2=Qþ2sS0 ds¼ Q2S0
2

−
Qa
2

þ Q2S0
2

 !
B

þ

ffiffiffiffiffiffiffiffiffi
πQ3

q
4

eS
2
0Q ð1þ 2S20Q ÞA; ð33Þ

Z a

0
s3e−s

2=Qþ2sS0 ds¼ Q2

2
ð1þ QS20Þ

−
Q
2
ða2 þ Q þ QS0aþ Q2S20ÞB

þ½3þ 2S20Q �

ffiffiffiffiffiffiffiffiffi
πQ3

q
4

eS
2
0QQS0A; ð34Þ

Z a

0
s4e−s

2=Qþ2sS0 ds¼ 5Q3S0
4

þ Q4S30
2

−
Q
2
B

a3 þ 3
2
Qaþ 5

2
Q2S0 þ a2QS0 þ Q2S20aþ Q3S30

� �

þ

ffiffiffiffiffiffiffiffiffi
πQ3

q
4

eS
2
0Q

3
2
Q þ 6Q2S20 þ 2Q3S40

� �
A: ð35Þ

Here we define the following symbols to simplify the
expressions:

A¼ erf
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