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Abstract For a finite beam with a nonzero gap distancethe contact zone [1,2,5-8]. For a finite [1,2] or an infi-
an asymmetric concentrated load can be either inside or outite beam [5, 6] with zero gap distance from its contacting
side of the contact zone. A new governing equation is givesubstrate, this assumption is always true. However, for a
for the case of a concentrated load outside the contact zorfanite beam with a nonzero gap distance [3,4,7], this as-
By numerically solving the left-side and right-side contactsumption may not hold. For example, when a nanoindenter
lengths of the beam, a criterion is established to determinedents a micro-cantilever, which is modeled as a concen-
whether the concentrated load is inside or outside the contaithated load applied to a beam, the concentrated load is shown
zone. A more general approach on the tensionless contacttof be outside the contact zone [4]. Because of liff-only

a beam is thus presented. a portion of beam is in contact with the substrate[1, 2, 5—
. _ 7]. When an asymmetric concentrated load acts on a beam
Keywords Tensionless contaetift-off - Beam with a nonzero gap distance, the location of the beam max-

imum displacement is in generalfi#irent from that of the
concentrated load. Physically, the contact zone is the neigh-
. C . borhood around the location of the beam maximum displace-
Tensionless contact, which is variably referred to as un; ent. The concentrated load can thus be outside the contact
bonded contact, unilateral, or receding contact [1, 2], is hent . .

zone. Two sets of the governing equations are presented for

describe the contact of a flexural structure, which may Iiﬂs_he scenarios of the concentrated load inside and outside the
off, or say, separates from its contacting substrate due {

0 o : :
the structural flexurality. The contact problem of a erxu-ContaCt. Zone. A_crlterlon is also given to tell which set of the
ral structure is encountered in the indentation of such on&®V¢M N9 equations should apply.

dimensional nanostructures as nanobelt [1] and nanowire [2}, Problem formulation

or in the stiction of microcantilever [3,4]. An implicit as-

sumption of the previous works on the tensionless contaétigure 1 is a schematic of a finite beam separated from a

of a beam or a plate is that the concentrated load is withifubstrate with a nonzero gap distanc&af The coordinate
system is also shown in Fig. 1. The beam is under a concen-

. ) ) trated load ofP. E;, L andl are the beam Young's modulus,
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El d4V\£2 T K(Ws — Zo) = PS(X). with the unit of nT?. Physically,ﬁ‘l. is also the length used
dXx to evaluate theféect of beam bending on the contact [10].
Wo > 275, X< X< X, (2) Equation (2) is now nondimensionalized as
E|M=o Ws<Zy, Xo<X<L d*wy
dxd ~ > TR T e 72 > — =0, wi<z, -h<é<é,
wheres(X) is the Dirac delta function.X; and X, are the
points at which the beam separates from the substrate, a%& FWo —Zo = FO(£), Wo>12,, &1<E<éE, (7

shown in Fig. 1k is the modulus of the Winkler elastic foun- 4dg*
dation to model the contacting substrate. For the contact bed*w;
tween a beam with Young’s modulus Bf and a substrate @
with Young’s modulus ok, k is given as follows [9]

=0, W<z, &<é<l

Equation (4) is now nondimensionalized as

4.1/3
k= 0.71E2( E2B ) . @) u
E1| d W1 _

Here B is the beam width. dg
d4W2
4T§4+WZ—20=0, W > 7, & <E<&, (8)
d*w
—dff = 4F5(), Ws<Zo, & <E<a.

The solutions to Eq. (7) are given as follows [7]
Wy = Aré® + Bié? + Cié + Dy,

Wy = A; coshé sing + B, cosheé cosé + C, sinhé sing

+D, sinhé cosé — g sinh|é| 9)

F .
+— cosh¢ sin|é| + z,,
Fig. 1 Schematic diagram of a finite beam with a nonzero gap 3 5
distance and the coordinate system W3 = Agg™ + Bgé” + C3¢ + Ds.

) ) ) The dificulty of deriving the solutions to Egs. (7) and (8) is
~WhenP is outside the contact zone, the following gov-on the particular part. Weitsman’s approach [5] of construct-
erning equation set holds ing a particular solution for Eq. (7) also applies to Eq. (8).
d* W, For brevity, the solutions to Eq. (8) are directly given as fol-
El—— =O, W1<ZO, —L1<X<X1, lows
dx4
4
Eld—V\f +k(Wo —=Z5) =0, Wo>7Z, Xp<X<Xo, (4)
ax Wz = @ coshé siné + b, coshé cosé (10)
d*W.
E'ﬁf =P5(X), Ws<Z, Xo<X<lLo +C, sinhé siné + d, sinh& cos¢ + z,

HereL, > L, is assumed anB thus locates in the right-side Ws = 8s¢° + Ds€? + Ca¢ + g + 4F Ha(€),
lift-off zone ofWs. If L1 < L, P will be in the left-side lift- whereA, B, C,, D; anday, by, G, d (i = 1.2,3) in Egs. (9)

off Z?Phe Ofwl\lll' Here Ong. the case cli.fl i Lo s cr:]ompu_tec_j.t and (10) are the unknown constants to be determitigds
e following nondimensionalization scheme is intro-_ ¢ =0 = a4

duced for computation comparison [5, 7]

Wi = &é3 + b1€% + cié + dy,

2 pla pla plo
a=p%, H=p% li=pl, Hs(¢) = f| f| fl fl oE)acacacas
l,=pLy, [|=pL, 2 = BZo, ©) R FR S PRV
P 0, £<0,

w=pW  &=pBX F (12)

= T’ = 3
WE £ &0

whereg is a parameter defined as follows 6

P k The matching conditions &t = &3, & can be derived by a

aED (6)  variation approach [11] as follows
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Wi (£1) = Wo(&1), %(&) = %(51)’ trated load can only be on the right-side Iifﬂf—aon_e as as-
dg dg sumed by Eq. (8). When the concentrated load is inside the
d?wy d?w, d*wy d*w, contact zone, we havg < 0 andé, > 0; when the concen-
dz2 €)= g2 (&) g3 (€)= g3 (&) trated load is outside the contact zone, we have 0 and
dw dw (12) & < 0 for the scenario of the load moving rightward. There-
Wo(&2) = Wa(&2), —H(&) = =2 (&) fore, the criterion here to tell whether the concentrated load
de dé locates inside or outside the contact zong&is- 0. Clearly,
dez( )= d2W3( ) d3Wz( )= d3w3( ) if F moves leftward, the criterion will bg = 0.
dée? &) = dée? &2) g3 &2) = dz3 &2)- Here an example with the parameters ef4, z, = 0.6

The above matching conditions in essence indicate the coﬁ[1d F = 02 s presented. Figure 2a shows the variation of

tinuity of the displacement, slope, moment and shear force tal contact length af increases (or saf; moves right-

at the separation points ¢f and&; [2]. The matching con- ward) from the center oy = 2; Figure 2b shows the vari-

ditions are also frequently referred to as the transversalit?tlon of the Ieftsu_:ie_an_d rightside contact Iengthsl_lam-_
conditions [11, 12]. reases. Whelfr is inside the contact zone, the rightside

; i . contact length i, and the leftside contact length isq;
Two constraint conditions, which indicates the bearri gth s gth 3

displ t at th i i . ¢ he total contact length here is calculatedéas- &;. As
lc;\?vp;?;:]emen at the separation points, are given as 10gap in Fig. 2a, when the load moves rightward, the total

length increases and then reduces. It needs to point out
Wo(£1) = 2o, Wo(£2) = 2. (13) that the concentrated load at the beam center does not nec-
] ] ] essarily give the largest total contact length, which is dis-
Here the capillary [13] and the adhesion [14eets, which ¢ ssed in detail in Ref.[7]. In contrast, the right-gle-

play a very important role in the mighwanostructures, are gjge contact length decreagesreases monotonically ds
not considered. Once thes@eets are considered, the abovej,creases. The rightside contact lengthépbecomes zero

constraint conditions change correspondingly [14]. whenl; ~ 0.692| = 2.768. F will be outside the contact
For a hinged-hinged beam, the boundary conditions argone if it moves further rightward. Figure 3 shows the two

as follows beam deflection shapes lat= 0.5 andl; = 0.69, respec-

d?wy tively. Both are the scenario of the concentrated load inside
wi(=I1) =0, @(_Il) =0, the contact zone. For the symmetric loadinglof= 0.5,

Pw (14) —& =&, = 0.617 2; for the asymmetric loading kf= 0.69,
wa(lz) =0,  ——22(I) =0, é1=-1.0798 and, =0.000 303,

dé Whenl; > 0.692I, the concentrated load is outside the

There are fourteen unknown constants to be determined @ontact zone; Equation (7) becomes invalid and Eq. (8) ap-
ther for the case of the concentrated load inside contact zofées. Figure 4 shows the two casesFobutside the contact

(AL B, Ci,D; (i = 1,2,3), & andé&,) or for the case of the zone withly = 0.7 andly = 0.75, respectively. In Fig.4a
load outside the contact zone;,(i,c.di (i = 1,2,3), & Of 11 =071, & = -1.105 andé; = —0.047 78; In Fig. 4b of

and ). The transversality, constraint and boundary conl = 0.78, {1 = —1.225, and¢; = -0.276. Thel, difference
ditions of Egs. (12), (13), and (14) give fourteen equation®etween Fig. 3b and Fig. 4a is small and it is found that their
in total to solve the fourteen unknowns. Because of the urflifferences in the beam deflection shapes and contact lengths
known property of the contact zone (i.€, and&,), solv- — are also small. The beam is an Euler—Bernoulli beam and the
ing these fourteen unknowns is a nonlinear problem and

the Newton—Rhapson method is used [7]. For the Newton—  # 125

=

Rhapson method to start, the fourteen unknowns need to be 1.0 [Leftcontact
guessed first. The computation is not very sensitive to the feneth )
initial guesses and converges after a few iterations. = 120! gn 0.8

5 3

= =
3 Results and discussion %; § 0.6 ¢

£ 3
As shown in Fig. 1, the concentrated load is at the origin of E, LIS} B 04
the coordinate system. In this study the concentrated load E %
starts at the center of the beam and then moves towards the = 02! Right comac]\
beam right end. When the concentrated load is at the cen- 1.10 length (%)
ter of a hinged-hinged beam, if the beam is in contact with 0 \
the substrate, the concentrated load must be inside the con- 20 22 24 26 28 20 22 24 26 28
tact zone because the loading location is also the location of h h

the maximum beam displacement. If the concentrated lodelg. 2 aThe total contact length versiis b The leftsidgrightside
moves rightward and out of the contact zone, the concermontact length versus
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F inside the contact zone 4 Summary
a g by . o
o Contact separation o Contact separation A_n asymmetric concentrated load can be el_ther inside or out-
0.1+ point 0.1} pomt side the contatc zone of a flexural beam with a nonzero gap
distance. Two sets of governing equations are needed for
g 02 g 02 these two scenarios. A criterion is established to tell whether
E 03 § 03 the concentrated load is inside or outside the contact zone.
< 3 As the concentrated load moves out of the contact zone, the
§ 0.4 § 0.4 changes of both the beam deflection shape and the contact
A 05 B s length are shown to be smooth.
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