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ABSTRACT
Dam-break flows over mobile bed are often sharply stratified, comprising a bedload sediment-laden layer and an upper clear-water layer. Double
layer-averaged (DL) models are attractive for modelling such flows due to the balance between the computing cost and the ability to represent
stratification. However, existing DL models are oversimplified as sediment concentration in the sediment-laden layer is presumed constant, which is
not generally justified. Here a new DL model is presented, explicitly incorporating the sediment mass conservation law in lieu of the assumption of
constant sediment concentration. The two hyperbolic systems of the governing equations for the two layers are solved separately and simultaneously.
The new model is demonstrated to agree with the experimental measurements of instant and progressive dam-break floods better than a simplified
double layer-averaged model and a single layer-averaged model. It shows promise for applications to sharply stratified sediment-laden flows over
mobile bed.

Keywords: Dam break; flood; layer-averaged model; sediment-laden flow; shallow flow

1 Introduction

Dam-break flows are generally energetic and induce active
sediment transport and morphological changes, which in turn
conspire to modify the flows. In general, strong interactions exist
between the flow, sediment transport and channel morphology.
Since the pioneering work of Capart and Young (1998), labo-
ratory experiments have contributed significantly to the under-
standing of dam-break hydraulics over mobile bed (Spinewine
2005a, Cao et al. 2011a, 2011b, Schmocker and Hager 2012).
However, flume experiments are usually constrained by the
comparatively small spatial scales in laboratories and may not be
sufficient for fully unraveling the complex mechanisms of dam-
break flows. Computational study is an attractive alternative for

enhancing the understanding of mobile bed dam-break flows.
Indeed, the work of Capart and Young (1998) acted as a catalyst
for the development of many numerical models (Cao et al. 2004,
2011a, 2011c, Spinewine 2005a, Leal et al. 2006, 2010a, 2010b,
Spinewine and Zech 2007, Wu and Wang 2007, Xia et al. 2010,
Goutière et al. 2011, Soares-Frazão et al. 2012).

Most mathematical models for dam-break flows to date are
single layer-averaged (SL) models based on conventional shal-
low water hydrodynamic principles (Capart and Young 1998,
Cao et al. 2004, Wu and Wang 2007, Leal et al. 2010a, 2010b,
Xia et al. 2010). However, dam-break induced sediment-laden
flows can be sharply stratified, which means the flow comprises
a bedload sediment-laden flow layer immediately over the bed
and an upper clear-water flow layer (Capart and Young 1998).
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A two-phase flow model is appealing for modelling such flows
(Greco et al. 2012), as the inter-phase interactions are explicitly
represented. More distinctively, as underpinned by the sharply
stratified structure of such flows, double layer-averaged (DL)
models have been proposed (Fraccarollo and Capart 2002, Capart
and Young 2002, Spinewine 2005a, 2005b, Savary and Zech
2007, Zech et al. 2008). This is sensible because the comput-
ing cost is significantly reduced compared with a vertical 2D or
full 3D model that fully resolves the vertical flow structure, and
equally importantly the stratification of the flow is reasonably
represented, which however is normally ignored in a SL model.
Yet, existing DL models are oversimplified because sediment
concentration in the bedload transport layer is presumed constant.
For highly unsteady and varied dam-break flows, this assumption
is far from generally justified. In principle, sediment concentra-
tion is one of the unknowns to be solved by a numerical model,
but in existing simplified double layer-averaged (SDL) models
(Spinewine 2005a, 2005b, Savary and Zech 2007, Zech et al.
2008, 2009), its value needs to be specified a priori and thus
uncertainty is introduced inevitably. Succinctly, from a physi-
cal point of view, the fundamental mass conservation law for
sediment is violated. The consequence of this can be serious.
For example, according to Fraccarollo and Capart (2002), sedi-
ment particle size would have no effect on the bed scour induced
by dam-break flows, which is questionable from physical intu-
ition. Most plausibly, this stems from the assumption of constant
sediment concentration, though the impact of the assumed equal
velocities of the two layers is not precluded. Indeed, the extended
models by, for instance, Capart and Young (2002), Spinewine
(2005a) and Zech et al. (2009) do not involve the assumption
of equal velocity in the two layers. It is also noted that Chen
and Peng (2006) and La Rocca et al. (2012) have developed DL
models for stratified flows of different densities. However, these
models are applicable for shallow flows over fixed bed, without
accounting for sediment transport and morphological evolution,
which are key features of dam-break flows over mobile bed.

This paper presents a physically enhanced DL model for
dam-break flow, sediment transport and morphological evolu-
tion. It is built upon the mass and momentum conservation
laws for each layer closed with relationships representing the
interface and bed shear stresses, the inter-layer mass exchange

flux and sediment exchange fluxes with the bed. This model
is new as the assumption of constant sediment concentration
embedded in existing DL models is eliminated. Within the new
model, the governing equations for each layer are cast into
a non-homogeneous hyperbolic system, whilst the interactions
between the two layers and between the lower layer and the
mobile bed, the boundary resistance and gravitational action
are represented as source terms. The two systems for the two
layers are solved separately and simultaneously. For each hyper-
bolic system, an operator-splitting framework is employed. The
total-variation-diminishing version (TVD) of the second-order
weighted-average-flux (WAF) method is used along with the
HLL (Harten–Lax–van Leer) and HLLC (Harten–Lax–van Leer
contact wave) approximate Riemann solvers for the homoge-
neous equations. A Runge–Kutta scheme is applied to solve the
ordinary differential equations composed of the source terms.
The new model is tested against a series of cases, including lab-
oratory experiments on flows induced by instant and full dam
break (Spinewine 2005a) and also flows due to progressive fail-
ure of a single and cascade landslide dams (Cao et al. 2011a,
2011b, Schmocker and Hager 2012). The model has also been
compared with two existing models, including the SDL model
of Spinewine (2005a) and the SL model by Cao et al. (2004).

2 Mathematical model

2.1 Structure of the DL model

A general sketch of the DL model is presented in Fig. 1. The
system comprises two moving layers and one layer at rest. Specif-
ically, these are (1) an upper clear-water flow layer of depth
hw and layer-averaged velocity uw; (2) a lower sediment-laden
flow layer of depth hs, layer-averaged velocity us and volumetric
sediment concentration Cs; and (3) a mobile bed of volumetric
sediment concentration Cb with vanishing velocity. The upper
layer interacts with the lower layer by exchanging clear water,
but the lower layer also exchanges water and sediment with the
mobile bed. In Fig. 1, E and D are the sediment entrainment
and deposition fluxes across the bottom boundary, respectively;
Ew is the mass exchange flux of clear water across the interface
between the two layers; η the stage and zb the bed elevation.

Figure 1 Structure of DL models
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2.2 Governing equations

Consider longitudinally one-dimensional dam-break flows over
mobile bed composed of uniform and non-cohesive sediment
with particle diameter d. The governing equations of a DL model
comprise the mass and momentum conservation equations,
respectively, for the clear-water flow layer and the sediment-
laden flow layer, and also the mass conservation equations for,
respectively, the sediment in the lower layer and bed sediment
(see Fig. 1). These equations can be derived from the fundamen-
tal conservation laws in fluid dynamics (Batchelor 1967) under
the framework of shallow water hydrodynamics (Wei 1990), and
can be written as

∂hw

∂t
+ ∂hwuw

∂x
= −Ew (1)

∂hwuw

∂t
+ ∂

∂x

(
hwu2

w + 1
2

gh2
w

)

= − τw

ρw
− ghw

∂(zb + hs)

∂x
− Ewuw (2)

∂hs

∂t
+ ∂hsus

∂x
= Ew + E − D

1 − p
(3)

∂hsus

∂t
+ ∂

∂x

(
hsu2

s + 1
2

gh2
s

)

= τw − τb

ρc
− ghs

∂zb

∂x
− ρwg

ρc
hs

∂hw

∂x
− (ρ0 − ρc)(E − D)us

(1 − p)ρc

+ (ρs − ρw)CsEwus

ρc
+ ρwEwuw

ρc
− (ρs − ρw)gh2

s

2ρc

∂Cs

∂x
(4)

∂hsCs

∂t
+ ∂hsusCs

∂x
= E − D (5)

∂zb

∂t
= −E − D

1 − p
(6)

where t is the time; x the streamwise coordinate; g the gravita-
tional acceleration; p = 1 − Cb the bed sediment porosity; ρw

and ρs are the densities of water and sediment, respectively;
ρc = ρw(1 − Cs) + ρsCs is the density of the water–sediment
mixture in the sediment-laden flow layer; ρ0 = ρwp + ρs(1 − p)

the density of the saturated bed; τw the shear stress at the interface
between the two layers; and τb the bed shear stress.

Equations (1) and (2) represent the mass and momentum con-
servation equations for the clear-water layer. The first two terms
on the right hand side (RHS) of Eq. (2) represent the interfacial
resistance and gravity acting on this layer, and the third term
on its RHS illustrates the momentum transfer due to clear water
exchange across the interface. Equation (3) describes the mass
conservation equation for the sediment-laden flow layer. The
second term on its RHS quantifies the contribution of the mass
exchange with the bed. Equation (4) represents momentum con-
servation for the water–sediment mixture flow in the lower layer.
The first three terms on its RHS represent, respectively, the inter-
facial and bed resistances, gravity and hydrostatic pressure of

the clear-water layer acting on the lower layer. The fourth term
on its RHS represents the momentum transfer due to sediment
exchange with the bed. Likewise, the fifth and sixth terms on its
RHS represent the momentum transfer arising from clear water
exchange between two moving layers. The last term on its RHS
indicates the contribution of the spatial variations in sediment
concentration. Equation (5) represents the sediment mass con-
servation in the lower layer, incorporating sediment exchange
with the bed. Equation (6) indicates the bed deformation rate.

2.3 Comparison with existing models

Under certain premises, the DL model degenerates into two exist-
ing dam-break flow models, i.e. the SL model (Cao et al. 2004)
and SDL model (Spinewine 2005a). First, when the clear-water
layer vanishes and in line with this status there is no water
exchange across the interface, Eqs. (1) and (2) are trivial and
Eqs. (3)–(6) become the same as those of the SL model of Cao
et al. (2004).

Second, if sediment concentration Cs in the lower layer is
assumed constant as in the SDL model by Spinewine (2005a),
Eq. (5) is no longer required. When eb is introduced to quantify
the bed erosion rate, instead of the sediment fluxes in Eq. (6),
bed evolution is quantified by

∂zb

∂t
= −eb (7)

A relationship between eb and Ew is suggested by Spinewine
(2005a), i.e.

Ew = eb
Cb − Cs

Cs
(8)

By substituting Eqs. (7) and (8) into the governing equations of
the DL model, one obtains the governing equations of the SDL
model due to Spinewine (2005a). For the clear-water layer

∂hw

∂t
+ ∂hwuw

∂x
= −eb

Cb − Cs

Cs
(9)

∂hwuw

∂t
+ ∂

∂x

(
hwu2

w + 1
2

gh2
w

)
= − τw

ρw
− ghw

∂(zb + hs)

∂x

− eb
Cb − Cs

Cs
uw (10)

and for the sediment-laden flow layer

∂hs

∂t
+ ∂hsus

∂x
= eb

Cb − Cs

Cs
+ eb = eb

Cb

Cs
(11)

∂hsus

∂t
+ ∂

∂x

(
hsu2

s + 1
2

gh2
s

)

= τw − τb

ρc
− ghs

∂zb

∂x
− ρwg

ρc
hs

∂hw

∂x
+ ebuw

Cb − Cs

Cs

ρw

ρc
(12)
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2.4 Model closure

To close the governing equations of the DL model, a set of
relationships has to be introduced to determine the boundary
resistance, interface shear stress, the clear water exchange flux
between the two layers, and the sediment exchange flux between
the lower layer and the bed. Generally, unsteady and non-uniform
dam-break flows may experience boundary resistances substan-
tially different from those of steady and uniform flows. This is
more pronounced when sediment transport occurs, which renders
the bed movable and bedforms generated. However, no gener-
ally applicable relationships are currently available to represent
boundary resistance in such flows. Consequently, computational
studies of dam-break floods over fixed and mobile beds continue
to use resistance relationships initially developed for steady and
uniform flows, such as the Manning’s equation. This practice is
followed for the present DL model by virtue of the conventional
empirical relationships

τw = ρwgn2
w(uw − us)

2

h1/3
w

(13)

τb = ρcgn2
bu2

s

h1/3
s

(14)

where nw is the roughness at the interface between the upper and
lower layers; and nb is the roughness of the bed.

A slightly adapted version of the relationship initially pro-
posed for turbidity currents (Parker et al. 1987) is tentatively
used for determining Ew

Ew = −ew(us − uw) (15)

where the exchange coefficient ew is calculated empirically using
the Richardson number Ri = sgCshs/(uw − us)

2 and specific
gravity of sediment s = ρs/ρw − 1

ew = 0.00153
0.0204 + Ri

(16)

Generally, two distinct mechanisms are involved in sediment
exchange with the bed, i.e. bed sediment entrainment due to tur-
bulence and sediment deposition by gravitational action, though
sediment particle–particle interactions may modify the exchange
to some extent. The determination of the entrainment and depo-
sition fluxes continues to be one of the pivotal components of
computational models for fluvial sediment transport and mor-
phological evolution. Nonetheless, current formulations hinge
upon a series of assumptions, which are briefly reviewed in Cao
and Carling (2002). There is little dispute that the deposition
flux can be determined practically by using the local near-bed
sediment concentration and hindered settling velocity. One of
the most widely used approaches to specifying bed sediment
entrainment flux is based on the assumption that entrainment
always occurs at the same rate as it does under capacity regime.

In capacity conditions, the entrainment flux is equal to the depo-
sition flux. Therefore, the bed sediment entrainment flux can be
computed by using near-bed sediment concentration at capac-
ity and hindered settling velocity. Typically, bedload sediment
concentration varies very little vertically within the lower layer,
as compared with its longitudinal variation. Thus, the near-bed
concentration can be represented by the average concentration
of the lower layer. Accordingly, the entrainment and deposition
fluxes are estimated by

E = ωce(1 − ce)
m, D = ωCs(1 − Cs)

m (17)

where ω is the settling velocity of a single sediment parti-
cle in tranquil clear water, calculated using Zhang’s formula
(Zhang and Xie 1993); and hindered sediment settling veloc-
ity is taken into account using the relationship of Richardson and
Zaki (1954), where m = 4.45R−0.1

p , Rp = ωd/ν is the particle
Reynolds number and ν the kinematic viscosity of water. The
bedload sediment transport capacity ce is determined by

ce = qb

hsus
, qb = �8

√
sgd3(θ − θc)

1.5 (18)

where qb is the unit-width bedload transport rate at transport
capacity status; φ the modification coefficient; θ = u2∗/(sgd) the
Shields parameter; u∗ the friction velocity and θc the critical
Shields parameter for initiation of sediment movement. Usually,
the threshold Shields parameter can be empirically determined
over sufficiently mild slopes using the Shields diagram (Chien
and Wan 1999). Yet, for dam-break processes that may fea-
ture steep slopes, θc is determined following Cao et al. (2011c).
Although a plethora of empirical formulations is available for
calculating qb, they are derived under steady and uniform flows,
and therefore the entrainment flux based on these formulations
may not be directly applicable to dam-break flows. A slightly
modified version of the MPM (Meyer-Peter and Müller 1948)
formula is introduced here (MMPM: Modified MPM), with a
modification coefficient φ to be calibrated using measured data.
This is necessary as the Shields parameter in dam-break floods
can go far beyond the range in which the MPM formula was
initially derived. In essence, it is a functional form of bedload
transport rate introduced based on the MPM formula, especially
when the modification by Wong and Parker (2006) is considered.

In the present work, the closure relationships for the SL model
are in principle the special version of those for the DL model
as the upper clear-water flow layer vanishes. To close the SDL
model, an empirical relationship is proposed to directly deter-
mine the bed erosion rate eb using a lower and upper value of
the shear stress at the bed (Spinewine 2005a), instead of the
entrainment and deposition fluxes in Eq. (17).

Mathematical modelling has become one of the most proac-
tive approaches in the context of hydraulic research and
engineering practice. Yet concerns over its reliability remain,
especially when sediment transport and morphological evolu-
tion are involved. One of the most viable strategies to address
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these concerns is to incorporate in the governing equations of
a model as much physics as possible and thereby minimize its
uncertainty (uncertainty is inevitable because of the empirical
relationships introduced to close the model). The present work is
just one example with respect to this philosophy, i.e. eliminating
the assumption of constant sediment concentration in the lower
layer in SDL models by applying the fundamental mass conserva-
tion law for sediment, i.e. Eq. (5). It is this fact that distinguishes
the present DL model from the existing SDL model (Spinewine
2005a). Equally importantly, this must not be confused with the
empirical relationships introduced to close the governing equa-
tions of the models, which are far from universally applicable and
inevitably feature uncertainty. The latter fact certainly necessi-
tates systematic, fundamental investigations of the mechanisms
of sediment transport in complex flows, i.e. highly unsteady and
rapidly varied flows. Before new established closure formula-
tions are available, it has to be dealt with by empiricism that can
be accrued through practice using measured datasets.

2.5 Numerical algorithm

There have been analyses of DL models for clear-water flows
over fixed bed, without involving sediment transport or mobile
bed. If the difference of the velocities of the two layers exceeds
a threshold, the system of the governing equations as a whole
loses hyperbolicity and Kelvin–Helmholtz instability is expected
(Kim and LeVeque 2008), though an explicit expression for the
eigenvalues of the DL system is unavailable. Succinctly, the loss
of hyperbolicity has implications for the selection of numeri-
cal algorithms for solving the equations and the implementation
of boundary conditions. Accordingly, a special treatment has to
be developed. The introduction of an intermediate third layer
seems viable for recovering hyperbolicity (Castro et al. 2010).
Nevertheless, Eqs. (1)–(6) constitute a nonlinear system of six
partial differential equations, involving more equations than anal-
ysed previously (Kim and LeVeque 2008, Castro et al. 2010). It
is too complicated to be solved numerically as a single system
presently, which is reserved for future studies.

Given the above observation, an alternative solution strategy
has to be developed. As bed deformation is entirely deter-
mined by local entrainment and deposition fluxes under the
non-capacity framework for sediment transport, Eq. (6) is sepa-
rated from the remaining equations and can be readily solved.
Furthermore, from a physical perspective, it is proposed that
either the upper clear-water flow layer or the lower sediment-
laden flow layer is dictated by its own inertia, gravity and
boundary resistance, whilst the inter-layer interactions (mainly
the second term on the RHS of Eq. 2 and the third term on the
RHS of Eq. 4) play a secondary role and can therefore be set as
source terms in the momentum equations. In fact, the inter-layer
interactions can be confirmed to be negligible post priori, i.e.
after the numerical solution of a specific case has been achieved.

The above solution strategy facilitates the decomposition of
Eqs. (1)–(5) to two reduced-order systems that represent the

upper clear-water flow layer and the lower sediment-laden flow
layer, respectively. The two systems can be readily proved to be
hyperbolic and are much easier to solve than the single system
of Eqs. (1)–(5), i.e.

∂T
∂t

+ ∂E
∂x

= R (19)

∂U
∂t

+ ∂F
∂x

= S (20)

T =
[

hw

hwuw

]
(21a)

E =
[

hwuw

hwu2
w + 1

2 gh2
w

]
(21b)

R =
[

ew(us − uw)

− τw
ρw

− ghw
∂(zb+hs)

∂x + ew(us − uw)uw

]
(21c)

U =
⎡
⎣ hs

hsus

hsCs

⎤
⎦ (22a)

F =
⎡
⎣ hsus

hsu2
s + 1

2 gh2
s

hsusCs

⎤
⎦ (22b)

S =
⎡
⎢⎣−ew(us − uw) + E−D

1−p
M0

E − D

⎤
⎥⎦ (22c)

M0 = τw − τb

ρc
− ghs

∂zb

∂x
− ρwg

ρc
hs

∂hw

∂x
− (ρ0 − ρc)(E − D)us

(1 − p)ρc

− (ρs − ρw)Csusew(us − uw)

ρc
− ew(us − uw)uw

ρw

ρc

− (ρs − ρw)gh2
s

2ρc

∂Cs

∂x
(22d)

where T and U are the conserved variables; E and F are the flux
variables; R and S are the source terms for the clear-water flow
layer and the sediment-laden flow layer, respectively.

Equations (19) and (20) constitute two non-homogeneous
hyperbolic systems and can be solved separately and simultane-
ously using one of a hierarchy of numerical algorithms that can
capture shock waves and contact discontinuities properly (Toro
2001, LeVeque 2002). Take Eq. (20) as an example, a standard
splitting algorithm (Toro 2001) is employed

Uq
i = Uk

i − �t
�x

(Fi+1/2 − Fi−1/2) (23)

where �t is the time step; �x the spatial step; i the spatial
node index; k the time step index; q the auxiliary time step
index; Uq

i the predicted solution and Fi+1/2 the numerical flux
at x = xi+1/2. The ordinary differential equations constituted by
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the source terms are solved using the third-order Runge–Kutta
scheme (Gottlieb and Shu 1998)

U(1)
i = Uq

i + �tS(Uq
i ) (24a)

U(2)
i = 3

4 Uq
i + 1

4 U(1)
i + 1

4�tS(U(1)
i ) (24b)

Uk+1
i = 1

3 Uq
i + 2

3 U(2)
i + 2

3�tS(U(2)
i ) (24c)

Bed evolution is computed from Eq. (6) in the same manner as
Eq. (24) using the state information due to Eq. (23)

z(1)

bi = zk
bi + �t

(D − E)
q
i

1 − p
(25a)

z(2)

bi = 3
4

zk
bi + 1

4
z(1)

bi + 1
4
�t

(D − E)
(1)
i

1 − p
(25b)

zk+1
bi = 1

3
zk

bi + 2
3

z(2)

bi + 2
3
�t

(D − E)
(2)
i

1 − p
(25c)

The spatial gradients involved in Eqs. (21c) and (22c) are dis-
cretized using a second-order central difference scheme, whilst
the remaining variables are evaluated at node i.

The numerical fluxes in Eq. (23) are computed following
the established TVD version of the second-order accurate WAF
method (Toro 2001):

Fi+1/2 = 1
2
(Fi + Fi+1) − 1

2

N∑
j=1

sgn(cj)Aj�F(j)
i+1/2 (26a)

�Fj
i+1/2 = Fj+1

i+1/2 − Fj
i+1/2 (26b)

where N = 3 is the number of conservation equations; �Fj
i+1/2

the flux jump across wave j; Fj
i+1/2 the Riemann solver; cj =

Sj�x/�t the Courant number related to wave speed Sj and Aj

the WAF limiter function. Here the SUPERBEE limiter is chosen
for the limiter function, as well described by Toro (2001). For
the wave speeds and flux jumps involved in Eq. (26), the HLLC
approximate Riemann solver is used.

The numerical algorithm described above is second-order
accurate in space and time and has a linearized stability condition
given by the Courant number

Cr = lmax�t
�x

≤ 1 (27)

where lmax = max(uw ± √
ghw, us ± √

ghs).
Equation (19) for the clear-water flow layer can be solved in

a similar procedure as Eq. (20), except that the HLL approxi-
mate Riemann solver is used in calculating the inter-cell fluxes
(Toro 2001), instead of HLLC, because no sediment continuity
equation is involved in Eq. (19).

The solution strategy for Eqs. (1)–(6), as stated above, is phys-
ically justified once the lower sediment-laden flow layer has been
sufficiently developed following the dam break. At the very ini-
tial stage following the dam break, the interactions of the lower

layer with the upper layer and the mobile bed may not be neg-
ligible when compared with the effects of inertia, gravity and
resistance. Nevertheless, the effect of this issue on the solution
strategy is diminished because the shallow water hydrodynamic
theory is not rigorously applicable immediately following the
dam break, as indicated by studies that resolve the detailed ver-
tical structure of the flow (Ozmen-Cagatay and Kocaman 2010,
Oertel and Bung 2012). Given this observation, the modelling
studies below focus on the time after the initial period following
the dam-break. The hydrodynamic time of this initial period is
scaled to t0 = √

h0/g (h0 = initial static water depth upstream
of the dam), and thus the shallow flow theory is valid when
t ≥ t0 (Stoker 1957). Arguably, vertical acceleration in mobile
bed cases is intensified compared with fixed bed cases because
the mobile bed can admit the flow vertically. In this regard, a
longer initial period is expected, i.e. the shallow flow theory
applies when t ≥ βt0 with β > 1.

Additionally, the governing Eqs. (9)–(12) of the SDL model
are solved numerically using the same algorithm as previously
proposed by Spinewine (2005a), i.e. a second-order Godunov
finite-volume scheme along with the LHLL (Lateralized HLL)
Riemann solver (Fraccarollo et al. 2003).

3 Test cases

A series of test cases is solved to verify the DL model, including
comparisons with the SL (Cao et al. 2004) and SDL (Spinewine
2005a) models. The test cases concern flows due to instant and
full dam break and progressive failure of a single and cascade
landslide dams, respectively.

To quantify the difference between a numerical solution and
measured data, the non-dimensional discrepancy is defined based
on the L1 norm

L1
st =

∑
abs(ηi − 

ηi)∑
(hw + hs)i

(28a)

L1
in =

∑
abs[(hs + zb)i − (



hs + zb)i]∑
(hs)i

(28b)

L1
bd =

∑
abs(�zbi − �

zbi)∑
abs(�zbi)

(28c)

where L1
st , L1

in and L1
bd are L1 norms for stage, interface between

the two layers and bed deformation depth, respectively. The bed
deformation depth is defined by �zbi = zb − zb(t = 0), and 

η,


hs + zb and �
zb are measured stage, interface elevation and bed

deformation, respectively, whilst Cs, hs + zb and �zb are the
stage, interface elevation and bed deformation from a numerical
solution.

In the present work, a fixed uniform mesh is adopted, and the
spatial step is sufficiently fine to ensure mesh independence of the
solution, i.e. essentially equivalent solutions are obtained with
an even finer mesh. The spatial step �x is set to be 0.02 m and
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the Courant number Cr is 0.5. Bed porosity p = 0.4 is adopted
for all the test cases.

3.1 Instant and full dam break (test case 1)

Mobile bed dam-break experiments were carried out in a flume
at the Université Catholique de Louvain, Belgium (Spinewine
2005a). The flume was 6 m long, 0.25 m wide and 0.70 m high.
Dam break was simulated by the rapid downward removal of a
thin gate at the middle of the flume. The experiments were con-
ducted over an initially horizontal bed composed of non-cohesive
sediments, saturated with water and extending on both sides of
the idealized “dam” represented by the gate. Here, one experi-
mental case is revisited, with an initial water depth h0 = 35 cm
upstream the dam. The medium diameter of the bed material
composed of PVC (Polyvinylchloride) pellets was 3.92 mm and
the density was 1580 kg m−3. Numerical modelling was per-
formed within the time period before the forward and backward
waves reached the downstream and upstream boundaries, where
the boundary conditions can be simply set at the initial static
status. For the SDL model, the sediment concentration Cs in

the lower layer is set to be 0.22 following Spinewine (2005a),
except otherwise specified. The bed roughness nb is set to be
0.026 m−1/3 s following Zech et al. (2008). The modification
coefficient φ adopted in the DL and SL models and the interface
roughness nw are determined by fitting to the measured stage.
It is found that φ = 2.0 for the DL model, φ = 3.0 for the SL
model and nw = 0.006 m−1/3 s for the DL and SDL models lead
to satisfactory agreement with the measured data.

Figure 2 shows the water surface and bed profiles measured
and computed by the DL, SDL and SL models. The bed scour
depth and flood wave fronts are reproduced well by the three
models. Figure 3 illustrates the water surface and bed profiles
along with the interface computed from the DL and SDL mod-
els. Undesirable non-physical oscillations of the water surface
profiles and interfaces from the SDL model are spotted (Fig. 3b).
Quantitatively, the values of the L1 norms of the DL, SDL and
SL models for this case are similar (Table 1). The temporal and
spatial scales of the flow, sediment transport and bed evolution
in this particular case are so small that the performances of the
three models are hardly distinguishable (Table 1), except the
oscillations due to the SDL model in Fig. 3b.

Figure 2 Computed water surface and bed profiles compared with measured data

Figure 3 Water surface and bed profiles along with the interface from the DL and SDL models
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Table 1 L1 norm of the DL, SDL and SL models for instant and full
dam break (test case 1)

t = 0.25 s t = 1.5 sTime
L1 DL (%) SDL (%) SL (%) DL (%) SDL (%) SL (%)

L1
st 2.68 2.75 2.71 3.72 3.93 3.89

L1
in 3.12 3.11 n/a 3.46 3.52 n/a

L1
bd 4.45 4.78 3.89 4.47 4.84 5.22

3.2 Progressive failure of a single and cascade landslide
dams (test cases 2 and 3)

This subsection focuses on the flows due to progressive fail-
ure of a single and cascade landslide dams, in contrast to the
instant and full dam break (test case 1) revisited above. A series
of flume experiments on landslide dam breach and the resulting
floods is documented by Cao et al. (2011a, 2011b). These experi-
ments were carried out in a flume of dimensions 80 × 1.2 × 0.8 m
(Fig. 4) and bed slope 0.001. A set of 12 automatic water-level
probes was used to measure the stage hydrographs at 12 cross-
sections along the flume. In the experiments, the dams failed
by virtue of erosion of the overtopping flow when there was no
initial breach. The experiments provided a unique and system-
atic set of observed data for testing mathematical models of dam
breach and the resulting floods.

To demonstrate the performance of the models, two experi-
mental runs are revisited, i.e. F-Case 11 and T-Case 2 without
initial dam breach (Cao et al. 2011a, 2011b). In both cases, the
initial upstream and downstream slopes of the dam were 1/2
and 1/3, respectively. The medium diameter of the non-cohesive
dam material was 0.8 mm and the specific gravity of the sedi-
ment was 1.65. For F-Case 11, the single dam was initially 0.4 m
high, located at about 41 m from the inlet of the flume. The inlet
flow discharge was 0.042 m3 s−1. The initial static water depths
immediately upstream and downstream of the dam were 0.054 m
and 0.048 m, respectively. For T-Case 2 that involved two dams
in cascade, both dams were 0.4 m high initially, and located at
41 m and 60.3 m, respectively, from the inlet of the flume. The
inlet discharge was 0.025 m3 s−1. The initial static water depth
was 0.054 m immediately upstream the first dam, whilst it was

0.048 m immediately upstream and downstream the second dam.
At the inlet boundary, flow discharge was specified, and the water
depth and velocity were determined by the method of characteris-
tics. There was no sediment-laden flow layer at the inlet. Besides,
a 0.15-m high-weir was set at the flume outlet. Observation dur-
ing the course of the experiments showed that a hydraulic drop
occurred downstream of the weir, so the outflow did not affect the
flow upstream of the weir. Here, a transmissive condition (Toro
2001) was imposed at the downstream boundary (80 m), and all
the primitive variables in the outlet nodes were equal to those of
internal nodes closest to the boundary.

For this modelling exercise, a bed roughness nb =
0.012 m−1/3 s is used for all the three models. The modification
coefficient φ for the DL and SL models, the interface roughness
nw for the DL and SDL models as well as the lower layer sediment
concentration Cs in the SDL model are first calibrated using the
measured stage hydrographs from the experiments for a single
dam failure F-Case 11, and then directly applied for T-Case 2 of
cascade dam failure. It is found that the modification coefficient
φ = 4.5 for the DL model, φ = 6.0 for the SL model, interface
roughness nw = 0.006 m−1/3 s for the DL and SDL models and
the sediment concentration Cs = 0.1 for the SDL model lead to
the best agreements with the measured data.

Figures 5 and 6 show the computed stage hydrographs by the
DL, SDL and SL models, and the measured data at selected cross-
sections in both cases. For F-Case 11, CS5 and CS12 are located
upstream and downstream the dam, respectively. For T-Case 2,
CS1 and CS5 are upstream the first dam, CS8 is between the
two dams and CS12 is downstream the second dam. The cross-
sections CS1, CS5, CS8 and CS12 are located at 19 m, 40 m, 54 m
and 73.5 m, respectively, from the inlet of the flume (Fig. 4). It
is seen from Figs. 5 and 6 that the computed stages by the three
models are in fairly good agreement with the measured data.

Figures 7 and 8 illustrate the water surface and bed profiles
computed from the DL, SDL and SL models, along with the
measured data for the water surface elevation and the interface
from the DL and SDL models. In fact, the progressive failure
of the dams is explicitly represented by the evolution of the
bed profile. Regardless of the fact that the stage hydrographs
at selected cross-sections by the SDL model match the mea-
sured data fairly well (Figs. 5 and 6), the computed bed and

Figure 4 Experimental setup for landslide dam failure
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Figure 5 Stage hydrographs for a single landslide dam breach

Figure 6 Stage hydrographs for cascade landslide dam breach

water surface profiles by the SDL model exhibit serious numeri-
cal oscillations and deviate from the measured data significantly
in some locations (Figs. 7a2–d2 and 8a2–e2). Obviously, the
numerical results from the SDL model are badly spoiled, ren-
dering the sediment-laden flow layer hardly recognizable when
compared against the results from the DL model (Figs. 7a1–d1
and 8a1–e1). It is critical to point out that the numerical oscil-
lations are inherent to the SDL model, as the use of a reduced or
increased Courant number (e.g. Cr = 0.1, 0.9) does not eliminate
the oscillations (not shown). Yet, it is premature to conclude if
the numerical oscillations result from the assumption of constant
sediment concentration embedded in the SDL model or the loss of
hyperbolicity, as the Froude number is found to exceed 1.0 locally
(not shown). Indeed, immediately following the onset of the dam
breach (e.g. 410 s in Fig. 7 and 675 s in Fig. 8), the SDL model’s

performance is comparable to the DL and SL models when com-
pared with the measured water surface elevation. However, at
other instants when the flow is rapidly varied longitudinally
and clearly exhibits complex structure such as subcritical-to-
supercritical transitions and hydraulic jumps (e.g. 430 s and 450 s
in Fig. 7 and 700 s and 900 s in Fig. 8), the SDL model performs
poorly when compared with the measured data, in sharp contrast
to the DL and SL models. Comparatively, the DL model performs
appreciably better than the traditional SL model in resolving the
complex flow structures (hydraulic jumps) as shown in Figs. 7
and 8.

Echoing Figs. 7 and 8, the values of the L1
st (Tables 2 and 3)

provide further testament for the improved performance of the
DL model over the SDL and SL models in comparison with
measured data. Specifically, the DL and SDL models feature,
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Figure 7 Water surface, interface and bed profiles for a single landslide dam failure. DL: left; SDL: middle; SL: right

respectively, the minimum and maximum L1
st values, whilst the

SL model lies in between the two, consistently through time.
Particularly, when the flow is rapidly varied (e.g. 430 s in Fig. 7
and 700 s in Fig. 8), the L1

st values of the SDL model are twice
or even greater than those of the DL model (Tables 2 and 3).
These observations lead one to comment, if only briefly, that the

DL model is physically enhanced over the SL and SDL models
and therefore performs the best, though the computational cost is
appreciably increased by approximately 40 and 8% as compared
with SL and SDL models, respectively.

The whole processes of the dam failure, flow, sediment trans-
port and bed evolution resolved by the DL model can be briefly
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Figure 8 Water surface, interface and bed profiles for cascade landslide dam failure. DL: left; SDL: middle; SL: right
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Table 2 L1
st of DL, SDL and SL models for a single landslide dam

failure (test case 2)

Time t = 410 s t = 430 s t = 450 s t = 600 s Average

DL (%) 0.12 6.52 8.54 4.43 4.90
SDL (%) 0.13 13.89 16.35 6.85 9.31
SL (%) 0.13 8.53 11.45 6.45 6.64

interpreted. For F-Case 11, at t = 410 s, the water flows over
the top of the dam and starts to erode the toe (Fig. 7a1). At
t = 430 s, the overtopping flow erodes the downstream surface
of the dam, causing the formation of the sediment-laden flow
layer (Fig. 7b1), and a hydraulic jump is formed around the dam
site, which is characterized by the variation of Froude number
(not shown). Compared with that at t = 430 s, the dam is fur-
ther eroded at t = 450 s (Fig. 7c1), and the sediment-laden flow
layer develops more fully. At this stage, two hydraulic jumps
exist downstream of the dam. After t > 600 s, the free surface
of the flow is nearly horizontal, unable to further erode the dam,
and the dam failure process essentially terminates (Fig. 7d1). For
T-Case 2, at t = 675 s, the water flows over the first dam, and the
toe starts to be eroded (Fig. 8a1). At t = 700 s, the overtopping
flow further erodes the first dam, the sediment-laden flow layer
forms, and two hydraulic jumps occur between the two dams
(Fig. 8b1). At t = 875 s (Fig. 8c1), the erosion of the first dam
increases and the sediment-laden flow layer between the two
dams develops further. Additionally, the overtopping flow starts
to erode the downstream surface of the second dam and thus
the sediment-laden flow layer forms downstream. At t = 900 s,
the second dam is further eroded, leading to the amplification
of the sediment-laden flow layer downstream, whilst a hydraulic
jump is also formed around the second dam site (Fig. 8d1). After
t > 1200 s, the water surface tends to be rather smooth and the
dam failure process almost terminates. Clearly, the second dam
is not eroded as fully as the first dam (Fig. 8e1).

Overall, the SL model performs well compared with the mea-
sured water surface elevation, as previously stated in regard to
its extended version (Cao et al. 2011a, 2011c). The DL model
shows promise for successful modelling of the highly unsteady
and complex flows due to progressive failure of landslide dams,
either in a single setting or in a cascade. It resolves the physical
phenomenon in a more detailed manner, facilitating a resolu-
tion of the sediment-laden flow layer, which is unavailable from
the SL model. The SDL model performs poorly compared with
the measured data. Theoretically, the latter fact arises from the

assumption of constant sediment concentration in the lower layer,
which essentially breaks the fundamental mass conservation law
for sediment.

3.3 Progressive failure of a dike (test case 4)

This subsection aims to evaluate the three models’ ability to
reproduce the morphological evolution of a breaching dike. An
experimental test (Test-18) is revisited, which was carried out by
Schmocker and Hager (2012) in a flume that is 8 m long, 0.4 m
wide and 0.70 m high. In this case, the initial single dike was
0.2 m high, 0.2 m wide and located at about 1.0 m from the inlet
of the flume. The initial upstream and downstream slopes of the
dike were both 1 : 2. The medium diameter of the non-cohesive
dike material was 2.0 mm and the specific gravity of the sediment
was 1.65. The inlet unit-width discharge was 0.08 m2 s−1. The
initial water depths immediately upstream and downstream of the
dike were 0.2 m and 0.0 m, respectively. At the inlet boundary,
flow discharge was specified, and the water depth and velocity
were determined by the method of characteristics. A free flow
was imposed at the channel end as the downstream boundary
condition, following Pontillo et al. (2010) for similar test cases
using the two-phase model developed by Greco et al. (2008).

For the SDL model, the sediment concentration Cs of the
sediment-laden layer is assumed to be 0.1. The modification
coefficients φ adopted in the DL and SL models are both 6.0.
The interface roughness nw adopted in the DL and SDL models
is set to be 0.006 m−1/3 s. For the three models, bed roughness
nb is 0.015 m−1/3 s.

Figure 9 shows the water surface and bed profiles from the
DL, SDL and SL models, along with the measured bed elevation
and interface computed from the DL and SDL models. Over-
all, both the DL and SL models can reasonably reproduce the
breaching process of the dike. As seen from Fig. 9, the DL
model performs the best, followed by the SL model, and the
SDL model performs the worst due to the serious non-physical
oscillations. This observation is corroborated quantitatively by
the values of L1

bd (Table 4). The average L1
bd of the DL, SDL

and SL models are 10.63, 13.83 and 10.94%, respectively. Obvi-
ously, the maximum error is due to the SDL model. Pontillo
et al. (2010) modelled similar but different experimental cases,
and the root-mean-square error, instead of the L1 norm, was used
to measure the discrepancies between computational results and
measured data. Therefore, a comparison of the performances of
the DL and two-phase models is not strictly justified. Neverthe-
less, the agreement of the DL and SL models with the measured

Table 3 L1
st of DL, SDL and SL models for cascade landslide dam failure (test case 3)

Time t = 675 s t = 700 s t = 875 s t = 900 s t = 1200 s Average

DL (%) 0.9 4.26 8.19 11.18 3.72 5.65
SDL (%) 1.52 13.48 11.45 16.68 4.05 9.44
SL (%) 1.02 5.24 9.06 14.84 3.89 6.81
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Figure 9 Water surface, interface and bed profiles for a dike breach. DL: left; SDL: middle; SL: right

Table 4 L1
bd of DL, SDL and SL models for test case 4

Time t = 6 s t = 20 s t = 100 s Average

DL (%) 13.64 9.94 8.36 10.64
SDL (%) 17.52 11.42 12.56 13.83
SL (%) 12.67 10.15 9.89 10.90

bed profile (Fig. 9) is approximately equivalent to or apprecia-
bly better than its counterpart shown in Pontillo et al. (2010,
Figs. 2–5), which was claimed to be an improvement over the
traditional De Saint-Venant–Exner model.

4 Discussion

4.1 Sensitivity analysis

Numerical tests are conducted to evaluate the sensitivity of the
computational results to model parameters. In general, the results

with tuned parameters are qualitatively similar to those shown
in Figs. 2, 3 and 5–9 when compared with the measured data.

Specifically, for test case 1, the sediment concentration Cs

of the lower layer in the SDL model is tuned by about 22%
of the calibrated value (i.e. Cs = 0.22 ± 0.5). Shown in Fig. 10
are the water surface and bed profiles along with the interface
computed from the SDL model, corresponding to different sed-
iment concentrations presumed for the lower sediment-laden
flow layer. In Table 5 the corresponding L1 values are pro-
vided. From Fig. 10, it is found that the computational results
of the SDL model are very sensitive to the presumed value of
Cs. This is apparently echoed by the L1 values (Table 5). Com-
paratively, L1

in is most sensitive to Cs, whilst L1
st and L1

bd are less
sensitive. At t = 1.5 s, L1

in is nearly doubled in response to a
variation of Cs by 22% (Table 5). It is also shown in Table 5
that the sensitivity of the L1 values to Cs would increase with
time.

Likewise, the modification coefficient φ in the DL model is
tuned by 50% of its calibrated value (i.e. φ = 2.0 ± 1.0), and the
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Figure 10 Water surface and bed profiles along with interface from the SDL model assuming different sediment concentrations

Table 5 L1 norm of SDL model with different Cs for test case 1

L1 norm

L1 Cs t = 0.25 s t = 1.5 s

L1
st 0.17 2.88% 6.19%

0.22 2.75% 3.93%
0.27 3.02% 5.97%

L1
in 0.17 4.45% 7.16%

0.22 3.11% 3.52%
0.27 4.47% 7.09%

L1
bd 0.17 5.01% 7.74%

0.22 4.92% 5.04%
0.27 5.49% 7.88%

results are shown in Fig. 11 and Table 6. Indeed, the results are
appreciably sensitive to the tuned parameter φ. As seen from
Fig. 11, the bed deformation seems to be more sensitive to the
value of φ than the stage and interface, which is supported by the
L1 values in Table 6. This is in contrast to the observation that the
interface profile is most sensitive to Cs in the SDL model (Fig. 10
and Table 5). Physically, this is determined by the fact that φ is
directly embedded in the relationships for sediment entrainment
in the DL model, i.e. Eqs. (17) and (18), and therefore in the

Table 6 L1 norm of DL model with different φ for test case 1

L1 norm

L1 φ t = 0.25 s t = 1.5 s

L1
st 1.0 2.71% 4.13%

2.0 2.68% 3.72%
3.0 2.73% 3.91%

L1
in 1.0 3.27% 4.34%

2.0 3.12% 3.46%
3.0 3.18% 4.15%

L1
bd 1.0 6.33% 6.21%

2.0 4.45% 4.47%
3.0 5.89% 5.64%

bed deformation (Eq. 6), whereas Cs is explicitly involved in the
equations of the two layers in the SDL model, i.e. Eqs. (9)–(12),
instead of the bed evolution (Eq. 7). Most notably, the sensitivity
to φ in the DL model is considerably constrained compared with
that to Cs in the SDL model. This is substantiated by the fact that
the increase of L1

st , L1
in and L1

bd of the DL model in response to the
change of φ (by 50%) is considerably smaller than its counterpart
of the SDL model in connection with the change of Cs (by 22%)
(see Tables 5 and 6). Consequently, the computational results

Figure 11 Water surface and bed profiles along with interface from the DL model assuming different modification coefficient φ
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Table 7 L1
st of DL model with different φ for test case 2

φ t = 410 s t = 430 s t = 450 s t = 600 s Average

3.0 0.15% 9.32% 11.27% 7.11% 6.96%
4.5 0.12% 6.52% 8.54% 4.43% 4.90%
6.0 4.43% 8.83% 8.56% 4.52% 6.59%

Table 8 L1
st of DL model with different φ for test case 3

φ t = 675 s t = 700 s t = 875 s t = 900 s t = 1200 s Average

3.0 1.05% 6.22% 11.88% 13.28% 4.68% 7.42%
4.5 0.9% 4.26% 8.19% 11.18% 3.72% 5.65%
6.0 4.54% 6.67% 11.06% 12.09% 3.83% 7.66%

Table 9 L1
bd of DL model with different φ for test case 4

φ t = 6 s t = 20 s t = 100 s Average

4.0 18.62% 13.56% 9.69% 13.96%
6.0 13.64% 9.94% 8.36% 10.64%
8.0 17.69% 14.27% 10.83% 14.26%

are more sensitive to the presumed sediment concentration Cs in
the SDL model than to the modification coefficient φ in the DL
model, which characterizes a major limitation of the SDL model.

For test cases 2, 3 and 4, numerical experiments are carried
out to ascertain the sensitivity of the computational results of
the DL model to the parameter φ. Generally, the stage, interface
and bed deformation (not shown) in line with tuned parameter φ

are similar to those illustrated in Figs. 2, 3 and 5–9 qualitatively.
However, the L1 values increase to a certain extent, as shown in
Tables 7–9. Typically, as the modification coefficient φ of the
DL model is tuned by one-third of the calibrated values for test
cases 2, 3 and 4, the average values of L1

st for test cases 2 and 3
and of L1

bd for test case 4 increase by approximately 30–40%.

4.2 Variation of sediment concentration

Theoretically, both the DL and SL models are built upon the fun-
damental mass conservation law for sediment, so they can reflect
the variation of sediment concentration in space and time. To
illustrate this, the sediment concentration profiles from the DL,
SDL and SL models for the instant and full dam-break case (test
case 1) are shown in Fig. 12. Here, for the DL and SDL models,
the averaged sediment concentration over the whole flow depth
is defined as Ch = Cshs/(hw + hs). According to the DL model,
at 0.25 s following the dam-break, the sediment concentration
Cs in the lower layer has attained a rather high value of approx-
imately 0.3, and at 1.5 s it is characterized by spatial expansion
and also considerable decrease except around the forefront of
the flood wave. It is apparent that Cs varies substantially in space
and time, as resolved by the DL model. Hence, the assumption
of a constant sediment concentration Cs in the lower layer is not
justified. The qualitative similarity of the longitudinal profiles of
the whole depth-averaged sediment concentration Ch from the
SDL model to those due to the DL model does not justify the
SDL model because it is the Cs, rather than Ch, that is directly
embedded in the SDL model.

5 Conclusions

A physically enhanced DL model is developed for dam-break
flows over mobile bed. It is new as sediment mass conser-
vation is explicitly incorporated in lieu of the assumption of
constant sediment concentration generic to existing DL models.
The numerical algorithm proposed for the new model is effective
and satisfactorily accurate. The new model is tested against labo-
ratory experimental data of typical dam-break flows due to instant
and full dam break and progressive failure of a dike and landslide
dams, either in a single setting or in cascade. Enhanced perfor-
mance of the new model is demonstrated over a SDL model and
a SL model. Extension of the present DL model to two dimen-
sions is warranted for field cases with complex and irregular
topography. It should find wide applications in modelling sharply
stratified dam-break flows over mobile bed.

Figure 12 Sediment concentration profiles from the DL, SDL and SL models
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Notation

Cb = volumetric sediment concentration of the bed
(−)

Ch = volumetric sediment concentration over the
whole water depth (−)

Cr = Courant number (−)
Cs = volumetric sediment concentration of

sediment-laden flow layer (−)
ce = bedload sediment transport capacity (−)
d = medium sediment particle diameter (m)
E = vector defined in Eq. (21)
E, D = sediment entrainment and deposition fluxes,

respectively (m s−1)

Ew = mass exchange flux of clear water between
the upper and lower layers (m s−1)

eb = bed erosion rate (m s−1)

ew = coefficient for mass exchange of clear water
(−)

F = vector defined in Eq. (22)
g = gravitational acceleration (m s−2)

hs = depth of sediment-laden flow layer (m)
hw = depth of clear-water flow layer (m)
i = index denoting the spatial node
k = index denoting the time step
L1 = norm to measure error (−)
L1

st , L1
in and L1

bd = norms for stage, interface and bed
deformation depth, respectively.

m = exponent (−)
nb = bed roughness (m−1/3 s)
nw = interface roughness (m−1/3 s)
p = bed sediment porosity (−)
q = index denoting the auxiliary time step
qb = unit-width bedload transport rate at transport

capacity status (m2 s−1)

R = source term for clear-water flow layer
Rp = particle Reynolds number (−)
Ri = Richardson number (−)
s = specific gravity of sediment (−)
S = source term for sediment-laden flow layer
U = vector of conserved variables of sediment-

laden flow layer
us = mean velocity of sediment-laden flow layer

(m s−1)

uw = mean velocity of clear-water flow layer
(m s−1)

u∗ = friction velocity (m s−1)

x = streamwise coordinate (m)
T = vector of conserved variables of clear-water

flow layer
t = time (s)
zb = bed elevation (m)
�x = spatial step in the x direction (m)
�t = time step (s)
�zb = bed deformation depth (m)
η = stage (m)
ν = kinematic viscosity of water (m2 s−1)

θ = Shields parameter (−)
θc = threshold Shields parameter for initiation of

sediment movement (−)
lmax = maximum celerity (m s−1)

ρw and ρs = densities of water and sediment, respectively
(kg m−3)

ρc and ρ0 = densities of water–sediment mixture and
saturated bed (kg m−3)

τb = bed shear stress (kg m−1 s−2)

τw = interface shear stress (kg m−1 s−2)

φ = modification coefficient (−)
ω = settling velocity of a single sediment particle in

tranquil clear water (m s−1)
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