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We consider the motion of a liquid film falling down a locally heated planar substrate. Marangoni effect
due to the local temperature gradients at the free surface induces a three dimensional interfacial defor-
mation near the vicinity of the heater. The objective of the present paper is to study the influence of
streamwise arrangement of the heaters of rectangular shape or with infinite spanwise lengths on the
structure of interfacial deformation and the stability of the film. The problem is studied in the framework
of longwave theory. We studied the influence of mutual location of heaters on the steady state of the film.
As the film is heated by heaters with infinite/finite spanwise lengths, 2D/3D steady states exist. A linear
stability analysis is performed with respected to both the 2D and 3D basic state. The results show that the
mutual location of heater plays an important role in the stability and transient behavior of the film for 2D
steady state. However, the 3D steady state of a film heated by rectangular heaters is linear stable. This
means that the 3D steady state is a coherent structure in films heated by rectangular heaters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics, stability and rupture of thin liquid films are
encountered in many areas of engineering, geophysics, and bio-
physics, including cooling technologies, nanofluidics, microfluidics,
and coating. The effects of thermocapillarity on the instability of
flow in thin liquid layers on a solid support have been extensively
studied both theoretically and experimentally. For thin films uni-
formly heated from below, surface-tension-driven Bénard convec-
tion can exhibit a longwave primary instability [1] that differs from
the classical Marangoni instability with a short wavelength re-
ported by Pearson [2].

In recent years, increasing performance demands in semicon-
ductor technology, including shrinking feature size, increasing tran-
sistor density, and faster circuit speeds, have resulted in very high
chip power dissipation and heat fluxes. It is also leading to greater
non-uniformity of on-chip power dissipation, creating localized,
sub-millimeter hot spots, often exceeding 1 kW/cm2 in heat flux,
which can degrade the processor performance and reliability [3].
Similar developments are underway in microwave integrated cir-
cuits and power amplifier chips, with even higher localized heat
fluxes and heat densities. The industrial and technological applica-
tions mentioned above involve thin liquid films on locally heated
substrates. To avoid the reduction of their performance by film
breakdown it is of crucial importance to understand when and
why instabilities arise that may result in rupture of the film. Under-
standing the physical mechanisms of instability and rupture behav-
ior is also highly desirable for the requirement of seeking effective
ways to suppress the rupture of locally heated films.

Kabov [4] first studied the motion of the flow in a locally heated
film experimentally. Subsequent experimental studies on the
instability of locally heated falling films have been reported in Refs.
[5–7]. These experimental results reveal the occurrence of novel ef-
fects: the competing flows produce a horizontal band of increased
film thickness at the upper edge of the heater (‘horizontal bump’),
which may become unstable and develop rivulets periodic in the
direction transverse to the flow. For more details of the phenome-
non of ‘horizontal bump’ and ‘rivulet structures’, we refer the read-
er to the review article by Kabov [8].

Skotheim et al. [9] applied longwave theory to study the instabil-
ity with respect to 2D stead basic state of a falling film over a locally
heated substrate. The authors derived a Benney like equation to de-
scribe the nonlinear evolution of the film, in which the inertial terms
are neglected. Their results show that a rivulet instability occurs
with a finite transverse wavelength. Moreover, the calculated film
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Nomenclature

Bi Biot number
Bo Bond number
d distance between two heaters
g vector of gravitational acceleration
g gravitational acceleration
h film thickness
H far upstream film thickness
Ĥ amplitude of the normal mode disturbance of the film

thickness
k wavenumber
L linear operator of the stability problem
L length scale in the streamwise direction
Lx,Ly wavelengths in the x and y directions
lx, ly sizes of the heater in the x and y directions
Ma Marangoni number
n normal vector to the surface
p pressure
q local flow rate
r ratio of ly/lx
T temperature
DT temperature difference in the film
t tangential vector on the surface
t time
u velocity vector

u velocity components in the x direction
v velocity components in the y direction
w velocity components in the z direction
(x,y,z) Cartesian coordinates

Greek symbols
a Newtonian’s heat transfer coefficient
C stress tensor
c surface tension variation with temperature
� small parameter for longwave expansion
h incline angle of the substrate
q density
l dynamic viscosity
m kinematic viscosity
j thermal diffusivity
v thermal conductivity
r surface tension
x frequency of the disturbance

Subscripts
0 base state
r, i real,imaginary part
¥ ambient gas phase far away from the interface

z

x

g

0
TT

H

heater

y

Fig. 1. Sketch of the physical model of a thin film flowing down a locally heated
plane.
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profile and wavelength of the most unstable mode at the instability
threshold are in qualitative agreement with the experimental re-
sults. Kalliadasis et al. [10] studied the same problem as that in
Ref. [9] using an integral-boundary-layer approximation of the Na-
vier–Stokes equations. The computations have demonstrated that
the free surface develops a bump in the region where the wall tem-
perature gradient is positive. The results of the linear stability of this
bump with respect to disturbances in the spanwise direction re-
vealed the existence of both a discrete and an essential spectrum.
The essential spectrum is always stable, but the discrete spectrum
is unstable beyond a critical Marangoni number for a band of wave-
numbers in the spanwise direction. Tiwari et al. [11] studied the sta-
bility and transient dynamics of thin liquid films flowing over
locally heated surfaces. Because the linearized operators governing
the evolution of perturbations are nonnormal due to the spatial
nonuniformity of the base state, the authors used a nonmodal, tran-
sient analysis to determine the maximum amplification of small
perturbations to the film.

Frank [12] has performed a numerical simulation of the 3D
structure formation by solving the Navier–Stokes equations using
the method of particles for incompressible fluid. The formation of
periodic rivulet-like structure has been simulated and compared
with the experimental results. More recently, Frank and Kabov
[13] experimentally and numerically studied the regular structure
formation in a film falling down a vertical plate with a built-in rect-
angular heater. The authors have studied the dependencies of the
critical Marangoni number and the wavelength of the most unsta-
ble mode on the Reynolds and Weber numbers. Kabova et al. [14]
have investigated the influence of the spanwise and streamwise
arrangement of the rectangular heaters on 3D structures of the film
surface by solving the nonlinear evolution longwave equation.

In the present work, we investigate the influence of mutual
location of heaters on the dynamics of a thin film falling down a lo-
cally heated plate. The longwave approximation is used to reduce
the Navier–Stokes equations with free-surface boundary condi-
tions to a nonlinear partial differential equation for the evolution
of the local height of the free surface. We will study two typical
cases, i.e. the heaters with rectangular shapes and with infinite
spanwise lengths. We solved the 2D and 3D steady states using
Newtonian iteration method for these two cases, respectively.
Moreover, we studied the linear stability and nonmodal stability
of locally heated films for these two typical cases.

The present paper is organized as follows. In Section 2, the
mathematic formulation of the physical model is presented. In Sec-
tion 3, the results and discussions are presented on the problem of
steady state. In Section 4, the results and discussions is presented
on the linear stability analysis and nonmodal stabilities. In Sec-
tion 5, we summarize the results and present the conclusions.

2. Mathematical formulation

Consider a thin liquid film falling down an inclined substrate
with inclination angle h with respect to the horizontal direction,
as shown in Fig. 1. The coordinate system is constructed with x
in the streamwise direction, y the spanwise direction and z normal
to the substrate. A heater or a couple of heaters is embedded in the
substrate and produces the temperature field T0(x,y) at the plate
surface. Far upstream of the heater, the film has constant thickness,
H. The thickness of the film is denoted by h(t,x,y). The velocity field
u, temperature T and pressure p of the film are governed by the
continuity equation, the Navier–Stokes equation and the energy
equation for incompressible Newtonian fluids:
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$ � u ¼ 0; ð1Þ

@u
@t
þ u � $u ¼ � 1

q
$pþ mr2uþ g; ð2Þ

@T
@t
þ u � $T ¼ jr2T; ð3Þ

where q, m and j are the density, kinematic viscosity and thermal
diffusivity of the fluid, and g is gravitational acceleration.

At the substrate surface (z = 0), the no-slip and no-penetration
boundary conditions are satisfied,
uðx; y;0Þ ¼ 0: ð4Þ

The heater at the substrate surface is assumed to be a good conduc-
tor of heat, and produce a temperature distribution at wall as

Tðx; y;0Þ ¼ T0ðx; yÞ: ð5Þ

At the free surface (z = h(t,x,y)), the normal and tangential stress
balances are

n � C � n ¼ rð$s � nÞ; ð6Þ
t � C � n ¼ �t � $sr; ð7Þ

where C is the stress tensor, r is the surface tension, $s is the sur-
face gradient operator, and n and t are the unit vector in the norm
and tangent directions at the interface. We assume that the surface
tension is linear dependent on the temperature, i.e. r = r0 -
� c(T � Ts), in which c is the surface tension variation with temper-
ature, r0 is the surface tension at the reference temperature Ts.

The boundary condition of the temperature at the free surface is
given by Newton’s cooling law,

�v @T
@z
¼ aðT � T1Þ; ð8Þ

in which v is the thermal conductivity of the liquid and a is the
Newton’s heat transfer coefficient describing the rate of heat trans-
port from the liquid to the ambient gas phase with temperature T¥

far away from the interface.
The kinematic boundary condition at the interface is

@h
@t
þ $ � q ¼ 0; ð9Þ

in which q ¼
R h

0 u½ofortt�d½cfortt�z is the flux.
For the present problem, an appropriate choice of the length

scale and the time scale is based on a balance of viscous and grav-
itational forces [9]. The dimensionless variables (primed) are de-
fined by

x ¼ Lx0; y ¼ Ly0; z ¼ Hz0;

u ¼ g cos hH2

m
u0; v ¼ g cos hH2

m
v 0; w ¼ g cos hH3

mL
w0;

p� p1 ¼ qgL cos hp0; t ¼ mL

g cos hH2 t0; T � T1 ¼ DTT 0;

ð10Þ

where L is the length scale in the streamwise direction over which
temperature varies, p¥ is the ambient pressure, DT is the tempera-
ture jump at a heater. Applying standard lubrication theory in terms
of the parameter � = H/L, after dropping the primes, we obtain the
leading-order equations:

@2u
@z2 �

@p
@x
þ 1 ¼ 0; ð11Þ

@2v
@z2 �

@p
@y
¼ 0; ð12Þ

@p
@z
¼ 0; ð13Þ

@2T
@z2 ¼ 0: ð14Þ
At z = 0, the boundary conditions are

u ¼ v ¼ 0; T ¼ T0ðx; yÞ: ð15Þ

At z = h(t,x,y), the boundary conditions are

@T
@z
þ BiT ¼ 0;

@

@z
u

v

� �
¼ �Ma$Ti; ð16Þ

p ¼ � 1
Bo
r2h; ð17Þ

where the Biot number Bi, the Marangoni number Ma and the Bond
number are defined as

Bi ¼ aH
v ; Ma ¼ cDT

HLqg cos h
; Bo ¼ qgL3 cos h

Hr0
: ð18Þ

Solving this set of equations, we obtain the interfacial temperature
Ti and the velocity components in the streamwise and the spanwise
directions as

Ti ¼
T0ðx; yÞ
1þ Bih

; ð19Þ

u

v

� �
¼ � z2

2Bo
$r2h� z2

2
1
0

� �
þ z

a

b

� �
; ð20Þ

in which

a

b

� �
¼ h

Bo
$r2hþ

1
0

� �
h�Ma$Ti: ð21Þ

Integrating u and v from 0 to h, we can obtain the expression of q as

q ¼ h3

3Bo
$r2hþ h3

3
1
0

� �
�Ma$Ti

h2

2
: ð22Þ

Substituting Eq. (22) into the kinematic relation in Eq. (9), we ob-
tain the evolution equation of the thickness of the film,

@h
@t
þ $ � h3

3Bo
$r2h� h2

2
Ma$Ti

 !
þ 1

3
@h3

@x
¼ 0: ð23Þ

In the present paper, we will study the influence of the shape and
the mutual location of heaters on the dynamics of the thin film.
We define lx and ly as the streamwise and the spanwise sizes. For
a couple of heaters, we define d as the distance between the centers
of heaters. For a heater with a finite streamwise length (lx) and an
infinite spanwise length, the temperature at the plate surface can
be prescribed as

T0ðxÞ ¼ f ðxÞ ¼ 0:5½tanhðx� lx=2Þ � tanhðxþ lx=2Þ�: ð24Þ

For a heater with a rectangular shape (lx � ly), the temperature at
the plate surface can be prescribed as

T0ðx; yÞ ¼ f ðx; yÞ
¼ 0:25½tanhðx� lx=2Þ � tanhðxþ lx=2Þ�½tanhðy
� ly=2Þ � tanhðyþ ly=2Þ�: ð25Þ

For a couple of heaters arranged in the streamwise direction with a
distance of d, the temperature at the plate surface can be given as

T0ðx; yÞ ¼ f ðx� d; yÞ þ f ðx; yÞ: ð26Þ
3. Base state

The steady base profile is found by seeking solutions of h(x,y).
For the case of heaters with infinite spanwise lengths, the temper-
ature profile T0 is one dimensional. In this case, the base profile is
uninform in the spanwise direction and has the form of h(x). For
the case of rectangular heaters, we aim to seek the 3D steady
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profile in the form of h(x,y). Let @th = 0, we obtain the following
nonlinear differential equation for the steady profile of the film

@

@x
�3Ma

2
@Ti

@x
h2 þ 1

Bo
@

@x
r2hþ 1

� �
h3

� �
þ @

@y
�3Ma

2
@Ti

@y
h2 þ h3

Bo
@

@y
r2h

" #
¼ 0: ð27Þ

This equation is to be solved with the far-field boundary condition
h ? 1 as x ? ± ¥. We have now introduced new lengthscales, Lx and
Ly, the x, y periods of the array. For 2D problem, in the limit of infi-
nite Lx ? ¥ we recover the case of a single or a pair of heaters. The
periodic solutions of Eq. (27) is obtained by a parametric continua-
tion method combined with Fourier expansions. We start with the
flat-film solution at Ma = 0 for fixed Bo and Bi by increasing Ma to
the desired value. In each step of increasing Ma, a Newtonian iter-
ation method is used to solve the nonlinear equation for h.

In Fig. 2, base profiles are plotted for a thin film heated by a sin-
gle heater and a couple of heaters with infinite spanwise lengths.
As shown in Fig. 2, at the upstream edge of the heaters, the
Marangoni stress induced by temperature gradient opposes the
flow of the film, resulting in the thickening of film to maintain a
constant flow rate and forming pronounced thermocapillary
ridges. In the case of only one heater, a bump structure has been
formed in this figure. In the case of a couple of heaters, for d = 2
two bumps has been formed at the upstream edge of the two heat-
ers. The amplitude of the downstream bump is smaller than that of
the upstream one. As the distance increases to d = 4, it is found that
the two bumps almost have the same height. These bumps can be
unstable to infinitesimal disturbance. We will study the influence
of the mutual location on the stability of the film in the next
section.

Being similar to films heated by heaters with infinite spanwise
length, for films heated by rectangular heaters a steady state of the
interfacial deformation exists. However, for thin films heated by
rectangular heaters, the base profiles are three dimensional.
Fig. 3 displays the base profiles for films heated by a single rectan-
gular heater. In each figure in Fig. 3, the film thickens in the upper
stream direction near the heater. Two lateral waves are formed
near the lateral sides of the heater and extend to a distance much
x

h
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Fig. 2. The film profiles of the steady solutions for films heated by heaters with
infinite spanwise length and streamwise length lx = 2. The other parameters are
Bi = 0, Ma = 5.0 and Bo = 10.
longer than the heater length in the downstream direction. The
film thickens in the lateral waves and thins in the inner regions
near the lateral waves. As shown in Fig. 3(a) for a rectangular hea-
ter with lx = ly = 2, only one thinning wave is present in the inner
region between the two lateral waves in the downstream direction.
The position of the minimum film thickness occurs in the down-
stream direction near the heater. With the increase of the spanwise
length of the heater, as shown in Fig. 3(b) and (c) for ly = 8 and
ly = 16 two thinning waves appear in the inner region. The position
of the minimum film thickness occurs in the inner region near the
lateral of the heaters in the downstream direction.

In order to know the effect of mutual location of heaters on the
structure of steady profile, we plot in Fig. 4 the contour of thick-
ness of the film heated by a couple of heaters with distance d = 5.
In Fig. 4(a) for heaters with lx = ly = 2, two lateral waves are
formed from the first heater and extend to a long distance in
the downstream direction. The film thickens in the upstream
direction near the first heater and in the lateral waves. The posi-
tion of the minimum thickness of film occurs in the downstream
direction near the second heater. In Fig. 4(b) and (c) for heaters
with wider spanwise lengths, the film thickens in the upstream
directions near the two heaters. Being different from the case
heated by a single heaters, two lateral waves are formed from
the second heater in Fig. 4(b) and (c). In Fig. 4(a)–(c), the position
of the minimum film thickness always occurs in the downstream
direction near the second heater.

In order to know the influence of the shape of heater on the rup-
ture of the film, we plot in Fig. 5 the minimum thickness of the film
at various Marangoni numbers for various ratios of r = ly/lx. In
Fig. 5(a) for films heated by one heater, the minimum thickness de-
creases with the increase of the Marangoni number. As the
Marangoni number approaches to a certain value (Mac), the mini-
mum thickness decreases dramatically to zero. We should note
that Mac here is not is related to the threshold for instability. Here
Mac has been redefined as the value at which the minimum film
thickness tends to zero. Unless stated otherwise Mac means the
threshold for instability. For r = 1, the Maragoni number at which
film rupture occurs is slightly greater than 1. In this figure, Mac in-
creases with the increase of r. As r increase to 8, film rupture occurs
at Mac � 3. This result shows that increasing the spanwise length of
the heater can inhibit the rupture of the film. In Fig. 5(b), the curves
of minimum thickness of films heated by a couple of heaters are
plotted for various r. Comparing the curves in Fig. 5(b) and (a),
we find that film rupture occurs at a lower Marangoni number
for a film heated by two heaters than by one heater.

The Biot number is an important parameter to influence the
rupture and stability of a locally heated film. In Fig. 6, we plot
the curves of the minimum thickness at different Biot numbers.
For each case in Fig. 6, the minimum thickness increases signifi-
cantly with the Biot number when Bi is small. For larger Boit num-
bers, the minimum thickness gradually increases with the increase
of Bi. This result indicates that the increase of the Biot number will
inhibit rupture of the film.
4. Linear stability analysis

For films heated by heater with finite spanwise length, the
thickness of the basic state displays a 3D structure. To study the
linear stability of 3D steady state to infinitesimal perturbations, a
small perturbation to the film thickness is imposed,

hðx; y; tÞ ¼ h0ðx; yÞ þ eh1ðx; y; tÞ; ð28Þ

with e� 1. Here, h0(x,y) denote the film thickness of the steady
base state.

At last, we obtain the linearized equation
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Fig. 3. The isoline of the 3D structure of the surface of film. The values of the isolines denote the thickness deviation with respect to the mean thickness. The size of the heater
is (a) lx = 2, ly = 2 (b) lx = 2, ly = 8, (c) lx = 2, ly = 16. The other parameters are Ma = 1.0, Bi = 0 and Bo = 10. Wavelengths are Lx = Ly = 40.
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@

@t
h1 þ @x �

1
2

Ma½h2
0ð@xTiÞ0 þ ð@xTiÞ02h0h1�

�
þ 1

3Bo
½ð@xr2h0Þ3h2

0h1 þ h3
0@xr2h1� þ h2

0h1

�
þ @y �

1
2

Ma½h2
0ð@yTiÞ0 þ ð@yTiÞ02h0h1�

�
þ 1

3Bo
½ð@yr2h0Þ3h2

0h1 þ h3
0@yr2h1�

�
¼ 0; ð29Þ

in which
@Ti

@x

� �0
¼ � @xT0

ð1þ Bih0Þ2
Bih1 �

T0Bi@xh1

ð1þ Bih0Þ2
þ 2T0Bi@xh0

ð1þ Bih0Þ3
Bih1; ð30Þ

@Ti

@y

� �0
¼ � @yT0

ð1þ Bih0Þ2
Bih1 �

T0Bi@yh1

ð1þ Bih0Þ2
þ 2T0Bi@yh0

ð1þ Bih0Þ3
Bih1: ð31Þ

For heaters with finite/infinite spanwise lengths, the steady state is
three-dimensional/two-dimensional. Assuming an exponential
time dependence for h1, we use a perturbation of the form

h1ðx; y; tÞ ¼ eĤðx; yÞe�ixt ; ð32Þ
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Fig. 4. The 3D structure of the surface of film heated by a pair of heaters. The size of the heater is (a) lx = 2, ly = 2, (b) lx = 2, ly = 8, (c) lx = 2, ly = 16. The other parameters are
Ma = 0.5, Bi = 0 and Bo = 10. Wavelengths are Lx = Ly = 40.
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for 3D stability problem, and

h1ðx; y; tÞ ¼ eĤðxÞe�iðxt�kyÞ; ð33Þ

for 2D stability problem, where x is the complex frequency and k is
the spanwise wavenumber. Substituting Eq. (32) into Eq. (29) yields
the eigenvalue problem in the form of

xĤ ¼LĤ; ð34Þ
where L is a linear operator. In order to study the stability, we as-
sume the periods of array in x and y directions are Lx and Ly. The
eigenvalue problem is solved numerically by a Fourier collocation
method. Ĥ is expanded by a global Fourier spectral series in the
streamwise and spanwise coordinates x, y

Ĥðx; yÞ ¼
XM

m¼M

XN

n¼N

eHm;ne
i2pmx

Lx e
i2pny

Ly : ð35Þ
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Wavelengths are Lx = Ly = 40.
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We then substitute Eq. (35) into Eq. (34) and apply the resulting
equations at 2M and 4MN collocation points for 2D and 3D prob-
lems. Therefore, we obtain a set of 2M � 2M and 4MN � 4MN eigen-
value problems for 2D and 3D cases. For more detail about the
Fourier collocation method, we refer the readers to the book by
Canuto et al. [15].

To know the stability of the disturbances, we will solve all the
eigenvalues of x. The growth rate of the amplitude of a given mode
is determined by xi = Im(x): The amplitude of disturbance will
grow exponentially in time if xi > 0 and will decay exponentially
if xi < 0. The eigenvalue with the largest imaginary part of x, cor-
responds to the most unstable mode.

In order to know the effect of mutual location of the heaters on
the stability of the films heated by heaters with infinite spanwise
length, in Fig. 7 we plot the curves of the dispersion relation for
a film heated by one heater and a pair of heaters with different dis-
tances d. As shown in Fig. 7(a) for Bi = 0, each curve consists of two
branches. The left branch is an oscillatory branch with a non-zero
real part of x. The right branch is a static branch with a zero real
part of x, which corresponds to the rivulet instability. For a film
heated by two heaters with d = 1, the dispersion curve is almost
indistinguishable to that of a film heated by one heater. With the
increase of d, it is found that both the oscillatory and the static
branches become more unstable. Moreover, the oscillatory branch
extends to the shortwave region with the increase of d. In Fig. 7(b),
oscillatory branch does not appear in the cases of one heater and
d = 1,2. As d increase to 4, the oscillatory branch begins to appear
in the longwave region. Being similar to the curves in Fig. 7(a)
for Bi = 0, the timegrowth rate increases with the increase of d.

In Fig. 8, we plot the curves of the timegrowth rate of the most
unstable mode versus the Marangoni number for the case of
Bo = 10, Bi = 0.1. The period of the heater array is Lx=20. For period
located heaters, the growth rate is always great than zero for all
Marangoni numbers. It is found that at large Ma the increase of
xi is proportional to the increase of Ma. At large Ma, it is found that
the time growth rate is very close to the case of Lx �! ¥. This result
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Fig. 7. Dispersion relations of the growth rate xi versus the wavenumber k. (a) For Ma = 5.0, Bi = 0, Bo = 10; (b) for Ma = 5.0, Bi = 0.1, Bo = 10. Wavelength Lx = 20, lx=2.
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is consistent to the result in Ref. [9]. For Lx �! ¥, it is found that the
critical value of the Marangoni number is in insensitive to the dis-
tance between the heaters. The critical Marangoni number for
instability is Mac � 6 for all cases in Fig. 8.

We have also solved the eigenvalue problem for films heated by
heaters with finite spanwise lengths. The results show that there is
no unstable mode for the 3D stability problem. This means the 3D
steady state is always stable in the framework of modal stability
analysis.
5. Nonmodal stability analysis

For locally heated films, the dynamics of infinitesimal
disturbances can be described by a linear operator d

dt h1 ¼ �iLh1.
When the 2D base states are spatially nonuniform, thin liquid films
with thermocapillary stresses give rise to non-normal linear opera-
tors with eigenvectors that are not orthogonal. For a non-normal lin-
ear system, transient amplification due to the interaction of the
nonorthogonal eigenvector could lead to a large growth of finite-
amplitude disturbance at short time. For a locally heated film, the
disturbance that undergoes a substantial amplification at short time
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Fig. 8. The growth rate for the most unstable mode, xi, versus Marangoni number
with Bo = 10, Bi = 0.1. Wavelength Lx = 20, lx = 2.
may lead to rupture of the film. So, understanding the short-time
behavior of the disturbance may be of crucial importance to stabilize
the film. Tiwari et al. [11] have studied the transient amplification
using nonmodal analysis for the 2D problem of thin liquid films
flowing over a heater. In the present paper, we will study the tran-
sient amplification for thin liquid films heated by a couple of heaters,
and examine the influence of the arrangement of heaters on the non-
modal stability. Moreover, we will study the nonmodal stability of
disturbance for the 3D problem.

In the nonmodal theory, two types of problems are of particular
interest, i.e., response to external excitations and transient energy
growth of initial conditions. For the former, the norm of resolvent
denotes the maximum amplification of external excitations; for the
latter, the growth function G(t) identifies the optimal growth of en-
ergy at time t. The concept of numerical range can be used to link
the operator to the initial energy growth. The numerical range is
defined as

WðAÞ ¼ fx�Ax : x 2 CN; kxk ¼ 1g; ð36Þ

in which A 2 CN�N . The numerical abscissa of A is defined as:

xðAÞ ¼ sup
z2WðAÞ

ReðzÞ ¼ lim
t!0

d

dt
keAtk: ð37Þ

The main application of numerical range is to the analysis of energy
growth for initial-value problems. The numerical abscissa of �iL
corresponds to the initial growth rate of the energy growth
function.

We begin with the responses to external excitations. Suppose a
linear system is driven by a harmonic signal qin with a frequency of
x. Then the response qout and the input signal qin satisfy the
equation
@

@t
qout ¼ �iLqout þ qin: ð38Þ

From Eq. (38), we obtain the response qout in the form of

qoutðx; y; z; tÞ ¼ iðxI�LÞ�1qinðx; y; zÞ: ð39Þ

Here I is the identical matrix. The solution operator ðxI�LÞ�1 is
known as the resolvent.

We denote the maximum amplification of a disturbance at fre-
quency x by RðxÞ. RðxÞ is equal to the norm of the resolvent and
expressed as

RðxÞ ¼ sup
qin–0

kqoutk
kqink

¼ kðxI�LÞ�1k: ð40Þ
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Fig. 9. The pseudospectra and spectrum for a thin film heated by heaters with infinite spanwise length. (a) One heater, (b) d = 1. The spanwise wavenumber k = 1. The other
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Here k � k denotes a norm on CN , ‘‘sup’’ denotes the maximum. An
eigenvalue of L is a number x such that kðxI�LÞ�1k ! 1. Gen-
eralizing this result leads naturally to the definition of ‘‘� � pseudo-
spectrum’’. For any �P 0, the ‘‘�-pseudospectrum’’ of L is defined as

K�ðLÞ ¼ fx 2 C : kðxI�LÞ�1kP ��1g: ð41Þ

The resolvent norm represents the amplification of response to
external forcing.

The behavior of a non-normal operator depends on not solely
the eigenvalues, but the structure of �-pseudospectra. In Fig. 9,
we present the spectrum and pseudospectra for films heated by
heaters with infinite spanwise length. In Fig. 9(a) and (b), the struc-
tures of the spectrum and pseudospectra are qualitatively similar.
The most amplified mode is static and locates in the unstable half
plane. The other modes are oscillatory and stable. The curve of the
boundary of numerical range enters the unstable half plane. This
means the disturbance has a potential to be substantially ampli-
fied. In the complex x plane, we are particularly interested in
the resonance along the real axis because it corresponds to exter-
nal excitations at real frequencies. In Fig. 9(a) and (b), the isolines
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Fig. 10. The pseudospectra and spectrum for a thin film heated by heaters with finite
parameters are Ma = 1 for (a) and 1.8 for (b), Bi = 0, Bo = 10. Wavelength Lx = 40, Lx = 40.
of the pseudospectra show that the external forcing is amplified
the most in the low frequency limit of x = 0, and with the increase
of jxj the amplification decreases.

In Fig. 10, we present the spectrum and pseudospectra for films
heated by heaters with finite spanwise lengths. For 3D steady state,
all the eigenvalues are stable and most of them locate in the imag-
inary axis. The boundary of the numerical range only slightly en-
ters the unstable half plane. This means that the transient
growth of the disturbance is weak.

Now we examine the problem of response to initial conditions.
The general solution to d

dt h1 ¼ �iLh1 is h1ðtÞ ¼ expð�iLtÞh1ð0Þ.
The maximum amplification of an initial perturbation over the
time interval t is the given by

GðtÞ ¼ sup
hð0Þ–0

kh1ðtÞk
kh1ð0Þk

¼ k expð�iLtÞk: ð42Þ

In Fig. 11, the curves of the transient energy growth are plotted for
films heated by heaters with infinite spanwise lengths. For Ma = 5,
Bi = 0.1 and Bo = 10, we have shown that the film is unstable. So,
disturbances of the most unstable mode will grow exponentially
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spanwise length. (a) Heater size lx = 2, ly = 2, (b) heater size lx = 2, ly = 8. The other
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with time. However, in Fig. 10 each curve of the optimal distur-
bance experiences an obvious transient growth before the exponen-
tial growth. This means the transient growth could result in the
rupture of the film. As shown in this figure, with the increase of
the distance between two heaters, both the transient growth and
the optimal time increase.

We also examine the transient growth for films heated by heat-
ers with finite spanwise lengths. In this case, the results show that
the transient growth is very weak for the 3D problem. For films
heated by heaters with finite spanwise lengths, the 3D steady state
is a coherent structure. So, in this case the rupture of the film is
mainly determined by the structure of 3D steady state.

6. Conclusions

In the present paper, the effects of mutual location and the
shape of the heaters on the dynamics of thin films flowing over lo-
cally heated plates have been examined. We focused on the influ-
ence of heaters on the steady state and the stability of the film. For
films heated by one heater or a couple of heaters with infinite
spanwise wavelength, a 2D steady state exists. This 2D steady state
can be unstable when the Marangoni number exceeds the critical
value Mac. For films heated by heater array with the period of Lx,
the timegrowth rate is always positive at Ma > 0. As Lx ? 0, the
critical Marangoni number Ma � 6 for Bi = 0.1 and Bo = 10. The
curves of the timegrowth rate consist of two branches. The left
branch is an oscillatory branch, and the right branch is a static
branch, which corresponds to the rivulet instability. With the in-
crease of the distance between two heaters, both the oscillatory
branch and the static branch become more unstable.

For films heated by heaters with finite spanwise lengths, a 3D
steady state of the interfacial deformation exists. We have shown
that this 3D steady profile is always stable with respect to infinites-
imal disturbances. So, the rupture of film is only determined by the
3D steady state. For a film heated by a single heater, it thickens in
the upper stream direction near the heater. Two lateral waves are
formed near the lateral sides of the heater, and the film thickens in
the lateral waves and thins in the inner regions near the lateral
waves. The position of the minimum film thickness occurs in the
downstream direction near the heater. For films heated by a couple
of heaters, the position of the minimum film thickness always oc-
curs in the downstream direction near the second heater. In this
case, the minimum thickness decreases with the increase of the
Marangoni number.

We have also studied the nonmodal stability of films heated by
one heater and a couple of heaters. For films heated by heaters
with infinite spanwise lengths, a substantial transient energy
growth is found for disturbances with finite amplitude. However,
for films heated by heaters with finite spanwise lengths, the tran-
sient growth is very weak. So, the 3D state is stable in the frame-
work of both the modal and the nonmodal theories. This means
that the 3D steady state is a coherent structure for films heated
by heaters with finite spanwise lengths.
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