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ABSTRACT Mode jumping is an instability phenomenon in the post-buckling region, which
causes a sudden change in the equilibrium configuration and is thus harmful to structure. The con-
figuration of a partial elastic foundation can directly induce mode coupling from the buckling stage
and through the whole post-buckling region. The mode coupling effect due to the configuration of
partial foundation on mode jumping is investigated and demonstrated to be an important factor
of determining mode jumping. By properly choosing the partial elastic foundation configuration,
mode jumping can be avoided.

KEY WORDS instability mode jumping tertiary jumping buckling, beam elastic foundation

I. INTRODUCTION
When the axially compressive force of a rectangular plate or a beam on an elastic foundation reaches

the lowest critical value, the structure experiences supercritical pitchfork bifurcation and deflects to
a stable post-buckling configuration if the force is further increased[1,2]. The stability of structure
in the post-buckling region may be terminated by what is often referred to as secondary buckling
or mode jumping[3–13]. Mode jumping is a post-buckling instability phenomenon, which is usually
marked by a sudden (dynamic) equilibrium configuration change to a new wave pattern of shorter
wavelength in loading direction[9,11]. Mode jumping is also demonstrated to be the phenomenon that
structure reconfigures its post-buckling equilibrium configuration to stay stable[13]. By using the theory of
singularities and Lyapunov-Schmit procedure, Cheng et al.[12] show that there are forty-five possible post-
buckling bifurcation scenarios for a hinged-hinged rectangular plate on a nonlinear elastic foundation
and there are several bifurcation scenarios in which mode jumping can occur. Mode jumping is a
rather complex phenomenon with many factors playing roles in it. For example, Supple[6] shows that
the difference/‘nearness’ between different buckling loads is an important parameter influencing mode
jumping. Therefore, the buckling loads of different modes are usually studied prior to investigating the
mode jumping in the post-buckling region[11,13,14]. The structure initial imperfection[7,13] and boundary
conditions[11] also have significant impact. The initial imperfection[13] or a bracing spring[14] couples
the modes from the buckling stage and the boundary conditions determine the mode shape, which in
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essence affects the modes interaction and, as a result, can significantly influence the mode jumping
scenario[7,13]. A comprehensive investigation on factors such as the initial imperfection, post-buckling
deflection pattern, secondary buckling value and boundary conditions, etc is presented by Uemura
and Byon[5]. However, the influence of the configuration of a partial elastic foundation, to our best
knowledge, is so far not investigated yet. For a beam on a full elastic foundation, when mode jumping
occurs, the modes are uncoupled as shown by Supple’s theory[6,13]. In contrast, the partial elastic
foundation configuration couples the modes from the buckling stage and modes are thus coupled when
mode jumping occurs. The mode coupling effect on mode jumping is incorporated in Supple’s theory of
a two degrees-of-freedom (DOF) system[6]. However, the mode coupling/interaction in Supple’s theory
is between two modes. In reality, more than two modes can participate in the structure postuckling
deflection as shown in Ref.[13] and this study. The model presented here can incorporate an arbitrary
number of modes and the interactions between several models can thus be shown. The elastic foundation
here presented is a nonlinear one. From the viewpoint of contact mechanics, the interaction between a
beam and its supporting substrate is nonlinear[15,16]. The nonlinear elastic foundation model has been
used to analyze the buckling propagation and arrest of a pipeline[17], the delamination of sandwich
structure driven by buckling[18]. Compared with the linear elastic foundation model, the nonlinear
elastic foundation model is found to better and more realistically describe the behavior of a system[19].

As the buckled structure still maintains the load-carrying capacity, it has been the source of comfort
for a designer to allow for the compressive load larger than its buckling load[5,11]. Mode jumping is a
post-buckling instability and mode jumping causes a sudden change in the structure equilibrium, which
in general is harmful to the structure. Therefore, besides the buckling load, the load of mode jumping is
also an important design parameter. The hard film/soft substrate composite structure has been utilized
to form the film waviness with a large wave number[20,21], which has been utilized to manufacture high-
performance flexural electronics[21]. In terms of modeling , the substrate is an elastic foundation and
film is a beam/plate[20–22]. Waviness, which is also variably called wrinkling, undulation, convolution
and ripple[22], is a result of the (post)-buckling of film[20–22]. The nominal compressive strain of such
a film/substrate system can be as large as 24%[21], which means severe post-buckling and is also large
enough for us to concern about the mode jumping instability of the system. Physically, film may not
everywhere be well-bonded with substrate because of the interfacial flaw or the delamination driven
by buckling[22] or an external load[23]. Furthermore, the out-of-plane bending deformation of a flexural
structure can also lead to the separation from its supporting substrate[24,25]. The configuration of the
partial foundation is often encountered in the real world. For instance, in the stability study of a fluid
conveying pipe, the configuration of elastic partial foundation is effectively used as a mechanism to alter
and control the system stability[26,27]. Some insights into the stability control for the beam-on-elastic-
foundation system by altering the elastic partial foundation configuration are revealed in this study.
Mode jumping is also shown to be avoidable by properly configuring the elastic partial foundation.

II. MODEL DEVELOPMENT
2.1. Equation of Equilibrium

Figure 1 shows the schematic diagram of a hinged-hinged beam on a partial nonlinear elastic foun-
dation and the related dimensions. The nonlinear elastic foundation starts from x = a and ends at
x = b. The beam bending energy Ub is given as follows:

Ub =
EI

2

∫
L

0

w2
,xx

dx (1)

where EI is the bending stiffness of the beam; E and I are the beam’s Young’s modulus and moment
of inertia, respectively. w is the beam deflection and w,xx = d2w/dx2. The work done by compressive
force p at the beam ends is given as follows:

Wp =
p

2

∫
L

0

(w,x + wo,x)
2
dx (2)

where wo is the beam initial imperfection. K is the nonlinear elastic foundation modulus and defined
as follows[13]:

K = k1 + k2 (wo + w)
2

(3)
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Fig. 1. The schematic diagram and dimensions of the structure.

k1 and k2 are two given constants. The potential energy stored by the elastic foundation is

Uf =

∫
b

a

∫
w

0

[
k1 + k2 (wo + w)2

]
(wo + w)dwdx

=

∫
b

a

(
k1wow +

1

2
k1w

2 + k2w
3
o
w +

3

2
k2w

2
o
w2 + k2wow

3 +
1

4
k2w

4

)
dx (4)

The equilibrium condition requires the system strain energy potential to be stationary, i.e., δ(Ub +
Uf −Wp) = 0, the equation of equilibrium is thus obtained as follows:

∫
L

0

[EIw,xxxx + p (w,xx + wo,xx)] dx +

∫
b

a

[(
k1 + 3k2w

2
o

)
w + 3k2wow

2 + k2w
3 +
(
k1w

+
o

k2w
3
o

)]
dx = 0

(5)
Unlike the differential governing equation of a fully supported beam[11,13,14], Eq.(5) now becomes an
integrodifferential equation due to the partial foundation configuration. For a hinged-hinged beam, the
following boundary conditions hold.

w(0) = 0, w,xx(0) = 0, w(L) = 0, w,xx(L) = 0 (6)

To non-dimensionalize Eq.(5), the following symbols are introduced

ξ =
x

L
, W =

w

L
, Wo =

wo

L
, ξa =

a

L
, ξb =

b

L
(7)

Now the dimensionless equation of equilibrium is

∫ 1

0

[W,ξξξξ + β1 (W,ξξ + Wo,ξξ)] dξ +

∫
ξb

ξa

(
β2W + β3W

2 + β4W
3 + β5

)
dξ = 0 (8)

βis (i = 1 to 5) are defined as follows:

β1 =
pL2

EI
, β2(ξ) =

k1 + 3k2w
2
o

EI
L4, β3(ξ) =

3k2wo

EI
L5, β4 =

k2

EI
L6, β5(ξ) =

k1wo + k2w
3
o

EI
L3 (9)

W is assumed to have the following solution form for a hinged-hinged beam on an elastic foundation[13,14],

W =

N∑
j=1

aj sin(jπξ) (10)

aj is an unknown constant and N is the mode number. The Galerkin method is used to discretize Eq.(8)
and the Newton-Raphson method to solve the nonlinear equation set of aj

[13].
The linear part of Eq.(8), which is used to determine the buckling loads (of different modes), is

obtained below by truncating the nonlinear parts.

∫ 1

0

[W,ξξξξ + β1 (W,ξξ + Wo,ξξ)] dξ +

∫
ξb

ξa

(β2W + β5) dξ = 0 (11)



Vol. 26, No. 5 Yin Zhang et al.: Jumping Instabilities in the Post-Buckling of Beam · 503 ·

2.2. Eigenvalues of the Linearized Equation of Equilibrium

The purpose of finding the eigenvalues of the linearized equation of equilibrium is to tell whether a
given equilibrium is stable or not[13]. W is now written as the following two parts:

W = Weq + W̄ (12)

Weq is the equilibrium solution that satisfies Eq.(8). W̄ is the (virtual) small deviation from the equi-
librium. Plug Eq.(12) into Eq.(8)∫ 1

0

[
Weq,ξξξξ + W̄,ξξξξ + β1

(
Weq,ξξ + W̄,ξξ

)]
dξ +

∫
ξb

ξa

[
β2

(
Weq + W̄

)
+ β3

(
W 2

eq + 2WeqW̄ + W̄ 2
)

+β4

(
W 3

eq + 3W 2
eqW̄ + 3WeqW̄

2 + W̄ 3
)

+ β5

]
dξ = 0 (13)

By taking the linear terms of W̄ and using the fact that Weq satisfies Eq.(8), the linearized integrodif-
ferential equation around the equilibrium is now obtained as follows:∫ 1

0

(
W̄,ξξξξ + β1W̄,ξξ

)
dξ +

∫
ξb

ξa

(
β2W̄ + 2β3WeqW̄ + 3β4W

2
eqW̄
)
dξ = 0 (14)

This equation is also discretized by the same Galerkin method and W̄ is also assumed as

W̄ =
N∑

j=1

bj sin(jπξ) (15)

bj is unknown constants and Eq.(14) is then discretized as follows:

MB = 0 (16)

M is an N ×N matrix and each element Mij is given as follows:

Mij =

∫ 1

0

sin (iπξ)

[
d4 sin (jπξ)

dξ4
+ β1

d2 sin (jπξ)

dξ2

]
dξ

+

∫
ξb

ξa

(
β2 + 2β3Weq + 3β4W

2
eq

)
sin (iπξ) sin (jπξ) dξ (17)

B is the vector defined as follows:

B
T = {b1, b2, b3, ....., bN} (18)

Now the eigenvalue problem of a system around the equilibrium is to solve the eigenvalues of matrix
M .

III. RESULTS AND DISCUSSIONS
Four cases are selected for the comparison study. The full foundation case[11,13] is selected to account

for the comparison. The partial foundation configuration of a = 0, b = 0.5L is chosen since this con-
figuration maximizes the participation of the antisymmetric second mode (sin(2πξ)) in the deflection
from the buckling. The configuration of a = 0.2L, b = 0.8L is picked as a symmetric partial foundation
study case. The asymmetric configuration of a = 0.2L, b = 0.7L is presented as a comparison to the
case of a = 0.2L, b = 0.8L to show how this relatively small asymmetry can dramatically affect the
beam post-buckling behavior.

3.1. Full Elastic Foundation Case of a = 0, b = L

The analysis in Ref.[13] focuses more on the tertiary jumping and here the analysis is on the mode
coupling. Here wo is set as 0 and EI = 1 N×m2, k1 = 1 N× m−2[28,14] and k2 = 1 N× m−4[13] for
simplicity and comparison reasons. The buckling load for the m-th mode is given by Timoshenko[28]

as follows:

pm =
π2EI

L2

(
m2 +

k1L
4

m2π4EI

)
(19)
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m is a given integer. The buckling loads of different modes versus the beam length are plotted in Fig.2.
For the full elastic foundation of a = 0, b = L, the beam with L = 4.3 m buckles with the first mode
of sin (πξ), which is marked as a circle in Fig.2. The length of L = 4.3 m is very close to the transition
length of 4.45 m[13,14,28]. The transition lengths marked as triangles in Fig.2 are the crossing points of
buckling load curves of different modes. When L > 4.45 m, the buckling load of the first mode becomes
larger than that of the second mode; the buckling load of the second mode then becomes the lowest
among all buckling loads of modes and beam buckles with the second mode. When L keeps increasing
to 7.7 m, the buckling load of the second mode will surpass that of the third; when L increases to
10.86 m, the buckling load of the third mode surpasses that of the fourth and so on and so forth. The
buckling load of the beam with L = 4.3 m on a full elastic foundation is p = 2.42 N, which is marked
as a circle in Fig.2. For all cases studied here, L is set as 4.3 m (thus the beam buckles with the first
mode) and mode jumping is expected to occur as from the first mode to the second mode for the full
elastic foundation case[11]. The state space, which is made up of a control parameter and three modal
amplitudes, is introduced as (p, d1, d2, d3)

[13,14]. p is the control parameter of compression force. d1, d2

and d3 are the amplitudes of sin (πξ), sin (2πξ) and sin (3πξ) at a given p. At the first buckling point,
(p, d1, d2, d3) = (2.42, 0, 0, 0). Other higher modal amplitudes can also be introduced to the space.
For all the cases computed here, the mode number N of the Galerkin method is taken as N = 6. For the
problem analyzed here, the computation shows the contribution of other higher modes to the deflection
is trivial and thus not included in the state space defined above.

Fig. 2. The buckling loads of different modes for different beam lengths of the full foundation case.

Figure 3(a) shows the path with mode jumping. The solid line indicates the stable equilibrium and
dashed one the unstable. The first buckling point is (2.42, 0, 0, 0) marked by a circle in Fig.3(a). The
modes remain uncoupled all the time. u1 and u2 are marked to designate the amplitudes of sin (πξ)
and sin (2πξ) at p = 2.82 N, at which mode jumping occurs. r2 and r22 are marked to designate the
amplitudes of sin (2πξ) at different compressive loads. When the beam buckles at p = 2.42 N and enters
the post-buckling region, the amplitude of sin (πξ) begins to increase from zero while the other modal
amplitudes still remain zero. At (p, u1, 0, 0) = (2.82, 0.12657, 0, 0), the equilibrium consisting of
only the first mode sin (πξ) becomes unstable and mode jumping occurs. Under the same compressive
load p, the equilibrium solution jumps to (p, 0, u2, 0) = (2.82, 0, 0.184, 0). The stability is told
from Eq.(16), which will be discussed later. Mode jumping is the consequence of losing stability in
the post-buckling region and snap-through change of equilibrium with a prescribed compressive load.
After the system equilibrium jumps to the configuration consisting of only sin (2πξ), for unloading,
the equilibrium will follow the branch to (p, 0, r2, 0) = (2.64, 0, 0.074, 0), at which the system
loses stability again and jumps to the equilibrium configuration consisting of only sin (πξ). If unloading
continues, the equilibrium consisting of only sin (2πξ) is unstable and finally reaches the buckling point
of the second mode, marked by (p, 0, r22, ; 0) = (2.6, 0, 0, 0). From the first buckling to mode jumping
and after mode jumping, the modes on this path stay uncoupled. Either mode 1 or mode 2 exists. The
post-buckling equilibria as shown in Fig.3(a) exactly match the ones predicted by Supple’s theory[7]

as shown in Ref.[13]. The detailed derivation of Supple’s theory on this particular problem is given
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Fig. 3. (a) The post-buckling path with mode jumping, which is a natural loading path; (b) The post-buckling path with

tertiary jumping, which is not a natural loading path.

in Appendix. Supple’s theory is in essence an approximate theory, which truncates the higher order
differential terms[7,13]. Figure 3(b) shows the path with tertiary jumping. u1 (the same u1 as mentioned
above), s1 and ns1 are marked in Fig.3(b) to designate the amplitudes of sin (πξ) at different ps. u3

(which is zero), s3 and ns3 are marked to designate the amplitudes of sin (3πξ). As shown in Fig.3(a),
mode jumping occurs at (p, u1, 0, 0) = (2.82, 0.12657, 0, 0). If this unstable equilibrium is allowed to
continue, the third mode begins to participate in the equilibrium at its beginning marked by u3. This
unstable path continues until (p, s1, 0, s3) = (5.58, 0.344, 0, 0.1836). At p = 5.58 N, the unstable
path becomes stable and then the equilibrium jumps to (p, ns1, 0, ns3) = (5.58, 0, 0, 0.4603), which
is called the tertiary jumping[13]. Clearly, the tertiary jumping cannot be reached via natural loading.
After tertiary jumping, modes are uncoupled again. In the mode jumping in Fig.3(a) and tertiary
jumping in Fig.3(b), the equilibrium solutions presented in the two figures are clearly discontinuous.
The continuous solution can be obtained by the path-grabbing algorithm of the arc-length method[13,19].
The detailed formulation of the arc-length method for the full foundation case can be found in Ref[13].

In Figs.3(a) and (b), the plots of the stable (solid line) and unstable (dashed line) solutions are
based on the eigenvalue study of matrix M in Eq.(16). The eigenvalue is also an indicator of mode
jumping[13]. Figure 4(a) shows the mode eigenvalues of the path as shown in Fig.3(a). The negative
eigenvalues of all modes indicate that the system is stable[13]. At p = 2.42 N of the buckling point of
the first mode, the eigenvalue of the first mode marked by an asterisk becomes zero. After entering the
post-buckling region, the eigenvalue of the first mode begins to decrease and remains negative, while
the eigenvalue of the second mode keeps increasing. eu1 and eu2 marked by circles in Fig.4(a) are the
eigenvalues of the first and second modes before mode jumping at p = 2.82 N; es1 and es2 are the
eigenvalues of the first and second modes after mode jumping at p = 2.82 N, respectively. eu2 = 0
indicates that the system has lost stability. After mode jumping, es1 and es2 become negative, which
means the system has regained stability by mode jumping. Figure 4(b) shows the mode eigenvalues of
the path with tertiary jumping as shown in Fig.3(b). eu1 and eu2 are the same as those in Fig.4(a).
ev1, ev2, ev3 and env1, env2, env3 are the eigenvalues of the first, second and third modes before and
after the tertiary jumping. As shown in Fig.3(b), the unstable equilibrium continues rather than mode
jumping to regain stability. The eigenvalue of the second mode stays positive until p = 5.58 N, at which
the tertiary jumping occurs. The eigenvalues of the second mode before and after the tertiary jumping
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Fig. 4. (a) Eigenvalues of two different modes on the mode jumping path as shown in Fig.3(a); (b) Eigenvalues of three

different modes on the tertiary jumping path as shown in Fig.3(b).

(ev2 and env2) as shown in Fig.4(b) stay continuous. However, the eigenvalues of the first and third
modes before and after the tertiary jumping (ev1 and env1; ev3 and env3 ) are discontinuous.

The equilibrium configuration change is a direct result after mode jumping or tertiary jumping.

Here the deflection shape is defined as S = W/Wmax =
N∑

j=1

aj sin (jπξ)/Wmax. W is the dimensionless

equilibrium as indicated in Eq.(10) and Wmax is its maximum value. Figure 5 shows the deflection

Fig. 5. Two mode shapes on the mode jumping path of a full foundation case at (p, d1, d2, d3) = (2.42, 0, 0, 0) and

(p, d1, d2, d3) = (2.82, 0, 0.184, 0), which are before and after mode jumping.
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Fig. 6. Two mode shapes on the tertiary jumping path of full foundation case at (p, d1, d2, d3) = (5.579, 0.344, 0, 0.1836)

and (p, d1, d2, d3) = (5.579, 0, 0, 0.463), which are before and after tertiary jumping.

shapes before and after mode jumping. Starting from the first buckling to mode jumping, the deflection
shape is an uncoupled shape of sin (πξ) as shown in Fig.5(a). After mode jumping, the mode shape
changes to sin (2πξ) as shown in Fig.5(b). Figure 6(a) and (b) show the deflection shapes just before
and after tertiary jumping, which occurs at (5.58, 0.344, 0, 0.1836). Modes 1 and 3 are coupled before
the tertiary jumping. After the tertiary jumping, the modes become uncoupled again and the deflection
shape is sin (3πξ).

Fig. 7. (a) The natural loading path solution of partial foundation case of a = 0 and b = 0.5L, which is stable and there

is no mode jumping; (b) The other path solution of the partial foundation case of a = 0 and b = 0.5L case, which is an

unstable solution and there is no tertiary jumping.
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Fig. 8. (a) Eigenvalues of the two modes on the natural loading (stable) path as shown in Fig.7(a); (b) Eigenvalues of the

two modes on the unstable path as shown in Fig.7(b).

Fig. 9. Two mode shapes of the stable path as shown in Fig.7(a) at (p, d1, d2, d3) = (1.32, 0, 0, 0) and (p, d1, d2, d3) =

(2.4, 1.75, −2.1, 0.35).

3.2. Partial Foundation Case of a = 0, b = 0.5L

It is noticed that for the mode jumping path of a full elastic foundation, the modes sin (πξ) and
sin (2πξ) remain uncoupled all the time while the elastic foundation configuration of a = 0 and b = 0.5L
breaks the symmetry and the modes become coupled from the buckling stage. Figure 7(a) shows the
natural loading path solution that is stable. It is noticed that the first buckling loaddecreases dramatically
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Fig. 10. Two mode shapes of the unstable path as shown in Fig. 7(b) at (p, d1, d2, d3) = (2.52, 0, 0, 0) and

(p, d1, d2, d3) = (3, 0.1466, 0.1, 0).

to p = 1.32 N (p = 2.42 N for the full elastic foundation case). sin (πξ), sin (2πξ) and sin (3πξ) are
the three dominant modes participating in the equilibrium deflection shape and coupled from the first
buckling. Compared with the full elastic foundation case, there is no mode jumping in Fig.7(a). sin (2πξ)
participates in the solution from the beginning of the first buckling and gradually becomesdominant.
Figure 7(b) shows another path solution around the second buckling that is unstable. There is no tertiary
jumping, either. In Fig.7(b), sin (πξ) and sin (2πξ) are also coupled. Figure 8(a) is the eigenvalues of
mode 1 and 2 in the stable path as shown in Fig.7(a). Figure 8(b) is those in the unstable path as shown
in Fig.7(b). The first and second buckling points are marked by circles in Figs.8(a) and (b). Clearly, in
both figures the eigenvalues remaincontinuous.

Figure 9 shows the deflection shapes of the stable path as shown in Fig.7(a). The deflection shape
of Fig.9(a) is taken immediately after the first buckling point of (1.32, 0, 0, 0). In this deflection shape,
sin (πξ), sin (2πξ) and sin (3πξ) are coupled and sin (πξ) dominates at the beginning. Figure 9(b) is the
deflection shape at (p, a1, a2, a3) = (2.4, 1.75, −2.1, 0.35). a1, a2, a3 are marked in Fig.7(a). It is
shown that sin (2πξ) is dominant at this stage. Therefore, unlike the full elastic foundation case in which
the structure experiences rather sudden and dramatic ‘mode jumping’, in this partial foundation case,
the transition of sin (πξ) dominance in the deflection shape to sin (2πξ) one is smooth. Figure 10 shows
the deflection shapes of the unstable path as shown in Fig.7(b). Figure 10(a) is the deflection shape just
after the second buckling of (2.52, 0, 0, 0) and Fig.10(b) is one at (p, b1, b2, 0) = (3, 0.1466, 0.1, 0). b1,
b2 are also marked in Fig.7(b). Clearly, the contribution of both sin (πξ) and sin (2πξ) to the deflection
shapes is significant and the mode coupling effect is strong.

3.3. Partial Foundation Case of a = 0.2L, b = 0.7L

Figure 11(a) shows the stable path of the solution. The first buckling load increases to p = 2.0 N
(p = 1.32 N for a = 0, b = 0.5L case). sin (3πξ) in this configuration has much more contribution to
the whole post-buckling deflection than that of the a = 0, b = 0.5L case. Still no mode jumping occurs
in this partial foundation configuration. The dramatic change happens in the unstable path solution
in Fig.11(b). sin (πξ), sin (2πξ) and sin (3πξ) all appear in Fig.11(b). Tertiary jumping does not occur,
either. In the partial foundation case of a = 0, b = 0.5L, only sin (πξ) and sin (2πξ) appear. In the full
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Fig. 11. (a) The natural loading path solution of a partial foundation case of a = 0.2L and b = 0.7L, which is stable and

there is no mode jumping; (b) The other path solution of a partial foundation of a = 0.2L and b = 0.7L case, which is an

unstable solution and there is no tertiary jumping.

Fig. 12. (a) The natural loading path solution of partial foundation case of a = 0.2L and b = 0.8L, which is stable and

mode jumping occurs; (b) The other path solution of the partial foundation case of a = 0.2L and b = 0.8L. Tertiary

jumping occurs .

foundation case of a = 0, b = L, only sin (πξ) and sin (3πξ) appear.

3.4. Partial Foundation Case of a = 0.2L, b = 0.8L

This is a symmetric configuration. Compared with the stable path of a = 0.2L, b = 0.7L case as shown
in Fig.11(a), the solution of stable path as shown in Fig.12(a) is quite different. The solution is more like
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the solution of the full foundation case as shown in Fig.3(a). The first buckling is at p = 2.25 N (p = 2.42
N for the full foundation case.) Mode jumping occurs at p = 2.775 N (p = 2.82 N for the full foundation
case). e1 is marked as the amplitude of the first mode before mode jumping and f2 as the amplitude of
second mode after mode jumping. There occurs mode jumping from (p, e1, 0, 0) = (2.775, 0.152, 0, 0)
to (p, 0, f2, 0) = (2.775, 0, 0.251, 0) compared with the mode jumping in the full foundation case
in Fig.3 from (p, u1, 0, 0) = (2.82, 0.12657, 0, 0) to (p, 0, u2, 0) = (2.82, 0, 0.184, 0). Clearly, the
small difference between the configurations of a = 0.2L, b = 0.7L and a = 0.2L, b = 0.8L has huge
impact on the stability behavior of the system post-buckling. Figure 12(b) shows the unstable path
solution. Tertiary jumping occurs at p = 5.205 N (p = 5.58 N for tertiary jumping of the full foundation
case). Figure 12(b) also resembles Fig.3(b). g1, g3 and h1, h3 marked in Fig.12(b) are the amplitudes of
the first and third modes before and after mode jumping, respectively. The tertiary jumping in Fig.12(b)
from (p, g1, 0, g3) = (5.205, 0.377, 0, 0.2724) to (p, h1, 0, h3) = (5.205, 0.1587, 0, 0.5138) occurs
compared with the full foundation case of (p, s1 , 0, s3) = (5.58, 0.344, 0, 0.1836) to (p, ns1, 0, ns3) =
(5.58, 0, 0, 0.4603). Therefore, unlike the full foundation case, sin (πξ) in Fig.12(b) does not die out
after tertiary jumping.

In summary, the mode jumping scenarios of full elastic foundation and partial foundation of a = 0.2L,
b = 0.8L are similar. However, their tertiary jumpings differ significantly.

IV. CONCLUDING REMARKS
Mode coupling has huge impact on mode jumping and tertiary jumping. Mode jumping occurs as

jumping from the mode of sin (πξ) (symmetric) to sin (2πξ) (antisymmetric) for the full foundation
case. Both the full foundation case and symmetric partial foundation case (a = 0.2L, b = 0.8L),
sin (πξ) and sin (2πξ) remain uncoupled before and after mode jumping. In the asymmetric partial
configuration of elastic foundation, which allows the antisymmetric mode like sin (2πξ) to participate
in the post-buckling deflection, mode jumping can be avoided. As observed from those computations,
certain asymmetric partial foundation configurations can facilitate the smooth transition rather than
mode jumping. Mode jumping, tertiary jumping and thus dramatic mode shape change can be avoided
by configuring asymmetric partial foundation. Generally speaking, mode coupling in the structure post-
buckling region depends on the parameters such as EI, k1, k2, L, elastic foundation length and location.
Here only the influence of the length and location of a partial elastic foundation on mode coupling
is presented. The computations also show that tertiary jumping is directly related to mode jumping.
As shown in the four cases under discussion, once mode jumping appears/disappears, so will tertiary
jumping.
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APPENDIX
Application of Supple’s Theory on a Beam on a Full Elastic Foundation

Notation

V : Total potential energy.
Ub and Uf : Strain energies of beam (due to bending only) and elastic foundation.
Wp: Work done by the axial force.
p, δp: Compression and incremental change of compression.
u1, u2:Generalized coordinates representing deformationparameter, here they aremodal amplitudes.
W, ξ: Dimensionless transverse deflection of beam neutral axis and coordinate.
pm, pn: Buckling loads of mth and nth modes and pn ≥ pm is assumed.
Δp = pn − pm

EI, L: Beam stiffness and length.
k1, k2: Elastic foundation moduli.
For the beam on the fully supported elastic foundation, the deflection W is assumed to have the

following two-coordinate (u1 and u2) solution form

W = u1 sin (mπξ) + u2 sin (nπξ) (20)

m and n are the two mode numbers of the deflection mode shapes. Clearly the above assumption about
W can only handle the interaction between two modes. The potential energy V of the whole system is
as follows:

V = Ub + Uf −Wp (21)
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Ub, Uf and Wp are defined as

Ub =
EI

2L

∫ 1
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W 2
,ξξ
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Substitute equation (20) into Eqs.(21) and (22) and express the potential energy via u1 and u2 as
follows:

V =
EIπ4
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(23)

The uncoupling conditions defined by Supple[6] are as follows:

u1 �= 0, u2 = 0; u1 = 0, u2 �= 0 (24)

The two coordinates of u1 and u2 in the post-buckling region can be derived as follows from the two
equations given by Supple[6] for the uncoupled mode solution.

δp = −

1

3!

V1111

V ′11
u2

1 =
3

4

k2L
4

m2π2
u2

1 (25)

and

δp = Δp−
1

3!

V2222

V ′22
u2

2 = Δp +
3

4

k2L
4

n2π2
u2

2 (26)

Here a prime on V denotes the partial differentiation with respect to p. A subscript on V denotes the
partial differentiation with respect to the corresponding coordinate (u1 or u2). For example, V11 =
∂2V /∂u2

1. For the L = 4.3 m case, m = 1 and n = 2. pm = p1 = 2.42 N, pn = p2 = 2.6 N.




