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The yielding behavior of glassy polymers may be sensitive to the hydrostatic pressure and
also be influenced by the strain rate. Thus, the yield strength is a function of hydrostatic
pressure and strain rate instead of a constant. In this paper, using dimensional analysis and
finite element simulations, we established a method to estimate the yield strength of
glassy polymers by instrumented indentation. Together with the method for determining
shear creep compliance proposed in our previous work, the viscoelastic-plastic properties
of glassy polymers can be extracted from a single indentation load-depth curve. Appli-
cations were illustrated on unplasticized polyvinyl chloride (UPVC). The shear creep
compliance and yield strength of UPVC were successfully determined by a single inden-
tation test. Using these parameters, the true stress–strain curves of UPVC under different
strain rates were approximately predicted according to a linear viscoelastic-perfectly
plastic constitutive description.

� 2013 Published by Elsevier Ltd.
1. Introduction

Instrumented indentation is an efficient and convenient
tool for probing mechanical properties of small volumes of
material and small structures. The methods for deter-
mining the elastic [1] and plastic [2–6] properties of
elastic–plastic solids by instrumented indentation have
been well established. For viscoelastic-plastic materials
such as glassy polymers, the deformations are complicated.
Not only time-independent elastic–plastic deformation,
but time-dependent viscoelastic deformation occurs dur-
ing indention tests. Thus, the characterization of the
viscoelastic-plastic properties of glassy polymers by
instrumented indentation face challenges. To reduce the
difficulty, researchers usually isolate the elastic, viscoelastic
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and plastic deformations and determine the corresponding
material parameters separately.

1.1. Determination of elastic modulus

For elastic–plastic solids, the widely used method is to
extract elastic modulus from the initial unloading stiffness
(also called contact stiffness), S¼ (dF/dh)u, of the unloading
curve [1]. It is based on Sneddon’s work [7], which relates S,
the reduced modulus, Er, and the projected contact area, A,

Er ¼
ffiffiffiffi
p

p
2b

Sffiffiffi
A

p (1)

where b is a correction factor for indenter shape (b ¼ 1.034
for a Berkovich indenter and b ¼ 1.012 for a Vickers
indenter [8,9]). Taking into account the effect of a non-rigid
indenter, the reduced modulus, Er, is defined as

1
Er

¼ 1� n2

E
þ 1� n2i

Ei
(2)
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where E, n and Ei, ni are the elastic modulus and Poisson’s
ratio of sample and indenter, respectively. For a diamond
indenter, Ei ¼ 1141 GPa and ni ¼ 0.07. Thus, if Poisson’s ratio
of the sample is known, the elastic modulus of the sample
can be determined by Eq. (2), when the reduced modulus is
obtained by Eq. (1).

The projected contact area, A, in Eq. (1) can be deter-
mined from the contact depth, hc. For a perfect Berkovich
indenter, the projected contact area is calculated by
A ¼ 24:5h2c . Oliver and Pharr [1] put forward a formula for
calculating contact depth

hc ¼ hu � 3
Fu
S

(3)

where hu and Fu are the depth and load at the beginning of
unloading, respectively; 3is a constant related to indenter
shape ( 3¼ 0.72 for sharp indenters).

For viscoelastic-plastic solids, however, the deformation
is time-dependent and more complex. Due to the effect of
creep, a platform appears during holding, and the unload-
ing part of the load-depth curve is more convex [dotted
curve in Fig. 1(b)] than that for elastic–plastic materials.
This leads to overestimating the contact stiffness. If the
Fig. 1. Schematic illustrations of (a) step-hold-unload loading profile and (b)
load-depth curves of indentation tests (dotted curve is the typical holding
and unloading curve of viscoelastic solids).
unloading rate is sufficiently low, a nose may be evident
and the contact stiffness is negative. Using the measured
contact stiffness, S, to determine the elastic modulus could
introduce considerable error. In this case, the widely used
Oliver-Pharr method [1] is inapplicable for extracting
elastic modulus [10–14]. Feng et al. [10] have proposed that
the true (elastic) contact stiffness, Se, can be calculated from
the measured contact stiffness, S, using the following
equation

1
Se

¼ 1
S
þ

_hh��� _Fu

��� (4)

where _hh is the creep rate (dh/dt) at the end of holding, _Fu is
the unloading rate (dF/dt) at the beginning of unloading.
Tang et al. [12] proposed a revised Oliver-Pharr method by
replacing S in Eqs. (1) and (3) with Se. Using the revised
Oliver-Pharr method, the contact depth and the reduced
modulus can be accurately determined.
1.2. Determination of shear creep compliance

In order to characterize the time-dependent behavior,
the creep compliance should be determined. Lee and Radok
[15], Hunter [16], Graham [17] and Ting [18] have devel-
oped theories for the problem of indentation in linear
viscoelastic solids, which give the load-depth (F-h)
relationship

hðnþ1Þ=nðtÞ ¼ 1� n

4Cn

Z t

0
Jðt � sÞdFðsÞ

ds
ds (5)

where J(t) is the shear creep compliance; Cn is a constant
related to indenter shape, n ¼ 1, C1 ¼ tana/p for a sharp
indenter, and a is the included half-angle; n¼ 2, C2 ¼ 2OR/3
for a spherical indenter, and R is the radius of a spherical
indenter. Based on this relationship, several methods for
determining shear creep compliance have been proposed
[19–26]. A step-hold-unload loading profile [Fig. 1(a)] is
often used to determine the shear creep compliance, and
the corresponding formula is [19,24,25]

JðtÞ ¼ 4Cn

ð1� nÞF0h
ðnþ1Þ=nðtÞ (6)

where F0 is the maximum load for holding. It should be
noted that these methods require the deformation of ma-
terials in the linear viscoelastic regime. In practice, it is
difficult to meet this requirement for glassy polymers such
as polymethylmethacrylate (PMMA) and unplasticized
polyvinyl chloride (UPVC), because the high stresses
beneath the indenter tip can easily lead to these materials
yielding. Lu et al. [19] and Tweedie et al. [22] pointed out
that the response can be regarded as approximately linear
viscoelastic when the indentation is shallow enough for
plastic deformation to be negligible. However, it is difficult
to identify the critical indentation load or depth that does
not cause significant plastic deformation.

Aimed at avoiding these difficulties, Peng et al. [25] put
forward a convenient method for determining the shear
creep compliance of linear viscoelastic-plastic solids when
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significant plastic deformation occurs during the indention
test. A step-hold-unload loading profile [Fig. 1(a)] and a
Berkovich indenter were adopted in their tests. They firstly
revised the F-h curve by removing the plastic deformation
from the measured F-h curve through a three-step proce-
dure, and then used the revised F-h curve to determine the
shear creep compliance. The revised depth hre(t) can be
obtained by

hreðtÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pFðtÞ=ð2gErtanaÞ
p

for loading
hðtÞ � hp

0; for holding � unloading

(7)

where F(t) is the load for loading segment; g is a correction
factor; hp

0 is the maximum plastic depth contained in
loading and unloading segments. Replacing the measured
depth, h(t), in Eq. (6) with the revised depth, hre(t), the
shear creep compliance of linear viscoelastic-plastic solids
can then be accurately determined.
1.3. Determination of plastic properties

In order to characterize the plastic behavior by instru-
mented indentation, a constitutive description and an ac-
curate method for extracting the material parameters in
the constitutive description from the F-h curve are neces-
sary. To date, a number of methods [2–6] have been pro-
posed for determining the plastic properties of elastic
power-law hardening materials such as pure and alloyed
engineering metals. For these materials, two material pa-
rameters – the yield strength, sy, and the strain hardening
exponent, n, – need to be determined. One of the most
complete studies was presented by Dao et al. [2]. They used
dimensional analysis to construct a set of dimensionless
functions to characterize instrumented sharp indentation.
With the aid of finite element (FE) simulations, they
derived several analytical expressions that relate indenta-
tion data to plastic properties from these dimensionless
functions. The yield strength and strain hardening expo-
nent can then be extracted from the F-h curve by using
these analytical expressions. For glassy polymers, however,
Fig. 2. Schematic illustrations of the typical constitutive description of
glassy polymers (solid curve), and a viscoelastic-perfectly plastic description
(dotted curve).
the elastic power-law hardening description is inappro-
priate. The typical constitutive description of glassy poly-
mers (solid curve in Fig. 2) may include viscoelastic
deformation before yielding, softening and strain hard-
ening after yielding [27]. Furthermore, the yielding
behavior of glassy polymers may be sensitive to the hy-
drostatic pressure and also be influenced by the strain rate
[28–30]. As a consequence, these methods based on elastic
power-law hardening description are inapplicable for
glassy polymers.

To reduce the complexity of the plastic constitutive
model, the behavior of glassy polymers can be approxi-
mated by a linear viscoelastic-perfectly plastic description
(dotted curve in Fig. 2). The yield strength of glassy poly-
mers is a function of hydrostatic pressure and strain rate,
which can be expressed as [31–33]

sy
�
P; _3
� ¼ sy0 þ kP þ Bln

�
_3
�

(8)

where sy0 is the yield strength under the pure shear defor-
mation; k is the coefficient of internal friction, which reflects
the effect of hydrostatic pressure on the yield strength;
P ¼ �skk/3 is the hydrostatic pressure; B is the coefficient
that reflects the effect of strain rate on the yield strength;
_3¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2Þ_3ij _3ij

p
is the effective strain rate. There are three

material parameters, i.e. sy0, k and B, in the constitutive
description that need to be determined to characterize
plastic behavior. Considering the effect of hydrostatic pres-
sure and ignoring the effect of strain rate on yield strength,
Zhang et al. [33] put forward a method for determining sy0
and k by instrumented indentation using two sharp in-
denters. However, the accuracy is somewhat unsatisfactory.
As addressed in their paper [33], the yield strength of PMMA
determined by indentation test is 108 MPa, and the uniaxial
tensile result is 85 MPa. The relative error is as high as 27%.
Thus, a more accurate method to determine plastic prop-
erties of glassy polymers is needed.

In the present work, we consider a sharp indenter
(conical, Berkovich or Vickers) indenting linear
viscoelastic-plastic solids with a step-hold-unload loading
profile [Fig. 1(a)]. It is assumed that elastic–plastic defor-
mation is dominant and viscoelastic deformation can be
neglected during the fast loading segment, and there is
only viscoelastic deformation during the holding segment.
Therefore, viscoelastic and plastic properties can be deter-
mined separately from different segments of the F-h curve.
Using dimensional analysis and FE simulations, a new
method for extracting the yield strength under the pure
shear deformation, sy0, and the coefficient of internal fric-
tion, k, is established. When sy0 and k are determined,
together with the shear creep compliance, J(t), determined
in our previous work [25], the viscoelastic-plastic proper-
ties of glassy polymers can be characterized.
2. A new method for determination of plastic
properties

If glassy polymers are regarded as approximate linear
viscoelastic-perfectly plastic materials, there are three
material parameters, i.e. sy0, k and B, in Eq. (8), that need to
be determined in order to characterize the plastic
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properties. For the reason that the relationship between
effective strain rate, _3, and indentation strain rate, _3I ¼ _h=h,
is unknown, it is not possible to know how the effective
strain rate affects yield strength. The coefficient B that re-
flects the effect of strain rate on the yield strength cannot
be determined by instrumented indentation. Thus, in the
present work, the coefficient B that can be determined by
uniaxial tensile tests at different strain rates is assumed to
be known, and we merely consider the method for deter-
mining the yield strength under the pure shear deforma-
tion, sy0, and the coefficient of internal friction, k, by
instrumented indentation. The dimensional analysis and FE
simulations are used to construct expressions that relate
the indentation data to elastic–plastic properties.
2.1. Dimensional analysis

To extract sy0, k and shear creep compliance J(t) from a
single F-h curve, we considered a sharp indenter indenting
linear viscoelastic-perfectly plastic solids with a step-hold-
unload loading profile [Fig. 1(a)], which is the same as that
used in our previous work [25]. It is assumed that (1)
elastic–plastic deformation is dominant and viscoelastic
deformation is negligible during the fast loading; (2) in the
holding segment, only viscoelastic process occurs. Thus,
during loading, the load, F, is regarded as irrelevant to the
viscoelastic properties, and it can be written as

F ¼ f1
�
h; E; n; sy0; k; Ei; ni; a

�
(9)

where E, n and Ei, ni are the elastic modulus and Poisson’s
ratio of sample and indenter, respectively; a is the included
half-angle of a sharp indenter. When a is fixed, Eq. (9) can
be rewritten as

F ¼ f2
�
h; E; n; sy0; k; Ei; ni

�
(10)

Eq. (10) is often simplified by combining the elasticity
effects of the indenter and sample as

F ¼ f3
�
h; Er; sy0; k

�
(11)

where Er is the reduced modulus as defined in Eq. (2).
Applying the P theorem [34] in dimensional analysis, Eq.
(11) becomes

F
Erh2 ¼ PA

1

�
sy0

Er
; k
�

(12)

where PA
1 is a dimensionless function.

Based on the above assumption (1) that elastic–plastic
deformation is dominant during loading, the response of
sharp indentation during loading can be described by Kick’s
law [Fig. 1(b)]

F ¼ Ch2 (13)

where C is the loading curvature. Replacing F/h2 with C in
Eq. (12) leads to

C
Er

¼ PA
1

�
sy0

Er
; k
�

(14)
Alternatively, Eq. (14) can be written as

Er
C

¼ P1

�
Er
sy0

; k
�

(15)

whereP1 is a dimensionless function. It is obvious from Eq.
(15) that, when the indenter shape and included half-angle
are fixed, the loading curvature C is independent of
indentation depth, but depends on material properties.

During unloading, the unloading stiffness, dF/dh, is
related to viscoelastic-plastic properties. For fixed indenter
shape and included half-angle, the unloading stiffness is
given by

dF
dh

¼ g1
�
h; hu; t; E; n; sy0; k; h; Ei; ni

�
(16)

where hu is the depth at the beginning of unloading; h is the
viscosity coefficient of the sample that reflects the creep
(viscous) properties, t denotes time. Similarly, combining
the elasticity effects of the indenter and sample, Eq. (16)
can be rewritten as

dF
dh

¼ g2
�
h; hu; t; Er; sy0; k; h

�
(17)

Using the P theorem, Eq. (17) becomes

dF
dh

¼ ErhP
A
2

�
hu

h
;
sy0

Er
; k;

h

Ert

�
(18)

Evaluating Eq. (18) at h ¼ hu leads to

S ¼ dF
dh

����
h¼hu

¼ ErhuP
B
2

�
sy0

Er
; k;

h

Ert

�
(19)

where S is the contact stiffness. It is clear in Eq. (19) that the
contact stiffness is relevant to both elastic–plastic proper-
ties and creep properties. As discussed in section 1.1, the
effect of creep (h/Ert) can be removed by replacing the
measured contact stiffness, S, with the true (elastic) contact
stiffness, Se. Then, Eq. (19) is written as

Se
Erhu

¼ P2

�
Er
sy0

; k
�

(20)

where Se can be calculated using Eq. (4). From the two
dimensionless functions, P1 and P2, and with the help of
FE simulations, analytical expressions can be derived to
relate the indentation data to the elastic–plastic properties.
2.2. FE simulations

We considered a conical indenter with an included half-
angle of 70.3� indenting an infinite half-space. Since it is an
axisymmetric problem, an axisymmetric two-dimensional
FE model (Fig. 3) was constructed in the commercial
finite element program ABAQUS to simulate the indenta-
tion response of elastic-perfectly plastic solids. The size of
the samplewas set to ten times larger than the radius of the
contact region, so that the sample can be regarded as an
infinite half-space. The sample was modeled using four-
node bilinear axisymmetric quadrilateral elements, and
composed of a fine mesh of 2736 elements near the contact



Fig. 3. Mesh design for axisymmetric FE simulations.

Table 1
Material parameters input into ABAQUS for defining materials.

E (GPa) n sy0 (MPa) k

0.1 0.33 10 0
2.5 0.38 50 0.10
5.0 0.43 90 0.25
10 0.48 130 0.40
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region and a gradually coarser mesh of 1031 elements
further from the contact region. The indenter was modeled
as a rigid body, and the contact was modeled as frictionless.

As analyzed in section 2.1, for glassy polymers, the effect
of creep properties is negligible during fast loading, and can
also be removed during unloading by replacing the
measured contact stiffness with the true (elastic) contact
stiffness. Thus, in the FE simulations, the sample was
defined as an elastic-perfectly plastic material for simpli-
fication. To define an elastic-perfectly plastic material, four
material parameters (the elastic modulus, E, the Poisson’s
ratio, n, the yield strength under the pure shear deforma-
tion, sy0, and the coefficient of internal friction, k) need to
be input into ABAQUS. We considered a wide range of
material parameters of glassy polymers. As listed in Table 1,
each material parameter takes 4 values, and the combina-
tion of these parameters leads to 44 ¼ 256 combination
materials. Eliminating some impossible combinations (e.g.
E ¼ 0.1 GPa and sy0 ¼ 130 MPa, where the yield strength is
greater than the elastic modulus), conical indentations in
180 materials were simulated to construct the expressions
that relate indentation data to the elastic–plastic
properties.
Fig. 4. Dimensionless function P1 constructed in the parametric study with
180 simulations. Solid lines are the best-fitting straight lines to the data
points of different k.
2.3. FE results

The correlations between Er/sy0 and Er/C are illustrated
in Fig. 4. It clearly shows the influence of the coefficient of
internal friction on the evolution of the dimensionless
function P1 [Eq. (15)]. For each coefficient of internal fric-
tion, a linear relationship exists between Er/sy0 and Er/C.
Fitting a linear equation, Er/sy0 ¼ a(Er/C)þb, to the data
points of each coefficient of internal friction, a set of best-fit
slopes and intercepts was obtained: a ¼ 94.740,
b ¼ �42.170 for k ¼ 0; a ¼ 116.11, b ¼ �53.024 for k ¼ 0.10;
a ¼ 162.50, b ¼ �76.698 for k ¼ 0.25 and a ¼ 236.13,
b ¼ �114.54 for k¼0.40. We found that the slope, a, in-
creases and the intercept, b, decreases linearly with the
coefficient of internal friction (Fig. 5)

a ¼ 274:06kþ 92:476 (21)

and

b ¼ �ð139:67kþ 41:003Þ (22)

Thus, the relationship between Er/sy0 and Er/C can be
described by the following expression

Er
sy0

¼ ð274:06kþ 92:476Þ Er
C
� ð139:67kþ 41:003Þ (23)

Fig. 6 shows the relationship between Se/Erhu and Er/sy0.
It can be seen that all data points lie approximately on a
single curve, whichmeans the relationship between Se/Erhu
and Er/sy0 is insensitive to the coefficient of internal fric-
tion. The evolution of the dimensionless function P2 [Eq.
(20)] is relatively easy. Fitting a logarithmic equation, Se/
Erhu ¼ cln(Er/sy0)þd, to the data points in Fig. 6, we
obtained

Se
Erhu

¼ 0:95661 ln
�
Er
sy0

�
þ 1:7181 (24)

Using Eq. (23) and Eq. (24), the yield strength under pure
shear deformation, sy0, and the coefficient of internal



Fig. 5. Effects of the coefficient of internal friction on (a) the slope and (b)
the intercept of fitting lines in Fig. 4.
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friction, k, can be extracted from F-h curves if the reduced
modulus, Er, is known, where the reduced modulus of
glassy polymers can be determined by using the revised
Oliver-Pharr method proposed by Tang et al. [12].
Fig. 6. Dimensionless function P2 obtained using 180 simulations. Solid
curve is the best-fitting logarithmic curve to all data points.
3. Experiments

3.1. Specimens

Indentation tests and uniaxial tensile tests were per-
formed on UPVC (Anheda Plastic Products Co., Ltd., Suzhou,
China). For uniaxial tensile tests, the UPVC plates were
processed into dumbbell-shaped specimens according to
ISO 527-2. For indentation tests, the plates were processed
into small specimens measuring 20 mm � 20 mm � 4 mm.
The glass transition temperature of UPVC is 87 �C. Hence, all
specimens were annealed at 102 �C for 2.5 h in air to relieve
the residual stress caused by mechanical processing.

3.2. Indentation tests

In order to extract the shear creep compliance, the yield
strength under pure shear deformation and the coefficient
of internal friction from a single F-h curve, the indentation
data used in the present work are the same as used in our
previous work [25]. Consequently, new indentation tests
were not performed here. The details of the indentation
tests in our previous work [25] were presented as follows.

The indentation tests were performed at the room
temperature (23 �C) using a MTS Nano Indenter XP system
(MTS Nano Instruments, Oak Ridge, TN) with a Berkovich
indenter, which can be modeled as an equivalent cone with
an included half-angle of 70.3�. An approximate step-hold-
unload loading profile was adopted. The load was increased
quickly to the maximum (13 mN) in 2 s, held at the
maximum load for 300 s and finally decreased linearly to
zero in 50 s. The indentation test was repeated 5 times.

3.3. Uniaxial tensile tests

A material testing system MTS 810 (MTS, Minneapolis,
MN) was used to perform the uniaxial tensile tests at the
room temperature (23 �C). The tests were carried out in a
displacement controlled manner, and the displacement
increased at a constant extension rate. Four levels of
extension rates, i.e. 10 mm/min, 3 mm/min, 1 mm/min and
0.3 mm/min, were performed in the uniaxial tensile tests in
order to probe the effect of strain rate on yield strength. The
test of each extension rate was repeated 3 times.

4. Results and discussion

4.1. Elastic modulus

Fig. 7 shows the indentation F-h curves for UPVC. The
values of contact stiffness, S, listed in Table 2 were obtained
by first fitting a polynomial, h ¼ hfþa1F

1/2 þ a2F
1/4 þ a3F

1/8,
to 45% of the unloading curves and then evaluating the
derivative, dF/dh, at h ¼ hu. The elastic contact stiffness, Se,
was then calculated by Eq. (4). Replacing S in Eqs. (1) and
(3) with Se, the reduced modulus was determined. The
average reduced modulus of UPVC is 3.92 GPa, and the
Poisson’s ratio of UPVC usually takes a value of 0.4.
Consequently, the elastic modulus of UPVC was calculated
by Eq. (2). As listed in Table 3, the average elastic modulus
of UPVC determined by indentation test, EIT ¼ 3.30 GPa,



Fig. 7. Indentation load-depth curves of UPVC.

Table 3
Comparison between indentation and uniaxial tensile results of UPVC. The
results listed below are average values of elastic modulus and tensile yield
strength at different strain rates. The subscript IT indicates indentation
test.

Elastic modulus Tensile yield strength

E(GPa) EIT(GPa) Rel. Err. _3ðs�1Þ syt(MPa) syt_IT(MPa) Rel. Err.

3.10 3.30 6.45% 1.40 � 10�3 60.53 55.91 �7.64%
4.20 � 10�4 56.87 52.91 �6.96%
1.40 � 10�4 54.47 50.17 �7.90%
4.30 � 10�5 51.91 47.22 �9.03%
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agrees well with that determined by uniaxial tensile test,
E ¼ 3.10 GPa, with a relative error of 6.45%.
4.2. Yield strength

As shown in Fig. 7, the loading curvature, C, was ob-
tained by fitting the loading curve (in the range from
400 nm to 1600 nm) with F ¼ Ch2. Then, using Eq. (23) and
Eq. (24), the yield strength under the pure shear defor-
mation, sy0, and the coefficient of internal friction, k, were
determined (Table 2). The average values of sy0 and k were
74.66 MPa and 0.10, respectively.

Fig. 8 shows the true stress–strain curves of uniaxial
tensile tests at four levels of strain rate, and Fig. 9 reveals
the effects of strain rate on the tensile yield strength. It was
found that the tensile yield strength increases linearly with
the logarithm of the strain rate. Fitting a logarithmic
function, syt ¼ Blnð_3Þ þ D, to the data points shown in
Fig. 9, the coefficient, B ¼ 2.58 MPa, was obtained.

For uniaxial tensile tests, the hydrostatic pressure,
P ¼�st/3, where st is the true stress, and the effective stain
rate, _3¼ _3, where _3is the true strain rate. Thus, Eq. (8) can
then be rewritten as

syt ¼ sy0 � k
syt

3
þ Blnð_3Þ (25)

where syt is the tensile yield strength. Substituting the
values of characteristic parameters (sy0, k and B) obtained
Table 2
Testing parameters and elastic–plastic parameters of UPVC determined by
instrumented indentation.

Test no. S (mN/
mm)

Se (mN/
mm)

C (GPa) Er (GPa) E (GPa) sy0 (MPa) k

Test 1 42.38 41.33 4.36 3.88 3.27 71.74 0.12
Test 2 43.05 42.17 4.36 3.98 3.36 74.99 0.09
Test 3 42.51 41.69 4.30 3.89 3.28 73.46 0.10
Test 4 42.24 41.50 4.45 3.95 3.33 76.84 0.10
Test 5 41.66 41.06 4.32 3.87 3.26 76.25 0.08
Average 42.37 41.55 4.36 3.92 3.30 74.66 0.10
above and the true strain rate into Eq. (25), the tensile yield
strength at corresponding strain rate was determined. As
listed in Table 3, the tensile yield strengths estimated by
indentation tests, syt_IT, were compared with those deter-
mined by uniaxial tensile tests, syt. The maximum relative
error is �9.03%, which indicates that the method proposed
in the present work can relatively accurately determine the
plastic properties of glassy polymers.
4.3. Shear relaxation modulus

Based on linear viscoelastic theory, the relationships
between shear creep compliance, J(t), and shear relaxation
modulus, G(t), can be expressed as

Z t

0
Jðt � sÞdGðsÞ

ds
ds ¼ 1 (26)

or

Z t

0
Gðt � sÞ dJðsÞ

ds
ds ¼ 1 (27)

Theoretically, the shear creep compliance can be con-
verted to shear relaxation modulus as long as the shear
creep compliance is known, and vice versa [35,36]. The
shear creep compliance and shear relaxation modulus can
be represented by Prony series as
Fig. 8. True stress–strain curves of UPVC obtained by uniaxial tensile tests at
four strain rates.



Fig. 9. Effect of strain rate on tensile yield strength of UPVC.
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JðtÞ ¼ JN �
XN
i¼1

Jie�t=si (28)

and

GðtÞ ¼ G0 þ
XM
j¼1

Gj

	
e�t=xj � 1



(29)

where JN is the long-term shear creep compliance; Ji and si
are retardation strengths and retardation times, respec-
tively; G0 is the instantaneous shear modulus; Gj and xj are
Fig. 10. Comparison between predicted and experimental true stress–strain curves
and (d) _3¼ 4:30� 10�5 s�1.
relaxation strengths and relaxation times, respectively; N
and M are positive integers. Substituting Eq. (28) and Eq.
(29) into Eq. (26), and assuming the retardation time equals
the relaxation time for the same order, i.e. si ¼ xi, we get

XM
j¼1

"
JN
�
e�t=sj �1

�þ XN
i¼1;isj

si
si�sj

Ji
�
e�t=si �e�t=sj

�þ t
sj
Jje�t=sj

#
Gj

¼ 1�G0

 
JN�

XN
i¼1

Jie�t=si

!

(30)

When a set of constants, either {JN, Ji and si (i ¼ 1,/, N)}
or {G0, Gj and xj (j ¼ 1,/, M)}, are known, the other set of
constants can be determined by fitting Eq. (30) to a series of
time points (t ¼ t1, t2, t3,/). Then, substituting the corre-
sponding set of constants back into Eq. (28) or Eq. (29), the
shear creep compliance or shear relaxation modulus can be
obtained.

The shear creep compliance of UPVC has been deter-
mined via indentation tests in our previous work [25]. If the
order of shear creep compliance takes a value of 3, it can be
expressed by Prony series as

JðtÞ ¼ 1:240� 0:103e�t=10:913 � 0:085e�t=47:604

� 0:120e�t=304:944 (31)

Consequently, the creep constants {JN, Ji and si (i ¼ 1, 2,
3)} in Eq. (30) were known. If the order of shear relaxation
modulus also takes a value of 3, the fitting into Eq. (30)
allows the determination of a set of relaxation constants
at (a) _3¼ 1:40� 10�3 s�1, (b) _3¼ 4:20� 10�4 s�1, (c) _3¼ 1:40� 10�4 s�1
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{G0, Gj and xj (j ¼ 1, 2, 3)}. Substituting these relaxation
constants back into Eq. (29), the shear relaxation modulus
in the form of Prony series was determined

GðtÞ ¼ 1:073þ 0:122
�
e�t=10:913 � 1

�þ 0:064
�
e�t=47:604 � 1

�
þ 0:086

�
e�t=304:944 � 1

�
(32)
4.4. Prediction of uniaxial tensile curve

Since the viscoelastic-plastic properties of UPVC have
been determined by indentation tests, the true stress–
strain curves of UPVC can be predicted. For each uniaxial
tensile test, the true strain rate, _3, is a constant. Thus, the
variation of the true stain can be evaluated by 3ðtÞ ¼ _3t.
Based on the linear viscoelastic integral equations, the true
stress before yielding is calculated by

sðtÞ ¼ 2ð1þ nÞ_3
Z t

0
Gðt � sÞds (33)

where G(t) was already determined [Eq. (32)]. When the
true stress reaches the yield strength (Table 3), the speci-
mens yield. According to the linear viscoelastic-perfectly
plastic description, the true stress remains constant after
yielding.

The predicted true stress–strain curves were compared
with the experimental curves in Fig. 10. It is clear that the
predicted curves are in good agreement with the experi-
mental curves before necking with a maximum difference
of �12.39%. This demonstrates that the viscoelastic-plastic
properties determined by our methods can be used to
predict the uniaxial tensile curves. In other words, the
method for determining shear creep compliance in our
previous work [25] and the method for extracting the yield
strength under pure shear deformation and the coefficient
of internal friction in the present work are reliable methods
for characterization of the viscoelastic-plastic properties of
glassy polymers.

5. Conclusions

Based on the assumption that the behavior of glassy
polymers can be approximately characterized by a linear
viscoelastic-perfectly plastic description, we established a
method for determining the yield strength under pure
shear deformation, sy0, and the coefficient of internal fric-
tion, k, by instrumented indentation. Together with the
method for determining shear creep compliance proposed
in our previous work [25], the viscoelastic-plastic proper-
ties of glassy polymers can be extracted from a single
indentation F-h curve.

The tensile yield strengths of UPVC estimated by
indentation tests agree well with those determined by
uniaxial tensile tests. The true stress–strain curves of UPVC
predicted using the material parameters determined by
indentation tests are in good agreement with those ob-
tained by tensile tests before necking. This demonstrates
that the method for determining shear creep compliance in
our previous work [25] and the method for extracting sy0
and k in the present work are reliable methods for
characterization of the viscoelastic-plastic properties of
glassy polymers.
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