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Abstract Continuum mechanics analysis and molecular mechanics simulations are performed to study adhe-
sion between two identical, radially collapsed single-walled carbon nanotubes. Not only the inter-adhesion
energy between nanotubes but also the inner adhesion energy in a nanotube is considered. A closed-form
solution to the adhesion configuration is achieved, which is well consistent with our molecular mechanics
simulation. Comparing the potential energy of the adhesion structures formed by two identical single-walled
carbon nanotubes, three types of configurations, i.e., circular, deformed, and collapsed shape, will be formed
with increasing carbon nanotubes radius and separated by two critical radii of the single-walled carbon nano-
tube. Furthermore, it is found that the collapsed adhesion structure possesses the highest interfacial adhesion
energy. The results demonstrate that, as a potential application in carbon nanotube reinforced composites,
arrays formed by collapsed carbon nanotubes will be optimal due to the strong interface strength.

1 Introduction

During the past two decades, carbon nanotubes (CNTs) as a novel nanostructured material are attracting much
attention. As mentioned by Glassmaker and Hui [1], electrically, single-walled carbon nanotubes (SWNTs)
are one-dimensional conductors or are semiconductors with very few surface states. Mechanically, the atomic
structure has very few flaws or dislocations and is held together by strong, covalent bonds between carbon
atoms. Thermally, phonon transfer dominates heat conduction. The phonon mean-free path in SWNTs is long
compared with traditional materials due to fewer structural defects and a lack of phonon scattering sites.

In order to realize the potential applications of CNTs, the first step is to produce single CNTs or aligned
CNT arrays with stable configurations. For a SWNT, a natural equilibrium configuration has a circular cross
section. However, during the process of producing CNTs, interactions of the microscale force in a nanotube or
among neighboring nanotubes arise [2–5]. The van der Waals (vdW) interactions in a CNT or among CNTs
play a dominant role due to their small sizes [6], which is usually called adhesion mechanics of nanotubes.
Sometimes, adhesion will show a great effect on the geometry and stability of an individual SWNT [7]. The
circular cross section can be deformed by vdW interactions between carbon atoms in a single CNT or those
among CNTs, leading to different equilibrium configurations, which is called self-deformation. The reason is
that CNTs capture the characteristics of hollow cylindrical structures, which render them susceptible to lateral
deformation. During the process of producing SWNTs or aligned SWNT arrays, it was found that SWNTs
with small diameters can maintain a cylindrical or honeycomb structure [6]. When the diameters of CNTs
become larger and larger, self-deformation will happen.
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An interesting collapsed structure of CNTs was first observed and explored by Ruoff et al. [7] and Chopra
et al. [8] using transmission electron microscopy (TEM). Many other researchers also found such a collapsed
structure using atomic force microscopy (AFM) later [9–11]. The cross section of a collapsed structure con-
sists of two parts: flat regions like two adhering graphenes in the middle and curved regions like buckyballs
at each end, which was called a collapsed nanotube [8], flattened nanotube [12], or closed-edged graphene
nanoribbon [13]. Such a collapsed shape has been widely observed in the synthesis of large-diameter CNTs
[14–16], applications of CNT fibers [17–19], CNT/polymer composites [20,21], and CNT nanoactuators [22].
Recently, CNT bundles containing large numbers of collapsed CNTs could be grown from preformed 4.0 nm
diameter aluminum–iron oxide particles directly [13].

When CNTs jump from a circular configuration to a collapsed one, their properties will change dramati-
cally. For example, the collapsed configuration can significantly alter the electronic behavior of CNTs [23–26],
and the collapsed CNTs will possess a high electrical conductivity [27]. In the aspect of mechanical properties,
self-collapse can increase the strength of CNT bundles up to a value of about 30 % compared to a circular
configuration [28]. Furthermore, Zhang and Li found that self-collapse could improve the inter-tube frictional
force by a factor of about 1.5–4 [29].

Since self-deformation and self-collapse of CNTs are mainly due to vdW interactions in a CNT or between
CNTs, adhesion mechanics of nanotubes attracts many researchers’ interests, especially the adhesion problem
between nanotubes.

Lots of work on the adhesive interaction between CNTs has been carried out. For example, Chen et al.
estimated experimentally the binding energy of parallel CNTs and the geometry parameters from TEM images
of two bonded CNTs [30]. Using the Lennard-Jones potential and smeared-out approximation, the interaction
energies between two crossed SWNTs with infinite length and different radii have been studied [31–34]. Tang
et al. analyzed successfully the adhesion between two identical SWNTs with the continuum mechanics and
molecular simulations [35]. A critical radius of the SWNT was found, below which the contact area between
the two SWNTs is zero. However, only the adhesion problem of two self-deformed SWNTs was investigated in
Tang et al. [35]. What will happen between two adhesive self-collapsed SWNTs since such an adhesive behav-
ior is often found during fabrication of CNTs? What will influence the detailed configuration of two adhesive
self-collapsed SWNTs? What is it about the interfacial adhesion energy of the self-collapsed configuration
compared to the adhesive self-deformed one?

In order to answer the above questions, the adhesion between two identical, radially collapsed SWNTs is
studied in this paper based on the continuum analysis and molecular simulations, in which the coupling effects
of self-collapse and inter-tube interaction are considered in the theoretical model.

2 The adhesive configuration of two self-collapsed SWNTs

The collapsed morphology of a SWNT consists of a flat zone in the middle part and two noncontact regions
at the ends, which has been successfully predicted theoretically by Tang et al. [35] and Liu [36]. Good agree-
ments are achieved between the theoretical analysis and molecular simulations. Figure 1a shows an elastica
model to study the adhesion of two identical radially collapsed SWNTs, each of which has an initial radius R.
During the analysis, SWNTs are assumed to be inextensible. After adhesion, each tube is still composed of a
flattened contact zone in the middle and two noncontact regions at the ends, but the configuration of each tube,
compared to the single collapsed SWNT, changes due to the vdW interaction between the upper and lower
tubes as shown in Fig. 1a. The contact widths due to the self-adhesion and inter-tube adhesion are 2a and 2b,
respectively. Normally, the vdW force between two carbon atoms is repulsive at a very close range, so both
the distance between the upper edge and the lower one of a SWNT and the distance between two collapsed
SWNTs are defined by an equilibrium separation d0, i.e., d1 = d0 and d2 = d0 as shown in Fig. 1a. Due to the
symmetry of the structure, only a quarter of the structure will be analyzed, as shown in Fig. 1b. In addition to
the Eulerian coordinates (x, y), the arc length s, as a Lagrangian coordinate, is also adopted as a variable in
the analysis. φ denotes the slope angle, whose values at some typical points are given in Fig. 1b.

The inextensible condition gives

a + b + l = π R, (1)

where l is the total arc length of the noncontact region at the end.
The geometric equations and boundary conditions are expressed as

ẋ = cos φ, ẏ = sin φ, (2)
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Fig. 1 Two identical, radially collapsed nanotubes in adhesive contact. a Adhesive collapsed configuration. b A quarter of the
adhesion structure for theoretical analysis

x(a) = a, y(a) = 0, φ(a) = 0, (3)

x(π R − b) = b, y(π R − b) = −d2, φ(π R − b) = −π, (4)

where the dot above a parameter stands for its derivative with respect to the arc length s and Eqs. (2) denote
the kinematic relations.

The potential energy of the adhesion system is

� = 2L

π R−b∫

a

[
Dφ̇2 + λ1(ẋ − cos φ) + λ2(ẏ − sin φ)

]
ds

+4π RLug + U nc
vdW − 4aLW1 − 2bLW2, (5)

W1 = W (d1 + d2) + W (d2), W2 = W (d1), (6)

where the first term on the right side of Eq. (5) is the elastic strain energy, and L is the length of each tube in
the out-of-plane direction. D is the effective bending stiffness of a flat graphite sheet, which has been found
to be insensitive to the chirality of the nanotubes [35] and is usually achieved from molecular simulations.
The effective bending stiffness obtained from our molecular mechanics simulations with AIREBO potential
(without torsion term) is D = 1.33 eV, which is consistent with that in Lu et al. [37]. λ1 and λ2 are two
Lagrange multipliers, enforcing the additionally geometrical relations of Eq. (2). The second term on the right
side 4π RLug is the graphite sheet formation energy, which is a constant. The third term U nc

vdW is the external
vdW energy produced by the interactions between the two nanotubes outside the contact region, which is also
assumed to be a constant independent of the geometry [35]. The fourth and the last terms are the adhesion
energies among the four flat regions, in which the interaction energy between the flat region with length 2a of
the upper tube and the one of the lower tube is neglected due to a relatively small magnitude.

The adhesion energy per unit area W equals to the work per unit area to separate two parallel graphite
sheets from a distance d to infinity, which can be obtained via the integration of the Lennard-Jones potential
as

W (d) = −2περ2σ 2
[

2

5

(σ

d

)10 −
(σ

d

)4
]

, (7)

where ρ = 0.38 Å−2 is the number of carbon atoms per unit area, ε is a parameter determining the depth of
the potential well, and σ is a length scale parameter that determines the position of the minimum potential.
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Minimizing W (d) provides an equilibrium separation d0 = σ . In this paper, we take ε = 2.84 meV and
σ = 3.4 Å. Then, according to Eqs. (6) and (7), we have W1 = 19.72 meV/Å2 and W2 = 17.87 meV/Å2.

Letting the variation of the potential energy function of Eq. (5) be zero, i.e., the principle of the minimum
potential energy,

δ� = δ�1 + δ�2 = 0, (8)

where

δ�1 = 2L

π R−b∫

a

[−(2Dφ̈ − λ1 sin φ + λ2 cos φ)δφ + (ẋ − cos φ)δλ1

+(ẏ − sin φ)δλ2]ds + 2Lλ1(δb − δa), (9)

δ�2 = 2L
{

D
[
φ̇(a)

]2 + λ1 − 2W1

}
δa + 2L

{
D

[
φ̇(π R − b)

]2 − λ1 − W2

}
δb. (10)

Then, we have

2Dφ̈ − λ1 sin φ + λ2 cos φ = 0, (11)

D
[
φ̇(a)

]2 − 2W1 = 0, (12)

D
[
φ̇(π R − b)

]2 − W2 = 0. (13)

Equation (11) is consistent with that obtained by Liu [36], where a single collapsed CNT model was analyzed.
From the governing equation (11), the Lagrange multipliers λ1 and λ2 can be identified as the horizontal force
and the vertical force, respectively.

Using Eqs. (12) and (13), we can simplify Eq. (11) as

Dφ̇2 = C1 − λ1 cos φ − λ2 sin φ, (14)

where

C1 = W1 + 1

2
W2, λ1 = −W1 + 1

2
W2, (15)

and λ2 is still unknown.

Introducing parameters φ0, C , and α, and letting sin φ0 = −Cλ1
C1

, cos φ0 = Cλ2
C1

and α =
√

C1
2DC , (0 ≤

φ0 ≤ π
2 ), the governing equation (14) can be transformed into a standard form:

1

2
φ̇2 = α2 [C − sin(φ − φ0)] . (16)

Because the increment of the arc length ds is always positive and the one of the slope angle is not monotonic,
Eq. (16) can be further simplified as

αds = |dφ|√
2[C − sin(φ − φ0)] . (17)

For convenience of integration, another variable θ is introduced, which is related to φ by the following equation:

(1 + C) sin2 2θ = 2k2 sin2 2θ = 1 + sin(φ − φ0) (0 ≤ θ ≤ π, k > 0), (18)

where

C = 2k2 − 1. (19)
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Then, we have

φ0 = − arcsin
λ1(2k2 − 1)

C1
, (20)

cos(φ − φ0) = 2k sin 2θ
√

1 − k2 sin2 2θ, (21)

|dφ| = 4k |cos 2θ |√
1 − k2 sin2 2θ

dθ, (22)

√
2[C − sin(φ − φ0)] = 2k |cos 2θ | , (23)

and

|dφ|√
2[C − sin(φ − φ0)] = 2dθ√

1 − k2 sin2 2θ
. (24)

The angle θ at the point of x = a and y = 0 is defined as θ0, which can be obtained as follows due to φ = 0:

θ0 = 1

2
arcsin

1

k

√
1 − sin φ0

2
. (25)

At the point of x = b and y = −d0, θ is defined as θ3. Then, φ = −π yields

θ3 = 1

2

[
π + arcsin

1

k

√
1 + sin φ0

2

]
. (26)

Combining Eqs. (17), (24) and considering the relation

cos φ = cos(φ − φ0) cos φ0 − sin(φ − φ0) sin φ0, (27)

the integrations of Eqs. (2) result in the profile functions of the adhesive collapsed tube,

x = a + 2k

α
(cos 2θ0 − cos 2θ) cos φ0

− 1

α
{[F(k, 2θ) − F(k, 2θ0)] − 2[E(k, 2θ) − E(k, 2θ0)]} sin φ0, (28)

y = 2k

α
(cos 2θ0 − cos 2θ) sin φ0

+ 1

α
{[F(k, 2θ) − F(k, 2θ0)] − 2[E(k, 2θ) − E(k, 2θ0)]} cos φ0, (29)

and the arc length as a function of parameters k and θ ,

s = a + 1

α
[F(k, 2θ) − F(k, 2θ0)], (30)

where E(k, θ) and F(k, θ) are the first and second kind of incomplete elliptic integrals, respectively:

E(k, θ) =
θ∫

0

√
1 − k2 sin2 θdθ, F(k, θ) =

θ∫

0

1√
1 − k2 sin2 θ

dθ, (31)

and

α =
√

C1

2D(2k2 − 1)
. (32)
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Substituting Eqs. (28)–(30) into the boundary conditions (4) leads to

a = π R − b − 1

α
[F(k, 2θ3) − F(k, 2θ0)], (33)

b = a + 2k

α
(cos 2θ0 − cos 2θ3) cos φ0

− 1

α
{[F(k, 2θ3) − F(k, 2θ0)] − 2[E(k, 2θ3) − E(k, 2θ0)]} sin φ0, (34)

d2 = −2k

α
(cos 2θ0 − cos 2θ3) sin φ0

− 1

α
{[F(k, 2θ3) − F(k, 2θ0)] − 2[E(k, 2θ3) − E(k, 2θ0)]} cos φ0. (35)

For given values of the equilibrium distance d2 and the initial radius of the CNT R, it is easy to obtain k
from Eq. (35). Then, the lengths 2a and 2b of the flat regions in the adhesive structure of two collapsed tubes
can be solved from Eqs. (33) and (34) with the help of Eqs. (31). Thus, the detailed profile of the adhesive
structure can be plotted from Eqs. (28)–(30).

When the initial radius of a SWNT reduces, the flat lengths 2a and 2b in the adhesive structure will decrease.
When the reducing length 2a equals just right zero, at this moment, d2 = d0, and the corresponding radius of
the SWNT is

RIImin = 1

π

√
D

W2

√
2(2k2 − 1)

3
{(cos 2θ0 − cos 2θ3) cos φ0

+2[E(k, 2θ3) − E(k, 2θ0)] sin φ0 + [F(k, 2θ3) − F(k, 2θ0)](1 − sin φ0)}, (36)

which we call a critical radius. In this paper, d0 = 3.4 Å leads to RIImin = 13.49 Å.
When the initial radius is smaller than the critical one, the length 2a vanishes and the interaction distance

d2 in a nanotube is not equal to the equilibrium separation d0 any more. d2 will increase relatively with a
decreasing initial radius R, and the shape of one of the collapsed SWNT will vary gradually from a pillow
shape (partial-collapsed shape) to the deformed one studied in Tang et al. [35].

3 Comparison of the theoretical predictions and MM simulations

Molecular mechanics (MM) simulations are performed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [38] with AIREBO [39] potential (without torsion term) and a fast inertial
relaxation engine (FIRE) method [40] to verify the theoretically predicted configurations, as well as to obtain
the vdW interaction energies, in which the chiralities (n, 0) and (n, n) for tubes with radii ranging from 0.89
to 3.8 nm are chosen.

The morphologies of three representatively adhesive collapsed CNTs with different initial radius R are
plotted in Figs. 5a–c, in which the three radii are less than, nearly equal to, and larger than the critical radius
predicted in Eq. (36), respectively. During our molecular mechanics simulations, the chiralities of the nano-
tubes do not influence the finally stable configurations, while in Tang et al.’s study [35], the deformations of
(2n, n) and (n, n) tubes are different from those of (n, 0) tubes. Twisting and wrinkling can occur in (2n, n)
and (n, n) tubes. The difference may be induced by the different simulation temperatures. In our molecular
mechanics simulation, the absolute temperature is 0 K, while in Tang et al.’s work [35], molecular dynamics
simulation was carried out and the absolute temperature that they used was 300 K. In Fig. 5, the solid lines
denote our theoretical predictions and the dotted ones represent our molecular simulation results. Clearly, the
theoretical predictions agree well with the molecular mechanics (MM) results for cases of SWNTs with radius
nearly equaling or larger than the critical one; especially, the lengths of the flat regions are almost identical in
both the theoretical and molecular mechanics simulation results. A little deviation exists at the two ends of the
adhesive structure, which is due to an assumption of constant energy at the ends in our theoretical analysis.
However, in the case of SWNTs with radius less than the critical one, the upper and lower curved parts predicted
by the theoretical analysis deviate significantly from the MM simulation result, though the adhesive length at
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Fig. 2 Three kinds of adhesive collapsed configurations for SWNTs with different initial radius. a Partial-collapsed configuration
(pillow-shaped) for the case with an initial radius (R = 10.85 Å) smaller than RIImin (RIImin = 13.56 Å). b Critical collapsed
configuration with an initial radius equaling to RIImin. c Collapsed configuration with an initial radius (R = 20.34 Å) larger than
RIImin

the interface between two tubes is well consistent with each other. In our theoretical analysis, if the length 2a
of the flat region vanishes, the fourth term in Eq. (5) will be zero. The shape of the tube in this case looks like
a pillow, and Eq. (5) does not include the inner or inter-interactions of the two tubes except the interaction
energy at the interface with length 2b. As a result, the inner separations predicted by the theoretical analysis
will be larger than those calculated by the MM simulations.

4 Configuration map for adhering SWNTs

In fact, there are three types of configurations for adhering identical SWNTs as shown in Fig. 2, where, for
the first one, the tube is near a circle when the initial radius of the tube is small; the tube will deform under
the inner and inter-interactions of tubes when the radius of the tube becomes large; if the initial radius of the
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Fig. 3 Three types of configurations formed by two identical SWNTs. a Circular configuration. b Deformed configuration.
c Collapsed configuration

tube is large enough, the inner and inter-interactions may render the two adhesive tubes collapse. Three cases
are schematically shown in Fig. 2. The first configuration as shown in Fig. 2a has been well studied [32–34].
The second deformed configuration was successfully solved by Tang et al.’s method [35] using continuum
mechanics and molecular simulations. In the solution given by Tang et al. [35], three variables and complicated
integrals need to be solved. In order to achieve a clear configuration map for all the above three cases, the
deformed case is re-studied using the solving technique in the present paper and a simpler solution is given.

4.1 Solutions to the deformed configuration

The deformed configuration of two identical carbon nanotubes in adhesive contact with each other is shown
in Fig. 3a with a flat adhesive length 2b and an equilibrium distance d0. Each tube has an initial radius R and
out-of-plane length L . Also, a quarter of the structure is considered due to the symmetry as shown in Fig. 3b.
Similar to Eq. (5), the potential energy for the deformed system can be written as

� = 2L

π R∫

a

[
Dφ̇2 + λ1(ẋ − cos φ) + λ2(ẏ − sin φ)

]
ds

−2W2 · b · L + 4π RLug + U nc
vdW. (37)

A similar method can be used to find the profile functions of the adhesive deformed tube. Details are
neglected here, and all the parameters in this case correspond to those in the collapsed case. Then, we have

x(θ) = b + 1

α
[2E(k, θ) − F(k, θ)], (38)
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Fig. 4 Deformed configuration of two identical SWNTs. a The interface in adhesive contact with a length 2b and a separated
distance d0; b a quarter of the adhesion structure for theoretical analysis

y(θ) = 2k

α
(1 − cos θ), (39)

s(θ) = b + F(k, θ)

α
, (40)

where k satisfies the equation

4k[F(k, θ1) − E(k, θ1)] = π R√
D

W2

, (41)

and θ0 = 0 ≤ θ ≤ θ1 = arcsin 1
k , α = 1

2k

√
W2
D , b = π R − 1

α
F(k, θ1).

The contact length 2b will decrease with a decreasing radius R. When the contact length vanishes, i.e.,
2b = 0, we obtain another critical radius as

Rmin = 1.013

√
D

W2
, (42)

which is well consistent with the approximate solution given by Tang et al. [35] Rmin = √
D/W2. When the

initial radius of a carbon nanotube is less than the critical radius in Eq. (42), the adhesive configuration of such
two nanotubes should be the circular case as shown in Fig. 2a.

4.2 Comparison between the theoretical predictions and MM calculations

The potential energy density as a function of the dimensionless tube radius is shown in Fig. 4, in which
the theoretical predictions and the MM simulation results are compared with parameters D = 1.3263 eV,
W1 = 19.722 meV/Å2, and W2 = 17.872 meV/Å2. Equaling the potential energy for the deformed config-
uration, i.e., Eq. (5), to that for the collapsed one, i.e., Eq. (37), yields the critical radius Rmax = 20.20 Å
numerically, above which the collapsed configuration is energetically favored. It is found that both the theoret-
ical and MM calculation results are consistent with each other. It can infer that when the radius of a tube R is
smaller than Rmin, the shape of the tubes in the adhesion system is circular. When the radius of a tube lies in the
region Rmin < R < Rmax, both the deformed and the collapsed configurations exist, but the potential energy of
the collapsed configuration is higher than the deformed one, which means the deformed configuration is more
stable than the collapsed one. For R > Rmax, the potential energy of the deformed configuration is higher than
the collapsed one, and thus, the collapsed configuration is more stable at this region. One may note that there
is another region Rmin < R < RIImin, in which one data in the MM simulation for the collapsed case drops
onto the curve for the deformed case. As mentioned above, RIImin is a critical radius, at which the contact
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Fig. 5 The potential energy density �/4π RL as a function of the dimensionless radius R/
√

D/W2, in which three types of
adhesive configurations are separated by two critical radii Rmin and Rmax. RIImin is a special one in order to distinguish the
partial-collapsed configuration from the collapsed one

Fig. 6 Comparison of theoretical predictions and MM simulation results of the adhesion energy as a function of the dimensionless
radius of SWNTs for three types of adhesion structures

width in a self-collapsed tube vanishes, i.e., a = 0, and below which the partial-collapsed configuration may
exist. However, comparison between the potential energies of the deformed case and the partial-collapsed one
exhibits that the deformed configuration is more stable in the region Rmin < R < RIImin.

The adhesion energy γ as a function of R/
√

D/W2 is plotted in Fig. 6, where MM results are shown for
comparison, and the adhesion energies γ for the three cases are calculated as follows:

(1) In the case of the circular configuration, the adhesion energy is γ = φ(R, R, 2R + d0) [32].
(2) In the case of the deformed configuration, the adhesion energy can be formulated as γ = 2W2 ·b + const.

and the constant can be found from the molecular simulation as −0.076 eV/Å.
(3) In the case of the collapsed configuration, the adhesion energy can be expressed as γ = 4(W1 − W2) ·

a + 2W2 · b + const. and the constant is −0.067 eV/Å found from the molecular simulation.
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From Fig. 6, it is clearly seen that the adhesion energy of the collapsed configuration is much larger than the
other two cases. This means that tube arrays combined by collapsed tubes should have strong inner interface
strength and should be more useful in the applications of composites as reinforced fibers.

5 Conclusions

Inspired by experimental observations, a theoretical model for adhesion structures between two identically
collapsed carbon nanotubes is established and analyzed under the framework of the continuum mechanics. The
detailed shape function for the adhesion structure is achieved analytically. Combining the results for the circu-
lar-shaped configuration and the deformed one, as well as our theoretical predictions and molecular mechanics
simulations for the present collapsed configuration, shows that such three types of configurations are separated
by two critical radii of the nanotubes. Furthermore, the adhesion energies for three cases demonstrate that
the collapsed configuration possesses the highest one and should be more useful in applications of carbon
nanotube reinforced composites and nano-electromechanical system fields due to a strong inner interface.
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