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Abstract A second-order monotonicity-preserving optimized MUSCL scheme (OMUSCL2) is 

developed based on dispersion and dissipation optimization and monotonicity-preserving 

technique. The new scheme (OMUSCL2) has simple expression and is easy to be used in CFD 

codes. Compared with the original second-order or third-order MUSCL scheme, the new scheme 

shows nearly the same CPU costs and higher resolution to shockwaves and small-scale waves. 

We test the new scheme through a set of one-dimensional and two-dimensional tests, including 

the Shu-Osher problem, the sod problem, the Lax problem, two dimension double Mach 

reflection and RAE2822 transonic airfoil test. All numerical tests show that, compared with 

original MUSCL schemes, the new scheme has less dispersion error, less dissipation error and 

higher resolution.  

Key Words   MUSCL scheme, monotonicity-preserving, resolution, dissipation/dispersion error, 
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Introduction 

Computational fluid dynamics (CFD) 

plays an important role in the aerospace 

engineering, and to develop high solution 

methods is still a major work in CFD. 

Generally speaking, the resolution of 

numerical solution is the ability to describe 

flow characteristics which we are interested 

in. High resolution scheme [1] generally 

refers to the numerical solution of this 

scheme can give a sharp and vivid picture to 

the flow characteristics which are in the 

range of interesting physical scale. This 

scale usually contains small-scale flow 

structure which is difficult to simulation 

correctly. For shock waves, the resolution 

means the numerical shock is sharp and the 

parameters (such as density, velocity, and 

pressure) have no or small oscillation 

through shock. When the shock wave is 

generated in the flow field, characteristic 

scale of flow structure has greatly 

discrepancy among different regions [2]. 

The characteristic scale of inviscid shock is 

zero, while the characteristic scale of flow is 

finite. Furthermore, flow parameters are 

discontinuous through shock. All of these 

lead to great difficulties in numerical 

calculation. We require the scheme has high 

resolution and strong ability to capture 

shock for multi-scale complex flow (e.g. 

turbulence) with shock. In addition, 

numerical solution should be free from non-

physical high frequency oscillation near the 

shock, and different scale physical 

parameters can’t be polluted through shock 

wave. Therefore, it’s necessary to develop 

high resolution schemes for engineering 

application.  

Numerical simulation of shock has 

made significant progress since 1980s. In 

1983, Harten [1] introduced the concept of 

total variation diminishing (TVD), and got a 
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second order TVD scheme. Based on the 

Harten’s TVD concept and condition [1], 

limiters can be defined to restore the TVD 

property of the scheme and to prevent the 

non-physical oscillations near the 

discontinuities. TVD limiters are bounded 

non-linear functions obeying Harten’s TVD 

condition. These limiters ensure that any 

reconstructed values at any time don’t lie 

outside the range of the initial data [3]. 

Sweby [4] proposed a series of second order 

TVD schemes using the flux limiters. In 

addition, Van Leer [5] developed a method 

called MUSCL (monotonic upstream-

centered scheme for conservation law). This 

method first extrapolated interface values by 

using the cell averages, then obtain flux 

through flux splitting technique. This avoids 

under and overshoots phenomena and leads 

to a maximum principle on the discrete 

solution. MUSCL methods are one of the 

most popular second-order or third-order 

finite volume methods. Although TVD 

schemes show highly efficient and stable 

shock capturing ability, the order in local 

extreme point is only first-order for 

satisfying the TVD property. To avoid this 

drawback, Harten [6] introduced the concept 

of essentially non-oscillatory (ENO). Then 

many researchers have constructed high-

order ENO [6] [7] and WENO [7] [8] 

schemes. There are also the total variation 

bounded (TVB) [9] method and 

monotonicity-preserving (MP) [10] method. 

However, more stencil points are used in 

high-order (more than three-order) schemes, 

and this limits the flexibility in complex 

geometries.      

Finite volume method (FVM) is widely 

used in engineering applications due to its 

simplicity for complex geometries and 

build-in conservative property. To keep 

flexible for complex geometries, the scheme 

stencil in most FVM codes are four points, 

i.e. four points are used to compute the face 

value
1/2IU 

. For engineering CFD codes, 

MUSCL scheme is one of the most popular 

schemes to compute
1/2IU 

. This scheme is 

modified from the base schemes by use 

limiter techniques. The base schemes of 

MUSCL are second-order central scheme, 

second-order upwind scheme, and third-

order upwind scheme or Fromm scheme. 

Although MUSCL scheme have many good 

properties, it still has the room for 

optimization. For example, Four points are 

used to compute
1/2IU 

, and only three points 

are used to compute the Lift and the Right 

face values
1/2

L

IU 
, 

1/2

R

IU 
. The message of one 

point is not used in the computation of 
1/2

L

IU 
 

and
1/2

R

IU 
, i.e. the message of this point is 

wasted. Additional, the base scheme (such 

as ordinary third-order upwind scheme) can 

be optimized by using the dispersion and 

dissipation optimization techniques [11, 12].        

In this work, based on dispersion and 

dissipation optimization and monotonicity-

preserving technique, a second order 

optimized MUSCL scheme (OMUSCL2) is 

proposed. Compared with the classical 

second or third order MUSCL scheme, the 

new scheme has less dissipation and 

dispersion and thus has higher resolution for 

shockwave and small scale waves. The new 

scheme has the same stencil and nearly the 

same computational cost as that of the 

classical MUSCL scheme, thus it is easy to 

be used or be migrated in the finite volume 

CFD code.  

The paper is organized as follows. 

Section 2 focuses on numerical method, 

including a review of MUSCL method, 

TVD conditions and the construction of 

OMUSCL2. In section 3 we extend the new 

scheme to the Euler equations. Section 4 is 

devoted to numerical results and we make 
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comparisons with classical MUSCL method. 

All tests show that OMUSCL2’s resolution 

is better than original MUSCL method.  

1 Description of the numerical scheme 

1.1 The scalar conservation law 

In this section, we start with the 

description in the one-dimensional case. 

Consider the scalar hyperbolic conservation 

law given by  

   
( )

0.
u f u

t x

 
 

 
                                             (1) 

For simplicity, we assume the grids 

points 
jx  are uniform. That 

is
1 ,j jx x h   1/2 / 2j jx x h   . Defined 

1/2 1/2[ , ]j j jI x x   is a uniform partition of the 

solution domain in space. The semi-discrete 

conservative scheme of (1) is  

1/2 1/2

1 ˆ ˆ( ) 0,j j

u
f f

t h
 


  


          (2) 

where 1/ 2
ˆ

jf  is the numerical flux. The details 

of how to get it will be described in the 

following. Defining  

  
1/2 1/2

1 ˆ ˆ( ) ( ),j jL u f f
h

                      (3) 

then (2) can be written as 

 ( ).
u

L u
t





                              (4) 

In this paper, (4) is discrete in time by TVD 

Runge- Kutta scheme [13].  
(1)

(2) (1) (1)

1 (2) (2)

( )

3 1 1
( )

4 4 4

1 2 2
( )

3 3 3

n n

n

n n

u u tL u

u u u tL u

u u u tL u

  

   

   

                  (5) 

1.2 A short review on MUSCL and TVD 

property 

1.2.1 Van Leer’s MUSCL method 

In 1979, Van Leer [5] proposed 

MUSCL method. Considered Eq. (1) and its 

semi-discrete form (2), we can get many 

different semi-discrete schemes after 

splitting flux, such as second-order central 

scheme, second-order or third-order upwind 

scheme. Different schemes which depend on 

the expression of 
1/2,

ˆ
j Lu 

and 
1/2,

ˆ
j Ru 

can be 

written in unified form:  

1/2 1/2, 1/2,
ˆ ˆ ˆ( ) ( ).j j L j Rf f u f u 

             (6) 

A more general form is  

1/2,

1/2, 1 1

1
ˆ [(1 ) (1 ) ]

4

1
ˆ [(1 ) (1 ) ]

4

j L j x x j

j R j x x j

u u k k u

u u k k u

 

 

 



 

  

    

    

   (7) 

1k   is upwind scheme; 1k  is central 

scheme and 0k  is Fromm scheme. They 

are all second-order accurate. 

While 1/ 3k  is a third-order accurate 

scheme. If we use this scheme simply, it 

will produce numerical oscillation. Van 

Leer [5] improve (7) to 

1/2,

1/2, 1 1

1
ˆ [(1 ) (1 ) ]

4

1
ˆ [(1 ) (1 ) ]

4

j L j x x j

j R j x x j

u u k k u

u u k k u

 

 

 



 

  

    

    

    (8) 

where 

min mod( , )

min mod( , )

1
1 3,   1,   1,   0,   

3

x j x j x j

x j x j x j

u u b u

u u b u

b k

  

  

  

  





   

. 

Reducing significant changes in 
1/2,

ˆ
j Lu 

 

and
1/2,

ˆ
j Lu 

 to improve the ability of capturing 

shock. 

1.2.2 TVD scheme 

In 1959, Godunov [14] proposed 

monotonicity scheme. Then Jenning [15] 

proposed monotonicity–pre serving scheme 

by extending the concept of monotone to 

non-linear scheme. The numerical solution 

avoids oscillation near the shock using 

monotonicity or monotonicity-preserving 

scheme.  

TVD which is first introduced by 

Harten means total variation diminishing. 

The basic idea is to apply the characteristic 

which is total variation diminishing of 

differential equations in constructing 

difference scheme. In order to construct 



148 LHD 2011 年度夏季学术研讨会 

 

 

TVD scheme, Harten gave a sufficient 

condition. That is, if scheme can be written 

as    
1

1/2 1 1/2 1( ) ( )n n n n n n n n

j j j j j j j ju u C u u D u u

         (9a) 

and for any j satisfies  

 1/2 1/2 1/2 1/20, , 1,n n n n

j j j jC D C D           (9b) 

the scheme is TVD scheme. 

1.3 Optimized MUSCL scheme (OMUSCL2) 

by controlling dispersion and dissipation 

1.3.1 Fourier analysis of dispersion and dissipation 

We discrete the scalar hyperbolic 

equation (1) on the stencil 

2 1 1 2[ , , , , ]j j j j jx x x x x   
. Clearly, five points can 

construct 4th order scheme at most. Here we 

use five points to construct a second-order 

scheme, then getting a spatial discrete 

expression with two free coefficients: 

2 1

1 2

1
( 3 ) (3 8 2)

2

3
( 3 6 )

2

j j

j j j

f
h a b f a b f

x

a b f af bf

 

 


      



     

 (10) 

Where a and b are free coefficients.  

In order to analyze the dispersion and 

dissipation errors quantitatively, we 

consider model problem 

0, 0
u u

c c const
t x

 
   

 
, 

with initial condition:  

( ,0) ikxu x e . 

The exact solution is ( )( , ) ik x ctu x t e  . If we let 

jF h  to approximate
j

u

x

 
 
 

, then model 

problem is written as  

0, 0
j ju F

c c const
t h


   


 

with initial condition:  

( ,0) jikx

ju x e . 

Suppose different equation’s exact solution 

has the form ( )
( , ) ( ) jik x ct

ju x t u t e



 then we 

get ( )
( ) jik x ct

j eF K u t e



  , 

e r ik k ik  . The solution 

is
( )

( , )
ir

j

kk
c t i kx c t

h h
ju x t e e

 

 . Note that for the exact 

solution, we have 0,r ik k kh  . So the 

dispersion and dissipation error can be 

reflected by the functions
rk and

ik . [16] 

For (10) the functions of dispersion and 

dissipation are expression as ( kh  ) 
1

( 2 )cos(2 ) (4 8 2)cos( )
2

3
( 3 6 )
2

1
( 4 )sin(2 ) 2( 4 1)sin( )

2

r

i

K a b a b

a b

K a b a b

 

 

     

  

      

(11) 

Define: 
1 2 4

2 8 1

a b

a b





  

  
, 

Then, Eq. (11) is rewritten as  

 
2 2(cos ( ) 1)

(1 cos( ))sin( )

r

i

K

K

 

   

 

  
 ,         (12) 

Here ,  is the dissipation and dispersion 

coefficient, respectively, i.e. the dissipation 

property of the scheme (10) is determined 

only by the free parameter  , and the 

dispersion property of scheme (10) is 

determined only by the free parameter  . 

Since  and   are independent parameters, 

we can optimize the dissipation and 

dispersion property of scheme (10) 

independently.     

Specially, when  =0， =-1/3 , scheme 

(10) is a fourth-order central scheme. 

1.3.2 Optimization for dissipation and dispersion 

coefficients 

Equation (12) requires 0  since the 

dissipation must be positive. In the 

application of specific physical problem it 

can be given an appropriate value to avoid 

over smoothed discontinuities. So it’s a 

controllable parameter. Here we 

choose 0.2  determined by tests. The 

following optimized mainly for dispersion 

coefficient using the best square 

approximation method. 

The exact value of dispersion is
ik  , 

by the best square approximation we obtain  
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2

0

3 3 2

3

( ) ( (1 cos( ))sin( ))

1 (1 ) 1
        ( sin 4 ) ( sin 2 )

3 8 4 2 2

1
( cos 2 sin 2 ) 2(1 ) cos

2 2

2
2(1 )sin (1 )sin      [0, 2 ]

3

x

F d

x
x x x x

x x x x x

x x x

      

 




   

   


    

   

    



. 

In table 1, for given x value,  value is 

presented when ( )F  obtains the minimum 

value. Figure 1 shows the dispersion curve 

with different value and exact value. Fig. 1 

shows that the dispersion curve will 

approach exact value better in the range of 

high wave number as decreasing. But from 

fig. 2, we know it can’t be decreased 

unlimited. So we choose  in the range 

of max ( ( ) 0.05ki   . Finally we 

select 0.55    when max ( ( ) 0.05ki   . 

As we have addressed above, the 

scheme is 4th order central scheme 

when 1/ 3   . Seen from fig. 3, the region 

is increased by 50% through choosing 

new value. That is, for the same resolution, 

our grid’s number is 2/3 of the original 

fourth-order scheme. 
Table 1 x and values for minimum ( )F  value 

x    

/ 2  0.49269  

2 / 3  0.35613  

5 / 6  0.07565  

1.3.3 Improve shock capturing ability by adding TVD 

limiter 

After above works, we have defined 

0.2  and 0.55   . So far the scheme is 

linear which can’t calculate shock. The 

following content is to add limiter. Flux can 

be split into f f f   , satisfying 

0
df

du



 and 0
df

du



 . We consider Eq. (1) 

only for the case of 0
df

c const
du

   . For the 

case 0c  , the scheme is easy to be 

developed due to the symmetry. 

 

Fig. 1 Dispersion curves for different  

The stencil in the reconstruction of 

1/2jU 
 in classical MUSCL and the new 

scheme are shown in fig. 4. Classical 

MUSCL reconstructs left and right state by 

using three points. Totally four points are 

used to compute
1/2jU 

, and the message in 

one additional point is not used, i.e. one 

point’s message is wasted.  This inspires us 

to reconstruct the left and right state by all 

four points: 

1/2 1/2 1 1 2

1/2 1/2 1 1 2

( , , , )

( , , , )

L L

j j j j j j

R R

j j j j j j

U U U U U U

U U U U U U

    

    




 

 
Fig. 2 Dispersion curves by decreasing value 

So, the new scheme uses the same stencil 

points in the computation of 1/2jU   as that 

used in classical MUSCL scheme. 
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Fig. 3 Compared 1/ 3   to 0.55    

 
Fig. 4 Stencils for the reconstruction of 

1/2jU 
 

According to the above idea, from (10) 

we obtain 

1

1 2

1/2

3 2ˆ
4 4

2 3

4 4

j j

j j

jf f f

f f

   

   



 

  



 

  
 

  
 

       (13) 

where 0.55   and 0.2  , which are chosen 

by above optimization process.  

Based on the limiter technique [17], 

scheme (13) can be rewritten as a first-order 

upwind part and a correction part, and then 

limiter factor are used in the correction part 

to keep TVD property. Now, the schemes 

are: 

11/2 1/2

1/2 1/2

3/2

1ˆ ( )

1
1

2 2

j j jj j

T

j j

j

f f f f

r
r




   
 



   

 

 



  

 
   

      (14) 

Here 

1

1

1/2

j j

j j

j

f f
r

f f





 

  





. 

Reference [18] demonstrated that this 

method is identical to the TVD method and 

gave the range of
1/2j 

is 

1/2

1/2

1/2

2
0

1

2
0

j

j

j

r














  


  


 

where  is CFL number, and the common 

value is 0 1  .  

So，finally we choose: 

1/2 1/2 1/2max(0,min(2, ,2 ))j j jr     

Now we obtain OMSCL2 scheme in the 

scalar hyperbolic conservation equation. The 

following will extend it to the Euler 

equations. 

2 Extension to the Euler equation 

In this section, we propose an 

extension of the OMUSCL2 method to the 

Euler equations. The one-dimension Euler 

equations of gas dynamics can be written as 

the following conservative form 

( )
0

U F U

t x

 
 

 
 

Where 

( , , )TU u E   

is the vector of conservative variables and 
2( ) ( , , ( ))TF U u u p u E p     

is the vector of flux. 

With the idea of MUSCL and TVD, we 

get the second-order optimized scheme 

(OMUSCL2). In order to apply to the finite 

volume method easily and to compare with 

MUSCL method, we rewrite it as similar as 

MUSCL method. Here we summarize how 

to apply this algorithm to the finite volume 

method.  

 First, we use OMUSCL2 scheme to 

compute the left and right state at the 

face of the control volume 1/2 1/2,L R

j jU U  :  
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1/2 1/2 1

1/2 1/2 1/2

1/2 1/2

3/2

1 1

1/2 3/2

1 2 1

1/2 1 1/2 1

1/2

1
( )

2

max(0, min(2, , 2 ))

1
0.8 0.175 0.375    

, ;

1
( )

2

L L

j j j j j

L L L

j j j

L L

j jL

j

j j j jL L

j j

j j j j

R R

j j j j j

R

j

U U U U

r

r
r

U U U U
r r

U U U U

U U U U



 







  

  

 



 

 

  

   



  



  

 
 

 

  

1/2 1/2

1/2 1/2

1/2

2 1 1

1/2 1/2

1 1

max(0, min(2, , 2 ))

1
0.8 0.175 0.375

 , ;

R R

j j

R R

j jR

j

j j j jR R

j j

j j j j

r

r
r

U U U U
r r

U U U U





 

 



  

 

 



  

 
 

 

    (15) 

 Then, the fluxes in the face of 

control volume can be computed by using 

flux technique, such as Steger-Warming 

splitting [19], Van Leer splitting [20], Roe 

[21] or AUSM [22 ] method. 

3 Numerical tests 

3.1 One dimension problems 

In this section, we use this new scheme 

to solve some one-dimensional and two-

dimensional tests on the purpose of 

comparing with the original MUSCL 

schemes. 

In the following tests, original second-

order MUSCL scheme (MUSCL2), third-

order MUSCL scheme (MUSCL3) and the 

new scheme (OMUSCL2) are used to 

compute the face values, and Steger-

Warming [19] method for one dimension 

tests and AUSM-PW [23] [24] method for 

two dimension tests with characteristic-wise 

are used to compute the flux, the third-order 

TVD type Runge-Kutta method are used for 

time advance. 

3.1.1 Several convergence studies for the advection 

equations [8] [25] 

We solve the following equation on the 

domain [ 1,1] with periodic boundary 

conditions. 

0

( ,0) sin( )

t xu u

u x x

 



 

The computed
1L  error and order of accuracy 

are listed in Table 2. The error was 

measured at 1t   with the CFL number is 

equal to 0.001. Where OMUSCL2 

represents the current second-order 

optimized scheme; MUSCL2 and MUSCL3 

represents the second-order and the third-

order MUSCL scheme, respectively.  

The results in table 2 tell us that the 

OMUSCL2 scheme gives the second-order 

accuracy, which meets the designation order. 

While the 
1L order of MUSCL2 and 

MUSCL3 is less than their theoretical order. 

Table 2
1L error and order with ( ,0) sin( )u x x  

Method N 
1L error 

1L order 

MUSCL2 10 0.3515 - 

 20 0.1316 1.42 

 40 4.8703E-02 1.43 

 80 1.4067E-02 1.79 

 160 3.8667E-03 1.86 

 320 1.0453E-03 1.89 

MUSCL3 10 0.1867 - 

 20 7.8412E-02 1.25 

 40 1.8282E-02 2.10 

 80 4.1645E-03 2.13 

 160 8.7331E-04 2.25 

 320 1.7762E-04 2.30 

OMUSCL2 10 0.1910 - 

 20 6.6878E-02 1.51 

 40 2.1127E-02 1.66 

 80 5.5547E-03 1.93 

 160 1.3730E-03 2.02 

 320 3.4528e-04 2.00 

3.1.2 Shu-Osher problem [13] 

This test represents that Mach 3 shock 

interacts with a density disturbance. And 

this is a good model to test the scheme’s 

resolution for both shocks and fine scale 

waves. The governing equations are one-

dimensional Euler equations and solved on 

the spatial domain [0,10]x . The initial 

conditions are 
3.857143,   2.629369,  10.333333  1

1 0.2sin(5 ),  0,      1                  1

u p when x

x u p when x





   


    

        We compute the solution up to 1.8t   

with 400 points. Since the real exact 

solution is unknown, the “exact” solution 
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here is obtained by 4000 points. In fig. 5 we 

compare the results for the OMUSCL2 and 

MUSCL schemes. fig. 5b is local enlarged 

plot of fig 5a. The figure shows clearly that 

OMUSCL2 has better resolution than 

original MUSCL schemes, especially, in the 

region of high wave number. 

3.1.3 One-dimensional Sod problem [26] 

The governing equations are one-

dimensional Euler equations, and the 

computation domain is [0,1]x . The initial 

conditions are 
1,          0,  1     0.5

0.125,  0,  0.1  0.5

u p when x

u p when x





   


   
 

We compute the solutions up 

to 0.14t  with 200 points and compared with 

the exact solution, where the exact solution 

are computed by use an exact (Godunov) 

Riemann solver. 

The density and velocity distribution 

obtained by MUSCL schemes and 

OMUSCL2 are shown in figs. 6-7. Where 

figs. 6b and 6c are locally enlarged plots of 

fig. 6; figs. 7b and 7c are locally enlarged 

plots of fig. 7. These figures show that the 

new scheme produces a better result than 

original MUSCL schemes. 

3.1.4 One-dimensional Lax problem [27][28] 

The governing equations are 1D Euler 

equations and solved on the spatial 

domain [0,2]x . The initial conditions are 
0.445,  0.698,  3.528   1

0.5,      0,         0.571   1

u p when x

u p when x





   


   
 

We compute the solution up to 0.32t  with 

100 points. The density distribution obtained 

by MUSCL and OMUSCL2 are shown in 

fig. 8, where fig. 8b is the local enlarged plot. 

From these figures we can observe that the 

best solutions are given by OMUSCL2, and 

the original MUSCL method has more 

dissipation around the discontinuities and 

non-physical oscillatory. 

3.2 Two dimension problem 

3.2.1 Double Mach reflection problem[29] 

The governing equations are two-

dimensional Euler equations, and the 

computational domain for this problem is 

chosen to be [0,4] [0,1] . Only the region 

[0,3] [0,1] is used during the computing. The 

reflecting wall lies at the bottom of the 

computational domain starting from 1 6x  . 

Initially a right-moving Mach 10 shock in 

air ( 1.4  ) is positioned at 1 6, 0x y  , and 

makes an 60 angle with the x-axis. For the 

bottom boundary, the region 

from 0x  to 1 6x  is always assigned the 

initial values. The boundary with 1 6x  on 

the x-axis is taken to be a reflecting 

boundary. At the top boundary of our 

computational domain, the flow values are 

set to describe the exact motion of the Mach 

10 shock. The problem was run with a CFL 

number of 0.6 and the results are shown at a 

simulation time of 0.2. The grid resolution 

was 960 240 points. 

 

 
Fig. 5 Plots of density at t=1.8. 400N   
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The density distribution obtained by 

OMUSCL2 is shown in fig. 9, where fig. 9c 

is the local enlarged plot. The result 

obtained by MUSCL3 is shown in fig 10.  

From fig. 9a, we can see that both Mach 

stems and shocks in this problem are 

properly captured. Compared these figures, 

it’s clear that the new scheme (OMUSCL2) 

achieves a high-resolution in numerical 

solution, especially in the region near the 

Mach stems. The new scheme can capture 

the rollup of the slip lines which emanate 

from the head of head clearly. This result 

also shows that the dissipation of the new 

scheme is much smaller than that of 

MUSCL3. 
 

 

 
 

Fig. 6 Plots of density at t=0.14, 200N   

3.2.1 RAE2822 transonic airfoil [30] 

The transonic flow over a RAE2822 

airfoil is a classical validation test of CFD 

codes. This airfoil is transonic supercritical 

airfoil and there’s a shock in the leeward 

side. Numerical solution of the shock 

position is sensitive to the numerical 

methods. So it’s a good example to verify 

the shock resolution of numerical methods. 

 

 

 
Fig. 7 Plots of velocity at t=0.14, 200N   
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Fig. 8 Plots of velocity at t=0.32, 100N   

 

 
Figure 9 Contours of density (from 1.731 to 20.92 with 30 

equally spaced contours), using OMUSCL2 

The grid we use is the grid providing 

by J.W. Slater from NASA Web [31]. It is a 

multi-block C-grid, and the total mesh 

number is 369 69 . Grid around the airfoil 

shown in figure 11. The free stream flow 

conditions are 0.729Ma  ; the chord-based 

Reynolds number is 6Re 6.5 10  ; angle of 

attack is 2.31 ° .The surface pressure 

coefficient for the comparison results from 

[30] (or downloads from the website [31]). 

 

 
Figure 10 Contours of density (from 1.731 to 20.92 with 30 

equally spaced contours), using MUSCL3 

 
Fig. 11 RAE2822 computational grids 

Figure 12 shows the distribution of the 

pressure coefficient on the surface of the 

airfoil. This figure shows that the result of 

OMUSCL2 is most close to the experiential 

data, and is better than MUSCL3 and 

MUSCL2. Epically, the shock’s location 

computed by OMUSCL2 agrees very well 

to the experiential data. That shows that 

OMUSCL2 has a higher shock resolution 
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and lower dissipation than original second-

order or third-order MUSCL schemes. 

Table 3 gives the CPU time per 1000 

steps in this test. The CPU is Intel i7-920 at 

2.66GHz. This table shows that 

OMUSCL2’s computational cost is nearly 

the same as that of the MUSCL schemes. 

The new scheme’s CPU cost is only 8% 

more than that of that of MUSCL2 and only 

4% more than that of MUSCL3. Therefore, 

we need not to pay much more CPU cost 

when we change original MUSCL scheme 

to OMUSCL2 in CFD codes. 

 
Fig. 12 Distribution of the pressure coefficient on the 

surface of airfoil 

Table 3 CPU time comparison 

Scheme Computational efficiency 

(per 1000 steps) 

MUSCL2 207s 

MUSCL3 215s 
OMUSCL2 224s 

4 Conclusion 

A second-order monotonicity-

preserving optimized MUSCL scheme 

(OMUSCL2) is developed based on 

dispersion and dissipation optimization and 

monotonicity-preserving technique. The 

new scheme (OMUSCL2) has simple 

expression and is easy to be used in CFD 

codes. Compared with the original second-

order or third-order MUSCL scheme, the 

new scheme shows nearly the same CPU 

costs and higher resolution to shockwaves 

and small-scale waves. 

 We test the new scheme through a set 

of one-dimensional and two-dimensional 

tests, including the Shu-Osher problem, the 

sod problem, the Lax problem, two 

dimension double Mach reflection and 

RAE2822 transonic airfoil test. All 

numerical tests show that, compared with 

original MUSCL schemes, the new scheme 

has less dispersion and less dissipation error 

and higher resolution. 

 

Thanks to Professor Ren Yuxin in Tsinghua University for the 

helpful discussion of the optimization method. Thanks to the 

Supercomputing Center of Chinese Academy of Sciences 

(SCCAS) and Shanghai Supercomputing Center (SSC) for 

proving the computing time. This work was supported by the 

National Nature Science Foundation of China (Nos.10632050, 

10872205, 11072248), the 973 project (Grant Nos. 

2009CB724100), the 863 program (No. 2009AA010A139), and 

project of CAS INFO-115-B0. 

参考文献 

1 Harten A. High resolution schemes for hyperbolic conservation 

laws. J. Comput. Phys., 1983,49: 357-393  

2 Fu D X. Direct numerical simulation of compressible turbulence. 

Beijing: Science Press, 2010 

3 M. C., M.T., Compact third-order limiter functions for finite 

volume methods. J. Comput. Phys., 2009, 228: 4118-4145 

4 Sweby P K. High resolution schemes using flux limiters for 

hyperbolic conservation laws. SIAMJ Numer Anal, 1984, 21: 995-

1011 

5 Van Leer B. Towards the ultimate conservation difference scheme 

V: A second-order sequel to Godunov’s Method. J. Comput. Phys., 

1979,32:101-136 

6 Harten A, Engquist B. Osher S, et al. Uniformly high order accurate 

essentially non-oscillatory shock-capturing schemes Ⅲ. J. Comput. 

Phys., 1987, 71: 231-303 

7 Serna S, Marquina A. Powe ENO methods: A fifth-order accurate 

weighted power ENO method. J. Comput. Phys., 2004, 194: 632-

658 

8 Jiang G S, Shu C W. Efficient implementation of weighted ENO 



156 LHD 2011 年度夏季学术研讨会 

 

 

schemes. J Comp Phys, 1996, 126: 202-228  

9 Shu C W. TVB uniformly high-order schemes for conservation 

laws. Math Comput, 1987, 49: 105-121 

10 Suresh A, Huynh H T. Accurate monotonicity-preserving schemes 

with Runge-Kutta time stepping. J. Comput. Phys., 1997, 136: 83-

99 

11 C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite 

difference schemes for computational acoustics, J. Comput. Phys. 

107, 262 (1993). 

12 S. K. Lele, Compact finite difference schemes with spectral-like 

resolution, J. Comput. Phys. 103, 16 (1992). 

13 Shu C W., Osher S. Efficient implementation of essentially non-

oscillatory schemes. J. Comput. Phys., 1989, 83: 32-78 

14 Godunov C K. Difference method for computing the discontinuity 

in fluid dynamics. Math Sbornik, 1959, 47(3): 271 

15 Jennings G. Discrects shock. Comm Pore & Appl Math. 1974, 27: 

25-37 

16 Fu D X, Ma Y w, Computational Fluid Dynamics (in China). 

Beijing: High Education Press, 2002 

17 He Z W, Li X L, Fu D X, Ma Y w, A 5th order monotonicity-

preserving upwind compact difference scheme. Science China. 

2011, 54: 1-12 

18 Daru V, Tenaud C. High order one-step monotonicity-preserving 

schemes for unsteady compressible flow calculations. J. Comput. 

Phys., 2004, 193: 563-594 

19 Steger J L., Warming R F., Flux vector splitting of the inviscid 

gasdynamic equations with applications to finite difference 

methods. J. Comput. Phys., 1981, 40: 263-293 

20 Van Leer B., Flux-vector splitting for the Euler equations. 

Technical Report ICASE 82-30, NASA Langley Research Center, 

USA, 1982 

21 Roe P. L., Approximate Riemann solvers, parameter vectors and 

difference schemes. J. Comput. Phys., 1981, 43: 357-372 

22 Liou M.S. Steffen J.C.J., A new flux splitting scheme. J. Comput. 

Phys. 1993,107:23-39 

23 K. H. Kim and O. H. Rho. An improvement of AUSM schemes by 

introducing the pressure-based weight function, Comput. Fluids 

27(3), 311 (1998) 

24 K. H. Kim and O. H. Rho. An improvement of AUSM schemes by 

introducing the pressure-based weight function, in The Fifth 

Annual Conference of the Computational Fluid Dynamics Society 

of Canada (CFD 97), Vol. 5, pp. 14-33-14-38, 1997 

25 Shu C W, Dinshaw S. Balsara. Monotonicity preserving weighted 

essentially non-oscillatory schemes with increasingly high order of 

accuracy. J. Comput. Phys., 2000, 160: 405-452  

26 Sod G A. A survey of several finite difference mrthods for system 

of non-linear hyperbolic conservation law. J. Comput. Phys., 1978, 

21(1): 1-31 

27 Shu C W. Essentially non-oscillatory and weighted essentially non-

oscillatory schemes for hyperbolic conservation laws. NASA/CR-

97-206253, ICASE Report No. 97-65, 1997 

28 E.F. Toro, Riemann Solvers and Numerical Methods for Fluid 

Dynamics, Second ed., Springer, Berlin, Germany, 199 

29 P. Woodward, P. Collela, The numerical simulation of two-

dimensional fluid flow with strong shocks. J. Comput. Phys. 1984, 

54: 115-173 

30 Cook P. H., M. A. McDonal, M. C. P. Firmin, “Aerofoil RAE2822-

Pressure Distributions, and Boundary Layer and Wake 

measurements,” Experimental Data base for Computer Program 

Assessment, AGARD Report AR 138, 1979 

31 http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html 

 

http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html

