
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 764237, 14 pages
http://dx.doi.org/10.1155/2013/764237

Research Article
A Comparative Study on Different Parallel Solvers for
Nonlinear Analysis of Complex Structures

Lei Zhang,1 Guoxin Zhang,1 Lixiang Wang,2 Zhaosong Ma,2 and Shihai Li2

1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and
Hydropower Research, Beijing 100038, China

2 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Lei Zhang; zhangl@iwhr.com

Received 18 July 2013; Accepted 2 September 2013

Academic Editor: Zhiqiang Hu

Copyright © 2013 Lei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The parallelization of 2D/3D software SAPTIS is discussed for nonlinear analysis of complex structures. A comparative study is
made on different parallel solvers.Thenumericalmodels are presented, including hydrationmodels, water coolingmodels,modulus
models, creep model, and autogenous deformationmodels. A finite element simulation is made for the whole process of excavation
and pouring of dams using thesemodels.The numerical results show a good agreement with themeasured ones. To achieve a better
computing efficiency, four parallel solvers utilizing parallelization techniques are employed: (1) a parallel preconditioned conjugate
gradient (PCG) solver based on OpenMP, (2) a parallel preconditioned Krylov subspace solver based on MPI, (3) a parallel sparse
equation solver based on OpenMP, and (4) a parallel GPU equation solver. The parallel solvers run either in a shared memory
environment OpenMP or in a distributed memory environment MPI. A comparative study on these parallel solvers is made, and
the results show that the parallelization makes SAPTIS more efficient, powerful, and adaptable.

1. Introduction

Complex structures are largely employed in engineering
practice in a variety of situations and applications, for exam-
ple, water resources and hydropower engineering,mining en-
gineering, and traffic engineering. An analysis of such struc-
tures is not possible by empirical methods, and moreover in
situ experimental studies are costly. Recent advances in nu-
merical techniques have provided the finite element method
(FEM) for analysis of muchmore complex systems in a much
more realistic way.The FEM canmodel the complex behavior
of concrete without limitations caused by complexity.

Many authors have studied the nonlinear response of
concrete structures using the FEM focusing on the three-
dimensional elastoplastic problem [1–12]. Most authors con-
sider the effect of creep [4–8], while others consider cracking
[9–12], with regard to nonlinear analysis of structures. Gen-
erally, themodels are extremely computation intensive.Many
engineers complain about the high computational costs. As
a result, some nonlinear analysis codes have to be given up.
The situation has changed since the arrival of a variety of high

performance computers and the advances in parallel com-
puting techniques, that is, parallel algorithms and parallel
platforms. Parallel algorithms on different platforms, that is,
algorithms utilizing OpenMP and MPI, are studied by [13–
16]. Recently, theGPUhigh performance computing has been
popular. A parallel GPU equation solver is introduced into
SAPTIS as well. In these respects, we should be able to model
more complex effects like hydration, water cooling, cracking,
creep, autogenous deformation, and so forth.

The aim of this work is the prediction of concrete behav-
iors in different situations as well as the improvement of the
runtime in the nonlinear analysis program structure analysis
program for temperature and induced stress SAPTIS. A com-
position of models is presented in terms of the former, and
a comparative study on different parallel solvers is made for
the sake of the latter. The paper does not address the issue in
mathematics itself, but focuses on the application of current
algorithms. The goal is to develop practical and efficient par-
allel strategies for nonlinear analysis of complex structures.

In this study, we will arrange the contents as follows.
In the first section, a composition of models and its basic

2 Mathematical Problems in Engineering

formulations are introduced. Then, the parallel strategies as
well as the three parallel solvers are presented. Furthermore,
the performance of the newly developed parallel code is
tested on different computers. Finally, conclusions regarding
the parallelized SAPTIS are reported.

2. Models for Nonlinear Analysis of
Concrete Structures

The nonlinear analysis of the model takes into consideration
the effects of hydration, water cooling, modulus changes,
creep, and autogenous deformation. An appropriate model
for these effects as well as the FEM equations is used for
building the nonlinear system.

2.1. Thermal Simulation

2.1.1. Hydration Models. Hydration of concrete brings heat.
Hereby it can be modeled using five models in SAPTIS,
namely, exponential model, hyperbolic model, complex
model, hydration degree model, and table model [17]. We put
a superscript “+” as heat increasing, and the first four models
can be explicitly formulated as follows.

Exponential Model 1:

𝑄
+

(𝜏) = 𝑄
0
(1 − 𝑒

𝛼𝜏

) . (1)

Exponential Model 2:

𝑄
+

(𝜏) = 𝑄
0
(1 − 𝑒

𝛼𝜏
𝛽

) . (2)

Hyperbolic Model:

𝑄
+

(𝜏) =
𝑄
0
𝜏
𝛽

𝛼 + 𝜏𝛽
. (3)

Complex Model:

𝑄
+

(𝜏) = 𝑄
1
(1 − 𝑒

−𝛼1𝜏
𝛽1

) +
𝑄
2
𝜏
𝛾

𝑛 + 𝜏𝛾
. (4)

Hydration Degree Model:

𝑄
+

(𝜏) = 𝑄
01

𝑡
𝑚

𝑒

𝑛 + 𝑡𝑚
𝑒

+ 𝑄
02
(1 − 𝑒

𝛼𝑡
𝛽
𝑒) ,

𝑡
𝑒
= ∫

𝜏

0

exp [
𝐸
𝑎

𝑅
(

1

273 + 𝑡
𝑅

−
1

273 + 𝑡
)] 𝑑𝑡.

(5)

TableModel. Calculate the hydration heats and increments by
splines based on experimental data.

In (1)∼ (5),𝑄+(𝜏) is the adiabatic temperature rise regard-
ing hydration at age 𝜏,𝑄

𝑖
(𝑖 = 0, 1, 2, 01, 02) are heat parame-

ters, 𝛼, 𝛽, 𝛾,𝑚, and 𝑛 are parameters regarding heating rate, 𝑡
𝑒

is an equivalent age, 𝐸
𝑎
, 𝑅, and 𝑡

𝑅
are activation parameters.

2.1.2. Water Cooling Models. There are two water cooling
models in SAPTIS: one is a fine model and the other is

an equivalentmodel. Derivations and formulations of the two
models are described in detail in [18]. The cooling pipes take
away heat, which can be written as:

𝑄
−

(𝜏) = 𝑇
𝑤
+ (𝑇
0
− 𝑇
𝑤
) 𝜑 (𝜏) , (6)

where𝑄− (𝜏) is the adiabatic temperature drop caused by the
cooling system, 𝑇

𝑤
is the temperature of water at entry, 𝑇

0
is

the initial temperature of concrete, which will be given in (8),
and 𝜑(𝜏) is the thermal distribution function.

In the fine model, a local grid refinement of the cooling
pipes is needed. In every single time step, thermal distribution
along the cooling pipes is obtained by calculating the heat
exchange between the cooling pipes and the concrete, and the
thermal field of concrete is therefore obtained.The finemodel
can accurately simulate the thermal distribution around the
cooling pipes, but it needs a grid refinement, which inevitably
enlarge the calculation scale.

The equivalentmodel does not take into consideration the
location of pipes. An average concept is exploited by inputting
the pipe spacing, the flux, the temperature, and the time of
watering and calculating a mean effect of water cooling. The
equivalent model can reduce calculation time without local
grid refinements and ensure an average precise, but it does
not consider the thermal distribution along the cooling pipes
and it cannot obtain the thermal gradient near them.

2.1.3. BasicThermal Model. The equilibrium equation of heat
transfer can be written as:

𝜆(
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑦2
+
𝜕
2
𝑇

𝜕𝑧2
) + 𝑐𝜌(

𝜕𝜃

𝜕𝜏
−
𝜕𝑇

𝜕𝜏
) = 0. (7)

The initial condition can be written as:
𝑇 = 𝑇

0
(𝑥, 𝑦, 𝑧) (𝜏 = 0) . (8)

The boundary conditions are
𝑇 = 𝑇

𝑏
Dirichlet B.C.,

−𝜆(
𝜕𝑇

𝜕𝑛
) = 𝑞 Neumann B.C.,

−𝜆(
𝜕𝑇

𝜕𝑛
) = 𝛽 (𝑇 − 𝑇

𝑎
) Mixed B.C.

(9)

In (7) ∼ (9), 𝜏 represents age, 𝜆 is thermal conductivity
[kJ/(m⋅h⋅∘C)], 𝜌 stands for density [kg/m3], 𝑐 is specific
heat capacity [kJ/(kg⋅∘C)], 𝑎 is thermal diffusivity and 𝑎 =

𝜆/(𝜌𝑐) [m2/h], 𝜃 stands for total adiabatic temperature incre-
mental and 𝜃 = 𝑄

+
(𝜏) + 𝑄

−
(𝜏) [∘C]; 𝑇 is temperature

[∘C], 𝑇
0
is the initial temperature of concrete [∘C], 𝑇

𝑏
is

the fixed boundary temperature [∘C], 𝑞 represents heat flux
[kJ/(m2⋅h)], 𝑇

𝑎
denotes ambient temperature in natural con-

vection conditions and adiabatic temperature of boundary
layer in forced convection conditions [∘C] and 𝛽 is heat
transfer coefficient in surface [kJ/(m2⋅h⋅∘C)].

2.2. Creep Simulation. SAPTIS can simulate thermal dis-
tribution as well as stress field in concrete casting. Apart
from linear, nonlinear, and elastoplastic simulation, creep and
hardening of concrete are also required.

Mathematical Problems in Engineering 3

2.2.1. Modulus Models. Modulus and strength of concrete
increase to peaks with age due to hydration effect after
pouring. The increasing rate of modulus and strength relates
to temperatures of concrete and environment. To simulate
such effect, SAPTIS adopts several modulus models [19].

Exponential Model:

𝐸 (𝜏) = 𝐸
𝑐
(1 − 𝑒

−𝛼𝜏
𝛽

) . (10)

Hyperbolic Model:

𝐸 (𝜏) = 𝐸
𝑐

𝜏
𝛽

𝛼 + 𝜏𝛽
. (11)

Complex Model:

𝐸 (𝜏) = 𝐸
𝑐1
(1 − 𝑒

−𝛼𝜏
𝛽

) + 𝐸
𝑐2

𝜏
𝛾

𝑛 + 𝜏𝛾
. (12)

Aging Degree Model:

𝐸 (𝑡
𝑒
) = 𝐸
𝑐1
(1 − 𝑒

−𝛼𝑡
𝛽
𝑒) + 𝐸

𝑐2

𝑡
𝛾

𝑒

𝑛 + 𝑡
𝛾

𝑒

,

𝑡
𝑒
= ∫

𝜏

0

exp [
𝐸
𝑎

𝑅
(

1

273 + 𝜏
𝑅

−
1

273 + 𝜏
)] 𝑑𝑡.

(13)

TableModel. Calculate themodulus by interpolation based on
experimental data.

In (10) ∼ (13), 𝐸(𝜏) is modulus at age 𝜏 and 𝛼, 𝛽, 𝛾,𝑚, and
𝑛 are parameters regarding hardening rate.

In practical modeling, choose onemodel from (10) ∼ (13),
and the results show that any of the models can well simulate
the process of modulus growth of concrete.

2.2.2. Creep Model. Zhu [19] proposed a creep formula for
loading at different ages after a rigorous derivation:

𝐶 (𝑡, 𝜏) = (𝐴
1
+ 𝐴
2
𝜏
−𝛼1) (1 − 𝑒

−𝑘1(𝑡−𝜏))

+ (𝐵
1
+ 𝐵
2
𝜏
−𝛼2) (1 − 𝑒

−𝑘2(𝑡−𝜏))

+ 𝐷𝑒
−𝑘3𝑡 (1 − 𝑒

−𝑘3(𝑡−𝜏)) ,

(14)

where𝐶(𝑡, 𝜏) represent creep of concrete, 𝜏 stands for age, (𝑡−
𝜏) denotes loading time, and 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
,𝐷, 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝛼
1
,

and 𝛼
2
are regression coefficients. An increment method is

employed to calculate the creep influence on deformation and
stress. Modulus and creep of concrete in several engineerings
are shown in Tables 1 and 2.

2.2.3. Autogenous Deformation and MgO Linear Expan-
sion Models. Input the ages of concrete and corresponding
strains, and autogenous deformations can be obtained from
spline interpolation.

Autogenous deformations exist in MgO concrete and can
somehow offset the shrinkage due to thermal decrease, which
is beneficial for preventing dam cracking. MgO concrete has

Table 1: Modulus in engineerings.

Engineering Concrete Regression equations
(𝐸 [GPa], 𝜏 [d])

Laxiwa arch dam Normal 𝐸 = 39.05[1 − exp(−0.51𝜏0.46)]
Xiaowan arch dam Normal 𝐸 = 34.00[1 − exp(−0.36𝜏0.34)]
Xiluodu arch dam Normal 𝐸 = 39.10[1 − exp(−0.23𝜏0.57)]

Jinping arch dam Normal 𝐸 =

35.40[1 − exp(−0.342𝜏0.402)]
Ertan arch dam Normal 𝐸=30.24[1−exp(−0.222𝜏0.474)]
Shapai arch dam RCC 𝐸 = 26.50𝜏/(6.90 + 𝜏)

Zhaolaihe arch dam RCC 𝐸 = 32.50𝜏/(8.30 + 𝜏)

Bailianya arch dam Normal 𝐸 = 33.50𝜏/(7.30 + 𝜏)

Longtan gravity dam RCC 𝐸 = 44.54[1−exp(−0.43𝜏0.455)]
Xiangjiaba gravity
dam Normal 𝐸 = 46.57𝜏/(1.31 + 𝜏)

Jinghong gravity dam RCC 𝐸 = 39.80𝜏/(1.96 + 𝜏)

Guangzhao gravity
dam RCC 𝐸 = 3.70[1 − exp(−0.49𝜏0.290)]

been applied in a few projects, and good performance has
been achieved [20, 21]. We propose two formulas to calculate
autogenous deformations of MgO concrete from practice.

Dynamic Formula:

𝑑𝜀 (𝜏)

𝑑𝜏
= 𝛼𝜀
0
[1 −

𝜀(𝜏)

𝜀
0

]

(𝛽1+𝛽2𝑇+𝛽3𝑇
2
)

𝑒
−(𝛾/(𝑇+273))

. (15)

Residual Formula:

𝑑𝜀
𝑔
(𝜏)

𝑑𝜏
=

3

∑

𝑖=1

𝐶
𝑖
𝛼
𝑖
𝑇
𝛽𝑖 [1 −

𝜀
𝑔
(𝜏)

𝜀
𝑔0

] ,

𝐶
3
= 𝐶
0
− 𝐶
1
− 𝐶
2
.

(16)

In (15) and (16), 𝐶
0
, 𝐶
1
, and 𝐶

2
are parameters related to

final expansion in [𝜇] and 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛾 are

coefficients.

2.3. Finite Element Formulation

2.3.1. Element Types. SAPTIS is 2D/3D software for general
analysis. In 2D space, elements of triangle with 3–6 nodes
and quadrilateral with 4–9 nodes are employed. In 3D space,
elements consist of tetrahedra with 4–11 nodes, wedges with
6–16 nodes, and hexahedra with 8–21 nodes. The shape
functions of these elements can be found in and elaborated
upon by [20, 21]. Besides, a one-dimensional (1d) element
used for links and prestressed anchors is defined in the
software.

Two definitions for this 1d element are emphasized: one
is an explicit definition, in which the element is a real bar
connected by its two nodes, and it has its own stiff matrix
(Figures 1(a), 1(b), and 1(c)).Theother is an implicit definition
and it treats the element as a virtual bar, which does not have
a geometric entity in representation, but its stiff matrix is

4 Mathematical Problems in Engineering

Table 2: Creep coefficients in engineerings.

Engineering Concrete Coefficients (𝑘
1
, 𝑘
2
, 𝑘
3
, 𝐴
1
, 𝐴
2
, 𝛼
1
, 𝐵
1
, 𝐵
2
, 𝛼
2
, and𝐷)

Laxiwa arch dam Normal 0.0178, 0.6483, 0.0266, 9.0540, 42.2266, 31.0377, 0.0000, 43.8010, 0.3994, 20.2991
Xiaowan arch dam Normal 0.7313, 0.0421, 0.0222, 0.0000, 7.4472, 0.4479, 0.4811, 2.4581, 2.9923, 2.4952
Xiluodu arch dam Normal 0.0226, 0.7303, 0.1442, 13.0595, 6.6032, 50.5629, 3.0621, 9.2789, 0.0315, 52.3952
Jinping arch dam Normal 0.7179, 0.0221, 0.8149, 0.0000, 70.0000, 0.4915, 0.0000, 43.8500, 0.3915, 70.0000
Shapai arch dam RCC 0.0153, 0.4785, 0.7976, 0.0000, 47.1714, 0.2374, 0.0000, 107.4084, 0.4078, 150.0000
Longtan gravity dam RCC 0.0143, 0.7653, 0.0742, 0.0000, 13.2130, 0.2376, 0.5435, 55.7605, 0.6757, 16.6353
Xiangjiaba gravity dam Normal 1.0000, 0.0194, 0.0666, 7.6095, 69.9867, 1.0995, 10.9448, 1.7950, 22.1736, 16.2207
Guangzhao gravity dam RCC 0.0561, 0.6408, 0.0080, 0.0000, 33.7144, 0.3831, 0.0000, 52.9215, 0.6150, 14.8707
Note: unit of creep C in [10−6/MPa]; unit of time 𝑡, 𝜏 in [d].

(a) (b) (c)

(d) (e) (f)

Figure 1: Definitions and connection types of 1d element.

nominally added to its neighboring element(s) (Figures 1(d),
1(e), and 1(f)). In both definitions, there are three connection
types in terms of hexahedral neighbors, that is, edge connec-
tion (Figures 1(a) and 1(d)), face diagonal connection (Figures
1(b) and 1(e)), and body diagonal connection (Figures 1(c)
and 1(f)).

2.3.2. Finite Element Formulation of Heat Transfer. By using
the variation formulation, the equilibrium equation of heat
transfer in (7) can be transformed into the following matrix
form:

[𝐶] {�̇�} + [𝐾] {𝑇} = {𝑄} , (17)

where [𝐶] is the matrix for specific heat capacity, [𝐾] is the
matrix for heat conductivity, and {𝑄} is the total heat flux
vector for internal hydration heat and heat convection.

Thematrices of [𝐶] and [𝐾] and vector {𝑄} shown in (17)
are

[𝐶] = ∫
Ω

𝜌𝑐[𝑁]
𝑇

[𝑁] 𝑑Ω,

[𝐾] = ∫
Ω

𝜆([
𝜕𝑁

𝜕𝑥
]

𝑇

[
𝜕𝑁

𝜕𝑥
] + [

𝜕𝑁

𝜕𝑦
]

𝑇

[
𝜕𝑁

𝜕𝑦
]

+[
𝜕𝑁

𝜕𝑧
]

𝑇

[
𝜕𝑁

𝜕𝑧
])𝑑Ω + ∫

Γ

𝛽[𝑁]
𝑇

[𝑁] 𝑑Γ,

Mathematical Problems in Engineering 5

{𝑄} = ∫
Ω

[𝑁]
𝑇

𝜌(
𝜕𝜃

𝜕𝜏
) 𝑑Ω

+ ∫
Γ

[𝑁]
𝑇

𝑞𝑑Γ + ∫
Γ

[𝑁]
𝑇

𝛽𝑇
𝑎
𝑑Γ,

(18)
where [𝑁] is the matrix for shape function, Ω is the finite
domain, and Γ is the boundary ofΩ.

2.3.3. Finite Element Formulation of Stress Analysis. An incre-
mental method is employed to analyze the deformation and
stress of concrete. The sum of elastic and creep strain in
concrete is proportional to a sustained load under ordinary
service stress level, while the thermal strain is proportional
to the temperature rise.The autogenous deformation inMgO
concrete can be worked out by the formulas we propose. The
incrementalmethod has been elaborated upon in [12, 22], and
we only present its finite element equation as follows:

{Δ𝐹}
𝑒

= ∭[𝐵]
𝑇

{Δ𝜎} 𝑑𝑥 𝑑𝑦 𝑑𝑧, (19)

where {Δ𝐹}
𝑒 is the force increment and [𝐵]

𝑇 is the strain
matrix. {Δ𝜎} is the stress increment caused by elastic, creep,
thermal, and autogenous strains, which can be written as

{Δ𝜎} = [𝐷] ({Δ𝜀
𝐸

} − {𝜂} − {Δ𝜀
𝑇

} − {Δ𝜀
𝐴

}) , (20)

where [𝐷] is the instant stress matrix, {Δ𝜀
𝐸
} is elastic

strain increment, {𝜂} relates to creep strain increment, {Δ𝜀𝑇}
stands for thermal strain increment, and {Δ𝜀

𝐴
} represents

autogenous strain increment.
Put (20) into (19), and we can get an equilibrium form

{Δ𝐹}
𝑒

= [𝐾]
𝑒

{Δ𝑢}
𝑒

− {Δ𝑃
𝐶

}
𝑒

− {Δ𝑃
𝑇

}
𝑒

− {Δ𝑃
𝐴

}
𝑒

, (21)

where [𝐾]
𝑒 is the stiff matrix of element, {Δ𝑢}𝑒 is displace-

ment increment of element, and {Δ𝑃
𝐶
}
𝑒, {Δ𝑃𝑇}𝑒, and {Δ𝑃

𝐴
}
𝑒

are nodal load increments caused, respectively, by creep,
temperature, and autogenous deformation. The matrix and
vectors can be summarized as

[𝐾]
𝑒

= ∭[𝐵]
𝑇

[𝐷] [𝐵] 𝑑𝑥 𝑑𝑦 𝑑𝑧,

{Δ𝑃
𝐶

}
𝑒

= ∭[𝐵]
𝑇

[𝐷] {𝜂} 𝑑𝑥 𝑑𝑦 𝑑𝑧,

{Δ𝑃
𝑇

}
𝑒

= ∭[𝐵]
𝑇

[𝐷] {Δ𝜀
𝑇

} 𝑑𝑥 𝑑𝑦 𝑑𝑧,

{Δ𝑃
𝐴

}
𝑒

= ∭[𝐵]
𝑇

[𝐷] {Δ𝜀
𝐴

} 𝑑𝑥 𝑑𝑦 𝑑𝑧.

(22)

After the assembly of all element stiffness matrices, a general
finite element equation in its global form can be expressed as

[𝐾] {Δ𝑢} = {Δ𝑃
𝐹

} + {Δ𝑃
𝐶

} + {Δ𝑃
𝑇

} + {Δ𝑃
𝐴

} , (23)

where [𝐾] is global stiffness matrix, {Δ𝑢} is global displace-
ment vector, {Δ𝑃𝐹} is global increment vector induced by
external force, and {Δ𝑃𝐶}, {Δ𝑃𝑇}, and {Δ𝑃𝐴} are global incre-
ment vectors caused by creep, temperature, and autogenous
deformation, respectively.

3. Parallelization Strategy

Since the 1980s, a lot of work has been done in parallel
and distributed computing for structural analysis. Parallel
processing benefits such analysis a lot by using two different
strategies [23].

(1) The analysis problem may be subdivided by geomet-
rically dividing the idealization into a number of
subdomains: explicit decomposition approach, also
called substructure approach.

(2) Alternatively the system of equations for the whole
structure may be assembled and solved in paral-
lel without recourse to a physical partitioning of
the problem: implicit domain decomposition (IDD)
approach, or global approach.

It should be noted that such strategies with domain de-
composition techniques are not general solution procedures
and are specialized for particular applications. Furthermore,
what can be parallelized are [24] (a) input problem character-
istics, (b) assembly, (c) boundary conditions, (d) solution of
algebraic equations, and (e) postprocessing. The fourth item
is the most important to parallelize. Additionally, Gummadi
and Palazotto [25] indicated that in a typical linear static
FEA, the most consuming operation is the solution of linear
equations. We recognize from our own experience that the
time used for solving equations can reach 70%∼90%. An
optimization in linear equation solvers is required to largely
improve computing efficiency.

3.1. Linear Equation Solvers. Linear system of large equations
is solved by two kinds of solvers, that is, the direct solvers (e.g.,
Gauss) and the iterative ones (e.g., PCG).

The direct solvers are applicable with accuracy assurance
for any nonsingular linear system with an appropriate scale
and density. When solving a large sparse system with many
0’s, a direct solver is particularly consuming. Additionally
it cannot ensure the accuracy in terms of rounding errors.
The parallelization for direct solvers is only suitable for
tridiagonal matrices, block tridiagonal matrices and banded
matrices. For a general sparse linear system, the sparse
equation solvers are popular with multifrontal algorithms
and supernode technology.

The iterative solvers overcome the shortcomings of the
direct ones and retain the sparsity of coefficient matrix.
With small storage and computation, they havemore obvious
advantages especially for large, sparse, asymmetric, and
seriously ill-conditioned matrices. At present, the precon-
ditioned conjugate gradient (PCG) solver on behalf of the
Krylov subspace solvers is among the most popular iterative
solvers in engineering and sciences. Classical iterative solvers
(e.g., Jacobi, GS, SOR, and SSOR) with their improved ones
are used for preconditions in most situations.

In SAPTIS, four linear equation solvers are adopted:

(1) the preconditioned (i.e., SSOR) conjugate gradient
solver,

(2) the preconditioned (e.g., CG, CGS, BiCGSTAB, etc.)
Krylov subspace solver,

6 Mathematical Problems in Engineering

(3) the sparse equation solver,
(4) the GPU solver.

3.2. Key Technique for Parallel Programming. A parallel pro-
cedure is the implement of a parallel algorithm on a parallel
computer or cluster. The parallel algorithm is designed for a
parallel computing model, which is abstracted from different
parallel systems or architectures of computer models. There
are three programming models for parallel computing at
present: (1) shared memory programming model; (2) mes-
sage passing programming model; (3) hybrid programming
model, that is the hybrid of shared memory and message
passing programming models.They correspond to three par-
allel architectures: (1) shared memory system, for example,
Symmetric Multiprocessor (SMP); (2) distributed memory
system, for example, clusters and (Massive Parallel Processing
MPP); (3) distributed/shared memory system, for example,
multicore clusters and SMP clusters.

To implement a parallel procedure, four major problems
are faced with. The first to be concerned is what parts of the
algorithm can be parallelized. These parts should be decom-
posed and executed by different processes, and a judgment for
decomposition is whether there exists data competition. The
second problem is the strategy for decomposition. There are
two strategies: one is task strategy, another is data strategy.
In task strategy, the procedure is decomposed into different
tasks, whose dependence on whom should be noted. Then
the tasks are scheduled to avoid mutual interference. Such
parallelization strategy belongs to a coarse one and demands
high independence of specific problems. In data strategy, the
data space of procedure is decomposed into different areas.
Each processor takes in charge of its own area. Obviously,
this strategy is well suited for parallelization of finite element
analysis. The third to be concerned is the programming
model. This can be determined by the parallel architecture.
The last one is the programming method. In scientific com-
puting, data parallelization strategy is generally employed. As
a result, the looping or (Single ProgramMultipleData SPMD)
programming is adopted. In looping programming, loops
without competition are distributed into different processors.
In SPMD programming, all processors execute the same
procedure, but they use different data, which are transferred
and shared among the processors via communication.

In SAPTIS, these problems are solved one by one as
follows.

(i) The solution of algebraic equations should be urgent
to parallelize.

(ii) For FEA parallelization, the data strategy should be
exploited.

(iii) The message passing programming model should
be employed if based on MPI, and the multithread
programming model should be employed if based on
OpenMP.

(iv) Data parallelization strategy determines that the
looping or SPMD programming method should be
used.

3.3. Implementation. The implementation is based on refer-
ence books [26] and work made by [13–16, 27–29].

3.3.1. Parallel Preconditioned Conjugate Gradient Solver Based
on OpenMP. The parallel preconditioned conjugate gradient
(PCG) solver uses symmetric successive over relaxation
(SSOR) technique and runs on the OpenMP-based platform.

The bottlenecks of performance for the PCG solver are
the matrix and vector operations like W−1b and W−𝑇b,
which costs over 80% of the computation time.Therefore, the
parallelization strategy for the PCG solver based onOpenMP
is to parallelize the loops containing such operations without
data competition by controlling statements of OpenMP. After
such programming process, parallelization of matrix-vector
multiplication and inner product operation is achieved,
and the data formats and compile options are optimized
simultaneously.

The PCG solver is parallelized in an algorithm level,
which requires frequent communication on computers of
distributed memory systems.Thus, such parallel algorithm is
more suitable for computers of shared memory systems, and
an OpenMP-based platform is employed.

The parallelization procedures for the PCG solver can be
summarized as follows:

(i) first, thematrix and vector operations are parallelized,
including AP and A𝑇P, where the vector P is gener-
ated by specific algorithm;

(ii) then, the inner product operation is parallelized;
(iii) furthermore, the vectors are updated;
(iv) finally, the preconditions are calculated (if necessary).

3.3.2. Parallel Preconditioned Krylov Subspace Solver Based on
MPI. The Krylov subspace 𝐾

𝑚
is defined by means of the

square matrix A ∈ R𝑛×𝑛, the initial vector b ∈ R𝑛, and
the positive scalar 𝑚 and 𝐾

𝑚
= Span(b,Ab, . . . ,A𝑚−1b). The

original system Ax = b is reduced by using the orthogonal
transformationQ, obtaining the tridiagonal system𝑇(Q𝑇x) =
Q𝑇b. By the integration of the solution of the tridiagonal
system and the generation of the matrices Q and 𝑇, let us
obtain a complete algorithm to solve the original system,
where we obtain a better solution in each step [29].

Theparallel preconditionedKrylov subspace (PKS) solver
uses iterative techniques, for example, CG, CGS, BiCGSTAB,
GMRES, TFQMR, and so forth, and runs on the MPI-based
platform.

For the parallelization of the PKS solver, a domain decom-
position method is employed. The “divide and conquer”
strategy is used, in which the finite analysis domain is
divided into several subdomains and each subdomain is in
the charge of one or several processors. All the processors
solve the whole problem independently and interactively, and
synergistically and simultaneously.

Based on the distributedmemory environment of parallel
computing, the PKS solver is paralleled by using the SPMD
programming method and the message passing program-
ming model. Since the “divide and conquer” strategy is used,

Mathematical Problems in Engineering 7

extern “C” int VeksInit(UINT32 nElems, UINT32 nGlobalNodes, UINT32 aiElemConn[][8]);
// Funcition: Initialize the solver
extern “C” int VeksSetK(double afK[][24][24]);
// Funcition: Set element stiffness matrices
extern “C” int VeksSetDemF(double afF[][8][3]);
// Funcition: Set element loads
extern “C” int VeksSetU(double afU[][3]);
// Funcition: Set nodal displacements
extern “C” int VeksSetF(double afF[][3]);
// Funcition: Set nodal loads
extern “C” int VeksFixU(char abU[][3], double afU[][3]);
// Funcition: Set nodal displacements
extern “C” int VeksGetU(double afU[][3]);
// Funcition: Get nodal displacements
extern “C” int VeksSetC(double afC[][8][8]);
// Funcition: Set element conductivity matrices
extern “C” int VeksSetDemQ(double afQ[][8]);
// Funcition: Set element thermal loads
extern “C” int VeksSetQ(double afQ[]);
// Funcition: Set nodal thermal loads
extern “C” int VeksFixT(char abT[], double afT[]);
// Funcition: Set nodal thermal constraints
extern “C” int VeksGetT(double afT[]);
// Funcition: Get nodal temperatures
extern “C” int64 VeksSolve(int64 nMaxIter, double fTimeStep, double fUnbRatio, double fEps, unsigned int nPrint);
// Funcition: Solve equations
// The procedures for GPU analysis
#include “Eks.h”
int nRet = VeksInit(nElems, nGlobalNodes, aiElemConn);
VeksSetK(afK);
VeksSetDemF(afDemF);
VeksFixU(abU, afU);
VeksSetC(afC); VeksSetDemQ(afDemQ);
VeksFixT(abT, afT);
VeksSolve(nSteps, fTimeStep, fUnbRatio, fEps, nStipePrint);
VeksGetU(afU);
VeksGetT(afT);

Algorithm 1

Table 3: Parameters for cooling pipe simulations.

Items Concrete Plastic pipe Metal pipe
Materials C40 concrete Polyethylene Steel

Physical properties
𝜆 = 6.26 kJ/(m⋅h⋅∘C)
𝜌 = 2430 kg/m3

c = 0.97 kJ/(kg⋅∘C)

𝜆 = 1.73 kJ/(m⋅h⋅∘C)
𝜌 = 940 kg/m3

c = 2.3 kJ/(kg⋅∘C)

𝜆 = 173 kJ/(m⋅h⋅∘C)
𝜌 = 7850 kg/m3

c = 4.8 × 105 kJ/(kg⋅∘C)

Geometrical properties R = 1.5m 𝑅
𝑜
= 16.0mm

𝑅
𝑖
= 14.0mm

𝑅
𝑜
= 12.7mm

𝑅
𝑖
= 11.2mm

Initial conditions 𝑇
0
= 20∘C 𝑇

0
= 0∘C 𝑇

0
= 0∘C

Boundary conditions 𝑞
𝑏
= 0 kJ 𝑇

𝑏
= 0∘C 𝑇

𝑏
= 0∘C

the solution procedures of FEA equations consist of assembly
of globalmatrix and parallel solving of all local equations.The
SPMD programming model implies that the source codes of
every process are nearly the same, in spite of the differences
of data in different areas.

The parallelization procedures for the PKS solver can be
summarized as follows:

(i) the global FEA equations are assembled;

(ii) the “divide and conquer” strategy is employed to
divide the FEA domain into sub-domains;

(iii) local equations are formed based on sub-domains;

8 Mathematical Problems in Engineering

Air and radiation

Upstream water level
Adiabat

Downstream water level

Upstream water Downstream water

Ground temperature

boundary

Adiabat
boundary

Adiabat
boundary

temperature temperature

Figure 2: Boundary conditions of a dam.

Pipe

Concrete

R

Ri

Ro

Figure 3: The model of a cylinder water cooling pipe.

0
2
4
6
8

10
12
14
16
18
20

0 10 20 30 40 50 60
Date (d)

Fine, metal
Equivalent, metal

Fine, plastic
Equivalent, plastic

Te
m

pe
ra

tu
re

 (∘
C)

Figure 4: Comparison between the fine and equivalent models.

(iv) iterative techniques, for example, CG, CGS,
BiCGSTAB, GMRES, TFQMR, and so forth, are
paralleled and used to solve all the local equations.

Table 4: Parameters of ThinkCentre M Q45t.

Computer ThinkCentre M Q45t
CPU Intel Core 2
Compute capability 5 million DOFs
Clock rate 2.33GHz
Processor Q8200
Number of cores 4
Memory 4G DDR3

3.3.3. Parallel Sparse Equation Solver Based on OpenMP. The
parallel sparse equation (SE) solver uses a direct solving
method and runs on the OpenMP-based platform.

Algorithms based on iterative methods are not always
suitable for specific structural analysis, for such algorithms
don not always work since the matrix may not be well con-
ditioned during the iterative process. The direct method has
fewer problems in achieving solution convergence. In terms
of these reasons, a sparse equation solvingmethod is adopted
as well in SAPTIS. This is a numerically stable parallel algo-
rithm for solving ill-conditioned linear systems of equations.

The sparse methods are close to direct methods in
essence, but they have also big differences. The rearrange-
ments of matrices, incomplete decompositions, and multi-
front techniques havemade the sparsemethodsmore efficient
than the direct ones.

The sparse equation solver is parallelized in CSR matrix
format, which supports several types of matrices including
real/imaginary matrices and symmetric/asymmetric matri-
ces.

The parallelization procedures for the sparse equation
solver are similar to those for the PCG solver. In this case,
we will omit the discussions.

3.3.4. Parallel GPU Equation Solver. Recently, the high per-
formance computing is quite popular, that is, the GPU
computing. The graphics processing unit (GPU) has become

Mathematical Problems in Engineering 9

Te
m

pe
ra

tu
re

 (∘
C)

Measured temperature values
Calculated temperature values

6
8

10
12
14
16
18
20
22
24
26
28
30

Date (m-d-y)

Se
pt

em
be

r 1
4,

 2
01

0

D
ec

em
be

r 1
3,

 2
01

0

M
ar

ch
 1

8,
 2

01
0

M
ar

ch
 1

3,
 2

01
1

Ju
ne

 1
6,

 2
01

0

(a) 357m Elevation

Te
m

pe
ra

tu
re

 (∘
C)

Measured temperature values
Calculated temperature values

6
8

10
12
14
16
18
20
22
24
26
28
30

Se
pt

em
be

r 1
7,

 2
01

0

N
ov

em
be

r 1
6,

 2
01

0

Ja
nu

ar
y

15
, 2

01
1

M
ar

ch
 1

6,
 2

01
1

M
ay

 1
5,

 2
01

1

Ju
ly

 1
4,

 2
01

1

Date (m-d-y)

(b) 408m Elevation

Figure 5: Comparisons between computational temperatures and measured ones.

an integral part of today’s mainstream computing systems.
Over the past decade, there has been amarked increase in the
performance and capabilities of GPUs. The advent of GPU
computing technology greatly improves the computational
performance of numerical simulations and the speedups
reach tens to hundreds. Besides, a GPU is small, portable, and
cheap. It costs little power.

The parallel GPU equation solver uses an iterative
method. The strategies used for GPU implementation can be
summarized as follows:

(1) replace the original CPU-based calculation functions
with GPU kernels. A kernel is a function that runs on
the GPU device;

(2) integrate as many GPU kernels into a large one as
possible.This is to ensure the efficiency of GPU codes,
for data transfer among different kernels is time-
consuming.

Based on the strategies above, the functions shown in
Algorithm 1 are introduced into SAPTIS. These functions as
well as their library files have enabled SAPTIS to carry out
GPU high performance computing.

The analysis procedures by using the GPU parallel solver
are summarized as follows:

(1) include the “Eks.h” file into the source files;

(2) link the library files Geks.Lib;

(3) call the function VeksInit to initialize the GPU solver;

(4) call the function VeksSetK to transfer the element
stiffness matrices into the GPU solver;

(5) call the function VeksSetC to transfer the element
conductivity matrices into the GPU solver;

0

100

200

300

400

500

0.0 1.0 2.0 3.0 4.0 5.0

Ti
m

es
 (s

)

DOFs (106)

Figure 6: Serial codes test onThinkCentre M Q45t.

Figure 7: The model used for GPU simulation.

(6) call the function VeksSetDemF to transfer the loads
vector into the GPU solver;

(7) call the function VeksFixU to set the displacement
constraints;

10 Mathematical Problems in Engineering

0.004897
0.004329
0.003761
0.003193
0.002625
0.002058
0.00149
0.0009219
0.000354

0.004897
0.004329
0.003761
0.003193
0.002625
0.002058
0.00149
0.0009219
0.000354

−0.0002138
−0.0007871

−0.0002138
−0.0007871

(a) X-displacement

0.03123
0.02807
0.02491
0.02175
0.01859
0.01543
0.01227
0.009109
0.005949
0.00279
−0.0003699

0.03123
0.02807
0.02491
0.02175
0.01859
0.01543
0.01227
0.009109
0.005949
0.00279
−0.0003699

(b) Y-displacement

0.01667
0.015
0.01333
0.01167
0.009996
0.008327
0.006657
0.004988
0.003319
0.00165

0.01667
0.015
0.01333
0.01167
0.009996
0.008327
0.006657
0.004988
0.003319
0.00165
−1.955e − 005−1.955e − 005

(c) Z-displacement

2.525
3.627
4.729
5.831
6.933
8.035
9.137
10.24
11.34
12.44
13.54

2.525
3.627
4.729
5.831
6.933
8.035
9.137
10.24
11.34
12.44
13.54

(d) Temperature

Figure 8: The simulation results using the GPU parallel solver.

(8) call the functionVeksSetDemQ to transfer the thermal
loads vector into the GPU solver;

(9) call the function VeksSolve to solve the equations;

(10) call the functions VeksGetU and VeksGetT to get the
displacements and temperatures, respectively.

4. Numerical Examples

4.1. Thermal Field Verification

4.1.1. Cylinder Water Cooling Pipe. Take a piece of circular
area, whose radius 𝑅 = 1.5m (see Figure 3). The fine
and equivalent models of FEA are used for comparison and
verification. Comparative simulations between a plastic and a

Mathematical Problems in Engineering 11

Table 5: Test platform.

Sun Fire 6800
Operation system Memory External memory Processor Network Compiler
Solaris9 16GB 640G Ultra SPARC 1.2G Gigaplane Sun studio 9

Table 6: 380000-order general coefficient matrix test results.

Sections 1 (390 time steps) 2 (469 time steps) 4 (483 time steps) 8 (513 time steps)
1 thread 174.33292s 212.14563s 216.148044s 223.7508s
2 threads 114.81871s 126.267044s
4 threads 61.3276s 66.57s
8 threads 36.64s

Table 7: Test platform.

Shuguang Cluster (single node)
Operation system Memory External memory Processor Network Compiler
RedHat.E.L4.0 8GB 143G XEON3.0G Gigaplane Intel Fortran

Table 8: Test schemes.

Solving methods Preconditions
Global Local

Method 1 (CGS) Domain decomposition ILUT
Method 2 (BiCGSTAB) Domain decomposition ILUT
Method 3 (BiCGSTAB) SYMGS —

Table 9: 930000-order slightly ill-conditioned matrix test results.

Methods Time (s) Iterations Convergence Number of
threads

Method 1 447.3 297 1.0𝐸 − 12 1
Method 1 220.8 967 1.0𝐸 − 12 4
Method 1 170.2 1103 1.0𝐸 − 12 8
Method 2 150.4 480 1.0𝐸 − 12 8
Method 3 165.4 551 1.0𝐸 − 12 8
Serial codes 656.12 850 1.0𝐸 − 12 1

metal pipe are performed.The parameters for the simulations
are presented in Table 3.

The comparisons between the results of the fine and
equivalentmodels are illustrated in Figure 4.The temperature
in the fine model is a real value, while the temperature in the
equivalentmodel is and can only be amean value of thewhole
pipe domain.

The figure shows that the temperature of the metal
cooling pipe is lower than that of a plastic one, and the
temperature difference between them reaches 1.5∘C on day
15. Thus, the metal pipe takes priority over the plastic
one in concrete cooling. Meanwhile, the numerical result
shows a great agreement with the analytical solution. The
temperatures obtained by these two models are nearly
the same, which indicates that the equivalent model can

ensure its accuracy when simulating a real engineering
problem.

4.1.2. Simulation of a Dam. A hyperbolic arch dam in
Southwest China is 285.5m high. The annual average air
temperature in the area is 19.7∘C; the highest monthly average
air temperature is 27.1∘C; the lowest monthly average air tem-
perature is 10.6∘C.The annual average ground temperature is
21.4∘C.

A simulation for the dam is performed to grasp the
real temperature status and thus to develop a measure for
preventing cracking. The simulation takes into account the
whole process of excavation and pouring of dams and the
varieties of influencing factors for dam temperature. The
model with its boundary conditions is illustrated in Figure 2.

The simulation results are shown in Figure 5.The temper-
ature of Elevation 357m is presented in Figure 5(a) while the
temperature of Elevation 408m is presented in Figure 5(b).
The comparisons between the numerical results and the
measured ones are made, and we know from the figure
that these results show a great agreement with each other.
Additionally, the results show the real temperature status.
These all indicate that the models presented are reasonable
and accurate.

4.2. Parallel Computing Examples

4.2.1. Parallel PCG Solver Test on OpenMP

(1) Serial Codes Test. A serial codes test is performed on a
ThinkCentre M Q45t computer. Its parameters are shown in
Table 4. This computer can solve a problem with more than
5 million degrees of freedom.

The result of the test is shown in Figure 6.The PCG solver
runs on a single PC very efficiently with little memory, and

12 Mathematical Problems in Engineering

Table 10: Test platform.

Inspur NF5860M2
Operation system Memory External memory Processor Network Compiler
RedHat.E.L6.0 128GB 2T XEON3.0G Shared memory Intel Fortran

Table 11: 930000-order slightly ill-conditioned matrix test results.

Methods Speedup

Time (s)
Number of
threadsTotal

Matrix
structural
analysis

Matrix
rearrangement

Symbolic
factorization

ILU
decomposition

Direct
solving

Memory
allocation Other

Parallel SE

/ 655.03 0.55 10.23 5.37 630.26 4.39 0.11 4.12 1
1.92 340.46 0.47 10.29 3.57 319.21 2.66 0.13 4.13 2
3.65 179.35 0.47 10.24 2.88 159.99 1.54 0.11 4.12 4
6.28 104.29 0.47 10.30 2.95 85.19 1.14 0.12 4.12 8
9.31 70.37 0.48 10.28 3.77 50.57 1.00 0.13 4.14 16

Serial codes / 656.12 / / / / / / / 1

it can solve big problems. Figure 6 shows the different times
solving problems with different DOFs by using the serial
SSOR-PCG solver. The result indicates that the sovler takes
only 100 seconds when solving a problem with 2 million
DOFs and takes 500 seconds when solving a problem with 5
million DOFs. Obviously, it is much faster thanmany solvers.

(2) Parallel Codes Test.A parallel codes test of the PCG solver
runs on a Sun Fire 6800 computer. Table 5 shows the test
platform, and Table 6 gives the test results. We can easily
know from the results that the speedups increase significantly
with the number of threads. The acceleration of speedups
drops a little, but the speedups themselves are almost over
80%.

4.2.2. Parallel PKS Solver Test onMPI. Test of the parallel PKS
solver is performed on platform shown in Table 7. Methods
are shown in Table 8, and the test results are presented in
Table 9.

We can easily obtain that the speedups are significant and
the parallel solver is quite efficient.This parallel solver can run
either on a cross-node cluster or on a shared memory system
such as the multicore CPU.

4.2.3. Parallel SE Solver Test on OpenMP. The test platform
for parallel SE solver is presented in Table 10, and the
results are shown in Table 11. For a 930000-order slightly
ill-conditioned matrix, the solving time is quite impressive,
and it is only 70 seconds when the solver runs on 16
threads. Since a sparse direct method is employed, the time is
mainly spent on incomplete LU decomposition. Only about
20G memory is consumed, which is much less than the
Gaussian elimination, butmore than iterativemethodswhose
memeroy consumption can be only 3-4G. We can get from
the speedups that the parallel sparse equation solver is very
efficient and scalable, and it is well suitable for equations of
large linear system.

Table 12: Speedup of GPU580 versus different CPU machines and
methods.

CPU machine 32-core CPU Single-core
CPU

Single-core i5
CPU

CPU method Parallel direct
sparse

Serial direct
sparse

Dynamic
relaxation

GPU speedup 4.2 40.3 445

4.2.4. Parallel GPU Solver Test. An engineering test is per-
formed, using the model in Figure 7.

The boundary conditions are similar to the ones shown in
Figure 2. The results are shown in Figure 8.

In this simulation, we test the speedups, which will be
shown in Table 12.

5. Conclusions

First, numerical models adopted by the software are pre-
sented including

(i) hydration models,
(ii) water cooling models,
(iii) modulus models,
(iv) creep model,
(v) autogenous deformation models taking into account

the properties of MgO concrete.

A thermal example for verifying the thermal models
is presented. A good agreement is achieved between the
numerical results and the analytical ones. A finite element
simulation for thewhole process of excavation and pouring of
dams using these models is made, and the numerical results
show a good agreement with the measured ones.

Then, several parallel solvers are introduced with their
parallel strategies, consisting of

(1) the preconditioned (i.e., SSOR) conjugate gradient
solver,

Mathematical Problems in Engineering 13

(2) the preconditioned (e.g., CG, CGS, BiCGSTAB, etc.)
Krylov subspace solver,

(3) the sparse equation solver.

The parallelization procedures for the PCG solver can be
summarized as follows:

(i) first, thematrix and vector operations are parallelized,
including AP and A𝑇P, where the vector P is gener-
ated by specific algorithm;

(ii) then, the inner product operation is parallelized;
(iii) furthermore, the vectors are updated;
(iv) finally, the preconditions are calculated (if necessary).

The parallelization procedures for the PKS solver can be
summarized as follows:

(i) the global FEA equations are assembled;
(ii) the “divide and conquer” strategy is employed to

divide the FEA domain into sub-domains;
(iii) local equations are formed based on sub-domains;
(iv) iterative techniques, for example, CG, CGS,

BiCGSTAB, GMRES, TFQMR, and so forth, are
paralleled and used to solve all the local equations.

The sparse equation solver is parallelized in CSR matrix
format, which supports several types of matrices including
real/imaginary matrices and symmetric/asymmetric matri-
ces. The parallelization procedures for the sparse equation
solver are similar to those for the PCG solver.

Last, a comparative study on these parallel solvers is
performed. The results show that

(i) the speedups are quite significant;
(ii) the serial and parallel solvers are both very efficient;
(iii) the serial and parallel solvers can both deal with very

large problems with more than 5 million degrees of
freedom;

(iv) the parallelization makes SAPTIS more powerful and
adaptable.

A GPU-based parallel solver has been developed, and the
GPU parallelization has made SAPTIS much more efficient.

Conflict of Interests

The authors declare that they do not have any conflict of
interests with the content of the paper.

Acknowledgments

The authors would like to acknowledge the financial sup-
port of the National Natural Science Foundation of China
(51209235), the National Basic Research Program (973
Programs: Grant nos. 2010CB731500, 2013CB036406, and
2013CB035904), the National “Twelfth Five-Year” Plan for
Science and Technology Support (2013BAB06B02), the Gov-
ernmental Public Industry Research Special Funds for

Projects of MWR (201201050), and the IWHR Special
Research of China (Volume 1118, Volume 1208, Volume 1169,
Volume 1268, Volume 1309, Volume 1353, and Volume 1361).

References

[1] A. Saetta, R. Scotta, and R. Vitaliani, “Stress analysis of concrete
structures subjected to variable thermal loads,” Journal of
Structural Engineering, vol. 121, no. 3, pp. 446–457, 1995.

[2] O. Omidi and V. Lotfi, “Numerical analysis of cyclically loaded
concrete under large tensile strains by the plastic-damage
model,” Scientia Iranica A, vol. 17, no. 3, pp. 194–208, 2010.

[3] M. Nazem, I. Rahmani, and M. Rezaee-Pajand, “Nonlinear fe
analysis of reinforced concrete structures using a tresca-type
yield surface,” Scientia Iranica A, vol. 16, no. 6, pp. 512–519, 2009.

[4] Z. P. Bazant, E. C. Rossow, and G. Horrigmoe, “Finite element
program for creep analysis of concrete structures,” in Proceed-
ings of the 6th International Conference on Structural Mechanics
in Reactor Technology, Paris, France, 1981.

[5] Z. P. Bazant and R. L’Hermite,Mathematical Modeling of Creep
and Shrinkage of Concrete, Wiley, New York, NY, USA, 1988.

[6] M. Savoia, D. Ferretti, and C. Mazzotti, “Creep behavior of RC
tensile elements retrofitted by FRP plates,” in Proceedings of
the 10th IEEE International Conference on Cognitive Informatics
(ICCI’ 02), vol. 2, San Francisco, USA, 2002.

[7] G. C. Fanourakis and Y. Ballim, “Predicting creep deformation
of concrete: a comparison of results from different investiga-
tions,” in Proceedings of the 11th FIG Symposium on Deformation
Measurements, Santorini, Greece, May 2003.

[8] L. F. Nielsen, “Composite creep analysis of concrete: a rational,
incremental stress-strain approach,” Tech. Rep., Technical Uni-
versity of Denmark, Copenhagen, Denmark, 2007.

[9] A. Mari and A. Scordelis, “Nonlinear geometric, material
and time dependent analysis of three dimensional reinforced
concrete and prestressed frames,” UC SESM Report 84/12,
EERC, Berkeley, Calif, USA, 1984.

[10] R. de Borst and A. H. Van Der Boogaard, “Finite-element
modeling of deformation and cracking in early-age concrete,”
Journal of EngineeringMechanics, vol. 120, no. 12, pp. 2519–2534,
1994.

[11] E. Spacone, F. C. Filippou, and F. F. Taucer, “Fibre beam-column
model for non-linear analysis of R/C frames: part I. Formula-
tion,” Earthquake Engineering and Structural Dynamics, vol. 25,
no. 7, pp. 711–725, 1996.

[12] H. Ito, I. Maruyama, M. Tanimura, and R. Sato, “Early age
deformation and resultant induced stress in expansive high
strength concrete,” Journal of Advanced Concrete Technology,
vol. 2, no. 2, pp. 155–174, 2004.

[13] I. Lenhardt and T. Rottner, “Krylov subspace methods for
structural finite element analysis,” Parallel Computing, vol. 25,
no. 7, pp. 861–875, 1999.

[14] J. L. Volakis, D. B. Davidson, C. Guiffaut, and K. Mahdjoubi, “A
parallel FDTD algorithm using theMPI library,” IEEE Antennas
and Propagation Magazine, vol. 43, no. 2, pp. 94–103, 2001.

[15] S. F. McGinn and R. E. Shaw, “Parallel Gaussian elimination
using OpenMP and MPI,” in Proceedings of the 16th Annual
International Symposium on High Performance Computing Sys-
tems and Applications, pp. 169–173, IEEE, 2002.

[16] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes,” in
17th Euromicro International Conference on Parallel, Distributed

14 Mathematical Problems in Engineering

and Network-Based Processing, PDP 2009, pp. 427–436, deu,
February 2009.

[17] B. F. Zhu, Thermal Stress and Temperature Control of Mass
Concrete (2nd Edition), China Electric Power Press, Beijing,
China, 2012.

[18] B. F. Zhu, New Developments on Theories and Techniques of
Concrete Dams, ChinaWater Power Press, Beijing, China, 2009.

[19] B. F. Zhu,Anthology of Academician Zhu Bofang, China Electric
Power Press, Beijing, China, 1997.

[20] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu,TheFinite Element
Method: Its Basis and Fundamentals (6th Edition), Butterworth-
Heinemann, Oxford, UK, 2005.

[21] X. C. Wang, The Finite Element Method, Tsinghua University
Press, Beijing, China, 2003.

[22] W. Cheng, “A secondary development and application of
ANSYS: simulation of concrete creep,”GuizhouHydroelectricity,
vol. 23, no. 3, pp. 68–70, 2009 (Chinese).

[23] B. H. V. Topping, Parallel and Distributed Processing for Compu-
tational Mechanics: System and Tools, Saxe-Coburg, Edinburgh,
UK, 1999.

[24] A. K. Noor, “New computing systems and future high-
performance computing environment and their impact on
structural analysis and design,” Computers and Structures, vol.
64, no. 1–4, pp. 1–30, 1997.

[25] L. N. B. Gummadi and A. N. Palazotto, “Nonlinear finite
element analysis of beams and arches using parallel processors,”
Computers and Structures, vol. 63, no. 3, pp. 413–428, 1997.

[26] R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald,
Parallel Programming in OpenMP, Morgan Kaufmann, Burling-
ton, Mass, USA, 2000.

[27] Y. Saad, “Krylov subspace methods on supercomputers,” SIAM
Journal on Scientific and Statistical Computing, vol. 10, no. 6, pp.
1200–1232, 1989.

[28] H. A. Van Der Vorst, “Krylov Subspace Iteration,”Computing in
Science and Engineering, vol. 2, no. 1, pp. 32–37, 2000.

[29] M. L. Romero, P. F. Miguel, and J. J. Cano, “A parallel procedure
for nonlinear analysis of reinforced concrete three-dimensional
frames,” Computers and Structures, vol. 80, no. 16-17, pp. 1337–
1350, 2002.

Submit your manuscripts at
http://www.hindawi.com

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mathematical Problems
in Engineering

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Applied
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

International Journal of

Combinatorics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of Function Spaces

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Geometry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Advances in

Mathematical Physics

ISRN
Algebra

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Mathematical
Analysis

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Stochastic Analysis
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Discrete
Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2013

