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Abstract For a finite beam with a nonzero gap distance,
an asymmetric concentrated load can be either inside or out-
side of the contact zone. A new governing equation is given
for the case of a concentrated load outside the contact zone.
By numerically solving the left-side and right-side contact
lengths of the beam, a criterion is established to determine
whether the concentrated load is inside or outside the contact
zone. A more general approach on the tensionless contact of
a beam is thus presented.
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1 Introduction

Tensionless contact, which is variably referred to as un-
bonded contact, unilateral, or receding contact [1, 2], is to
describe the contact of a flexural structure, which may lifts-
off, or say, separates from its contacting substrate due to
the structural flexurality. The contact problem of a flexu-
ral structure is encountered in the indentation of such one-
dimensional nanostructures as nanobelt [1] and nanowire [2],
or in the stiction of microcantilever [3, 4]. An implicit as-
sumption of the previous works on the tensionless contact
of a beam or a plate is that the concentrated load is within
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the contact zone [1, 2, 5–8]. For a finite [1, 2] or an infi-
nite beam [5, 6] with zero gap distance from its contacting
substrate, this assumption is always true. However, for a
finite beam with a nonzero gap distance [3, 4, 7], this as-
sumption may not hold. For example, when a nanoindenter
indents a micro-cantilever, which is modeled as a concen-
trated load applied to a beam, the concentrated load is shown
to be outside the contact zone [4]. Because of lift-off, only
a portion of beam is in contact with the substrate [1, 2, 5–
7]. When an asymmetric concentrated load acts on a beam
with a nonzero gap distance, the location of the beam max-
imum displacement is in general different from that of the
concentrated load. Physically, the contact zone is the neigh-
borhood around the location of the beam maximum displace-
ment. The concentrated load can thus be outside the contact
zone. Two sets of the governing equations are presented for
the scenarios of the concentrated load inside and outside the
contact zone. A criterion is also given to tell which set of the
governing equations should apply.

2 Problem formulation

Figure 1 is a schematic of a finite beam separated from a
substrate with a nonzero gap distance ofZo. The coordinate
system is also shown in Fig. 1. The beam is under a concen-
trated load ofP. E1, L andI are the beam Young’s modulus,
length and the area moment of inertia, respectively.L1 and
L2 are the distances betweenP and the left and right ends of
the beam. Clearly,L1 + L2 = L. The beam deflection ofW
as shown in Fig. 1 is divided into the following three parts

W =


W1, left-side lift-off region,

W2, contact region,

W3, right-side lift-off region.

(1)

WhenP is inside the contact zone, the following gov-
erning equation set holds [5, 7]

EI
d4W1

dX4
= 0, W1 < Zo, −L1 < X < X1,
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EI
d4W2

dX4
+ k(W2 − Zo) = Pδ(X),

W2 > Zo, X1 < X < X2, (2)

EI
d4W3

dX4
= 0, W3 < Zo, X2 < X < L2,

whereδ(X) is the Dirac delta function.X1 and X2 are the
points at which the beam separates from the substrate, as
shown in Fig. 1.k is the modulus of the Winkler elastic foun-
dation to model the contacting substrate. For the contact be-
tween a beam with Young’s modulus ofE1 and a substrate
with Young’s modulus ofE2, k is given as follows [9]

k = 0.71E2

(E2B4

E1I

)1/3
. (3)

Here 2B is the beam width.

Fig. 1 Schematic diagram of a finite beam with a nonzero gap
distance and the coordinate system

WhenP is outside the contact zone, the following gov-
erning equation set holds

EI
d4W1

dX4
= 0, W1 < Zo, −L1 < X < X1,

EI
d4W2

dX4
+ k(W2 − Zo) = 0, W2 > Zo, X1 < X < X2,

EI
d4W3

dX4
= Pδ(X), W3 < Zo, X2 < X < L2.

(4)

HereL1 > L2 is assumed andP thus locates in the right-side
lift-off zone ofW3. If L1 6 L2, P will be in the left-side lift-
off zone ofW1. Here only the case ofL1 > L2 is computed.

The following nondimensionalization scheme is intro-
duced for computation comparison [5, 7]

ξ1 = βX1, ξ2 = βX2, l1 = βL1,

l2 = βL2, l = βL, zo = βZo,

w = βW, ξ = βX, F =
P

4β2EI
,

(5)

whereβ is a parameter defined as follows

β4 =
k

4E1I
, (6)

with the unit of m−1. Physically,β−1 is also the length used
to evaluate the effect of beam bending on the contact [10].

Equation (2) is now nondimensionalized as

d4w1

dξ4
= 0, w1 < zo, −l1 < ξ < ξ1,

d4w2

4dξ4
+ w2 − zo = Fδ(ξ), w2 > zo, ξ1 < ξ < ξ2,

d4w3

dξ4
= 0, w3 < zo, ξ2 < ξ < l2.

(7)

Equation (4) is now nondimensionalized as

d4w1

dξ4
= 0, w1 < zo, −l1 < ξ < ξ1,

d4w2

4dξ4
+ w2 − zo = 0, w2 > zo, ξ1 < ξ < ξ2,

d4w3

dξ4
= 4Fδ(ξ), w3 < zo, ξ2 < ξ < l2.

(8)

The solutions to Eq. (7) are given as follows [7]

w1 = A1ξ
3 + B1ξ

2 +C1ξ + D1,

w2 = A2 coshξ sinξ + B2 coshξ cosξ +C2 sinhξ sinξ

+D2 sinhξ cosξ −
F
2

sinh|ξ|

+
F
2

coshξ sin|ξ| + zo,

w3 = A3ξ
3 + B3ξ

2 +C3ξ + D3.

(9)

The difficulty of deriving the solutions to Eqs. (7) and (8) is
on the particular part. Weitsman’s approach [5] of construct-
ing a particular solution for Eq. (7) also applies to Eq. (8).
For brevity, the solutions to Eq. (8) are directly given as fol-
lows

w1 = a1ξ
3 + b1ξ

2 + c1ξ + d1,

w2 = a2 coshξ sinξ + b2 coshξ cosξ

+c2 sinhξ sinξ + d2 sinhξ cosξ + zo,

w3 = a3ξ
3 + b3ξ

2 + c3ξ + d3 + 4FH3(ξ),

(10)

whereAi , Bi , Ci , Di andai , bi , ci , di (i = 1,2,3) in Eqs. (9)
and (10) are the unknown constants to be determined.H3 is
a function defined as

H3(ξ) =
∫ l2

−l1

∫ l2

−l1

∫ l2

−l1

∫ l2

−l1

δ(ξ)dξdξdξdξ

=


0, ξ 6 0,

ξ3

6
, ξ > 0.

(11)

The matching conditions atξ = ξ1, ξ2 can be derived by a
variation approach [11] as follows
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w1(ξ1) = w2(ξ1),
dw1

dξ
(ξ1) =

dw2

dξ
(ξ1),

d2w1

dξ2
(ξ1) =

d2w2

dξ2
(ξ1)

d3w1

dξ3
(ξ1) =

d3w2

dξ3
(ξ1),

w2(ξ2) = w3(ξ2),
dw1

dξ
(ξ2) =

dw3

dξ
(ξ2),

d2w2

dξ2
(ξ2) =

d2w3

dξ2
(ξ2),

d3w2

dξ3
(ξ2) =

d3w3

dξ3
(ξ2).

(12)

The above matching conditions in essence indicate the con-
tinuity of the displacement, slope, moment and shear force
at the separation points ofξ1 andξ2 [2]. The matching con-
ditions are also frequently referred to as the transversality
conditions [11, 12].

Two constraint conditions, which indicates the beam
displacement at the separation points, are given as fol-
lows [7]

w2(ξ1) = zo, w2(ξ2) = zo. (13)

Here the capillary [13] and the adhesion [14] effects, which
play a very important role in the micro/nanostructures, are
not considered. Once these effects are considered, the above
constraint conditions change correspondingly [14].

For a hinged-hinged beam, the boundary conditions are
as follows

w1(−l1) = 0,
d2w1

dξ2
(−l1) = 0,

w3(l2) = 0,
d2w3

dξ2
(l2) = 0.

(14)

There are fourteen unknown constants to be determined ei-
ther for the case of the concentrated load inside contact zone
(Ai , Bi ,Ci ,Di (i = 1,2,3), ξ1 andξ2) or for the case of the
load outside the contact zone (ai ,bi , ci ,di (i = 1,2,3), ξ1
and ξ2). The transversality, constraint and boundary con-
ditions of Eqs. (12), (13), and (14) give fourteen equations
in total to solve the fourteen unknowns. Because of the un-
known property of the contact zone (i.e.,ξ1 and ξ2), solv-
ing these fourteen unknowns is a nonlinear problem and
the Newton–Rhapson method is used [7]. For the Newton–
Rhapson method to start, the fourteen unknowns need to be
guessed first. The computation is not very sensitive to the
initial guesses and converges after a few iterations.

3 Results and discussion

As shown in Fig. 1, the concentrated load is at the origin of
the coordinate system. In this study the concentrated load
starts at the center of the beam and then moves towards the
beam right end. When the concentrated load is at the cen-
ter of a hinged-hinged beam, if the beam is in contact with
the substrate, the concentrated load must be inside the con-
tact zone because the loading location is also the location of
the maximum beam displacement. If the concentrated load
moves rightward and out of the contact zone, the concen-

trated load can only be on the right-side lift-off zone as as-
sumed by Eq. (8). When the concentrated load is inside the
contact zone, we haveξ1 < 0 andξ2 > 0; when the concen-
trated load is outside the contact zone, we haveξ1 < 0 and
ξ2 < 0 for the scenario of the load moving rightward. There-
fore, the criterion here to tell whether the concentrated load
locates inside or outside the contact zone isξ2 = 0. Clearly,
if F moves leftward, the criterion will beξ1 = 0.

Here an example with the parameters ofl = 4, zo = 0.6
andF = 0.2 is presented. Figure 2a shows the variation of
total contact length asl1 increases (or say,F moves right-
ward) from the center ofl1 = 2; Figure 2b shows the vari-
ation of the leftside and rightside contact lengths asl1 in-
creases. WhenF is inside the contact zone, the rightside
contact length isξ2 and the leftside contact length is−ξ1;
the total contact length here is calculated asξ2 − ξ1. As
seen in Fig. 2a, when the load moves rightward, the total
length increases and then reduces. It needs to point out
that the concentrated load at the beam center does not nec-
essarily give the largest total contact length, which is dis-
cussed in detail in Ref. [7]. In contrast, the right-side/left-
side contact length decreases/increases monotonically asl1
increases. The rightside contact length ofξ2 becomes zero
when l1 ≈ 0.692l = 2.768. F will be outside the contact
zone if it moves further rightward. Figure 3 shows the two
beam deflection shapes atl1 = 0.5l and l1 = 0.69l, respec-
tively. Both are the scenario of the concentrated load inside
the contact zone. For the symmetric loading ofl1 = 0.5l,
−ξ1 = ξ2 = 0.617 2; for the asymmetric loading ofl1 = 0.69l,
ξ1=−1.079 8 andξ2=0.000 303.

When l1 > 0.692l, the concentrated load is outside the
contact zone; Equation (7) becomes invalid and Eq. (8) ap-
plies. Figure 4 shows the two cases ofF outside the contact
zone with l1 = 0.7l and l1 = 0.75l, respectively. In Fig. 4a
of l1 = 0.7l, ξ1 = −1.105 andξ2 = −0.047 78; In Fig. 4b of
l1 = 0.75l, ξ1 = −1.225, andξ2 = −0.276. Thel1 difference
between Fig. 3b and Fig. 4a is small and it is found that their
differences in the beam deflection shapes and contact lengths
are also small. The beam is an Euler–Bernoulli beam and the

Fig. 2 aThe total contact length versusl1; b The leftside/rightside
contact length versusl1
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Fig. 3 Beam deflection shapes with the concentrated load inside
the contact zone.a l1 = 0.50l; b l1 = 0.69l

Fig. 4 Beam deflection shapes with the concentrated load outside
the contact zone.a l1 = 0.70l; b l1 = 0.75l

foundation is a linear Winkler foundation. The nonlinearity
of the tensionless contact is caused by the unknown feature
of the contact zone. Mathematically, the fact that the concen-
trated load moves out of the contatc zone corresponds to the
switching of the governing equations from Eq. (7) to Eq. (8),
which introduces another nonlinearity and this nonlinearity
does not cause any abrupt change.

4 Summary

An asymmetric concentrated load can be either inside or out-
side the contatc zone of a flexural beam with a nonzero gap
distance. Two sets of governing equations are needed for
these two scenarios. A criterion is established to tell whether
the concentrated load is inside or outside the contact zone.
As the concentrated load moves out of the contact zone, the
changes of both the beam deflection shape and the contact
length are shown to be smooth.
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