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Mechanics, Chinese Academy of Sciences, Beijing 100190,
People’s Republic of China

Both surface elasticity and surface stress can result in
changes of resonant frequencies of a micro/nanostruc-
ture. There are infinite combinations of surface
elasticity and surface stress that can cause the same
variation for one resonant frequency. However, as
shown in this study, there is only one combination
resulting in the same variations for two resonant
frequencies, which thus provides an efficient and
practical method of determining the effects of both
surface elasticity and surface stress other than an
atomistic simulation. The errors caused by the
different models of surface stress and mode shape
change due to axial loading are also discussed.

1. Introduction
The application of the ansatz that nanostructure = bulk +
surface [1] in continuum mechanics leads to the so-called
core–shell model [2–11], in which the core is the bulk and
the shell is the surface layer. In a surface layer, the total
surface stress (τ ) is given as follows [2,4,5,8–13]:

τ = σ + Csε, (1.1)

where ε is the dimensionless strain and Cs is the surface
modulus. Here, τ is the result of charge redistribution
as the electrons respond to the effects of terminating a
solid at a surface [14]. By the thermodynamics definition,
τ is a tensor associated with the reversible work to
elastically stretch a pre-existing surface [15]. We see that
τ consists of two parts: σ and Csε; σ , which is strain
independent, is often referred to as surface stress [16–18];
Csε, which is strain dependent, is often referred to as
surface elasticity [17–19]. Surface elasticity is due to the
formation of a surface layer that has a different elastic

2013 The Author(s) Published by the Royal Society. All rights reserved.
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property from that of a bulk [3–5,20]. Surface relaxation [20] and sometimes surface
reconstruction [14] are the two profound mechanisms responsible for the formation of a
surface layer. Both σ and Cs have units of force per unit length (N m−1) compared with those of
force per unit area (N m−2) for the bulk stress and modulus. Here, σ and Cs can be either positive
or negative [1], which can thus either stiffen or soften a micro/nanostructure. In dynamics, the
effect of the structure stiffness change (either stiffening or softening) is embodied in the shifts of
the structure resonant frequencies.

Lagowski et al. [16] found that the resonant frequency of a microcantilever deviate significantly
from those predicated by the axial load-free beam theory; they proposed that surface stress is
the mechanism causing the resonant frequency shifts. Subsequently, Gurtin et al. [19] disputed
Lagowski’s explanation; they argued that the resonant frequency is independent of surface
stress and that surface elasticity is the only mechanism responsible for the resonant frequency
shifts. A rigorous three-dimensional analysis [17,18] shows that surface stress does change the
structure stiffness. The effect of surface stress can be viewed as residual stress [9,10], which can
change the structure bending stiffness [21], the morphology of the nanomaterial [22], the resonant
frequencies [3], etc. Recently, many theoretical investigations [7,8,18,23] show that both surface
elasticity and surface stress have an effect on the structure stiffness; however, the effect of surface
elasticity is too small to explain the experimental observations. The effects of surface elasticity
and surface stress are both size dependent, which stand out when the structure dimensions
are small. A dimensional analysis is presented in this study to show how surface elasticity
and surface stress, together with the structure dimensions, impact on the resonant frequency
variations. Our dimensional analysis shows that, for a cylinder-like nanowire with length L and
diameter D, the effect of surface stress is amplified by a factor of (L/D)2 compared with that
of surface elasticity. When the magnitudes of σ and Cs are comparable with each other, the
effect of surface stress on a slender structure stands out because (L/D)2 is a large number. The
previous studies formulate the forward problem: Cs and σ are given or derived by atomistic
simulation and then used in a model to predicate the nanowire buckling, bending and resonant
frequency [2–11,24–31]. Resonant frequencies can be experimentally obtained with relatively
high accuracies [13,16,32,33]. In practice, the following inverse problem is thus encountered:
how to determine the effects of surface elasticity and of surface stress by measuring the resonant
frequency shifts?

Lagowski et al. [16] and McFarland et al. [33] found surface stress by measuring the shifts
of one resonant frequency and by assuming zero surface elasticity. Similarly, Gurtin et al. [19]
found surface elasticity by proving that surface stress has no impact on the resonant frequency.
Gavan et al. [13] were the first to use the two resonant frequencies of a microcantilever to
determine the effects of surface elasticity and surface stress. Again, Gavan et al. [13] extracted the
fitting values of surface stress/surface elasticity by assuming those of surface elasticity/surface
stress to be zero, which excludes the general case that both surface elasticity and surface
stress are non-zero [1]. It is also noted that there is about 20% difference between the fitting
values of surface elasticity for the first and second modes given by Gavan et al. [13]. Surface
stress can also be determined by the routine process of a static bending test via the Stoney
formula or its modified forms [13,23,32,34–36]. However, the implicit assumption used in the
static bending test is that the effect of surface elasticity is negligible. The static bending test
alone cannot determine the effects of both surface elasticity and surface stress. Furthermore,
static bending is induced by a differential surface stress [32,34–36]. For a micro/nanostructure
with a symmetric surface layer [3–5,19], there is no differential surface stress and thus no
bending, in which the Stoney formula cannot be applied [36]. Similarly, other static tests such
as nanoindentation and the three-point bending test can measure the variation of the nanowire
mechanical properties owing to surface effects. However, these tests cannot differentiate the
contributions to the variation by surface elasticity and surface stress. According to Song et al. [28],
so far, there is no experimental method that can determine both non-zero surface elasticity and
surface stress at the same time. This study presents an efficient method to uniquely determine
the effects of surface elasticity and surface stress by using the fact that surface elasticity and
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surface stress have different impacts on different resonant frequencies. By solving this inverse
problem, we actually provide a viable experimental method to determine the effects of both
surface elasticity and surface stress. Because the surface stress effect is modelled as an axial
load on the structure, two different models arise: the concentrated load model [3–8,13,16,24,
35–37] and the distributed load model [35–37]. The difference between these two models is
also discussed.

2. Model development
Figure 1a is a schematic diagram to illustrate the concentrated load model, in which the effect of
surface stress is modelled as a concentrated load F applied at the beam free end. The concentrated
load model leads to the following governing equation [3–8,16,24,35–37]:

J∗
∂4w
∂x4 − F

∂2w
∂x2 + m

∂2w
∂t2 = 0, (2.1)

where m is the beam mass per unit length and m = ρA (ρ and A are the mass density and cross-
sectional area of the beam, respectively); w = w(x, t) is the beam deflection. The concentrated
load F is due to the strain-independent surface stress of σ , and F = πσD for a circular beam (D
is the diameter of a circular beam). For a rectangular beam with a width b and a thickness h,
F = 2σb = 2σA/h (A = bh) [13,16,19], which only includes the load induced by the surface stress
on the upper and lower surfaces. We see that ∂2w/∂x2 is the curvature of the upper/lower surface
and F is in the horizontal direction; −F∂2w/∂x2 is a distributed transverse load given by the
Young–Laplace (YL) formula [38]. Therefore, the concentrated load model of equation (2.1) is
also referred to as the YL model [28,31]. Here, positive F is tensile and negative is compressive.
J∗ is the beam bending rigidity with the presence of a surface layer, which is calculated as the
following:

J∗ =
{

E∗I + 1
2 Csh2b + 1

6 Csh3 + Cshbt + 2
3 Csbt2 + Cs(h2t + 2ht2 + 4

3 t3) (rectangular),

E∗I + πCs( 1
8 D3 + 3

8 D2t + 1
2 Dt2 + 1

4 t3) (circular),
(2.2)

where E∗ is the beam’s effective Young’s modulus. The in-plane surface stress in the upper and
lower surfaces is usually in two directions. For example, the upper and lower surfaces experience
the surface stress in both x and y directions; E∗ = E/(1 − ν) is to account for this biaxial loading
scenario [18,35]. Here, E and ν are the beam’s Young modulus and Poisson ratio, respectively. If a
beam is (assumed) to bend in a cylindrical shape [39], E∗ = E/(1 − ν2) [14,16,23]; or simply, E∗ =
E [4,5,13,19]. We have I = bh3/12 for a rectangular beam and I = πD4/64 for a circular beam. We
denote t as the surface layer thickness, as seen in figure 1c. When t � b and t � h for a rectangular
beam, or t � D for a circular beam, equation (2.2) recovers the following results given by He &
Lilley [4,5]:

J∗ =
{

E∗I + 1
2 Csh2b + 1

6 Csh3 (rectangular),

E∗I + 1
8 πCsD3 (circular).

(2.3)

For the concentrated load model, or say, the YL model to apply, the following three conditions
need to be satisfied: (i) t∂2w/∂x2 → 0 [38], (ii) (for a rectangular beam) b � h, and (iii) the surface
stress in the transverse direction is neglected [31]. Because t is very small, the first condition
can only be violated when the nanostucture is so small, and the surface stress effect is huge
enough to cause a deflection with very large curvature. The second condition, in other words,
is to say that the in-plane distributed load induced by the side surfaces can be ignored. Song
et al. [28] developed a model incorporating the effects of side surfaces to overcome the second
condition. Olsson & Park [31] developed a three-dimensional model incorporating the effects of
the transverse surface stress to overcome the third condition. The modified YL models developed
by Song et al. [28] and Olsson & Park [31] in essence change the expressions of J∗ and F in
equation (2.1). As shown later, our method is to detect the variations of J∗ and F by measuring the
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Figure 1. (a) Concentrated load modelling: σ is the surface stress; F = 2σ b is the concentrated axial load; b is the
beam width. (b) Distributed load modelling: s= F/L is the (uniformly) distributed axial load; L is the beam length.
(c) Rectangular and circular cross sections: t is the surface layer thickness; h is the thickness of a rectangular beam; D is the
diameter of a circular beam.

shifts of the beam resonant frequencies. Therefore, the method can be applied to the concentrated
load model and modified YL models alike.

The boundary conditions of a cantilever beam under a concentrated load at its free end are the
following [24,35,36,40]:

w(0, t) = 0,
∂w
∂x

(0, t) = 0,
∂2w
∂x2 (L, t) = 0 and J∗

∂3w
∂x3 (L, t) − F

∂w
∂x

(L, t) = 0. (2.4)

It is worth pointing out that the concentrated load F appears in the fourth boundary condition,
which determines the resonant frequencies and mode shapes of a beam [24,36,40]. We see that
∂3w/∂x3(L, t) = 0 has been (incorrectly) taken as a boundary condition for this concentrated load
model of a nanowire [4,5], which should be responsible for the abnormal resonant frequency
deviation behaviour of a cantilever as presented in fig. 2 of He & Lilley [4].

On the other hand, Finot et al. [41] argued that surface stress should be viewed as the sum of
two contributions: one is an axial force per unit length and the other is a moment per unit cross
section. Using the Gurtin–Murdoch surface elasticity theory, Wang et al. [22] also showed that
surface stress effectively exerts a distributed load. The distributed load model shown in figure 1b
gives the following governing equation [35,36]:

J∗
∂4w
∂x4 − s(L − x)

∂2w
∂x2 + s

∂w
∂x

+ m
∂2w
∂t2 = 0, (2.5)

where s = F/L is a uniformly distributed load. The boundary conditions are as follows:

w(0, t) = 0,
∂w
∂x

(0, t) = 0,
∂2w
∂x2 (L, t) = 0 and

∂3w
∂x3 (L, t) = 0. (2.6)
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According to Lachut & Sader [17], as ‘the cantilever free end is unrestrained with zero net
force’, the above concentrated load model as shown in figure 1a, equations (2.1) and (2.4) are
‘therefore in direct violation of Newton’s third law’. In comparison, the distributed load model
indeed guarantees the zero net force of the cantilever free end, which has also been shown to
better model the beam static deflection under differential surface stress loading [35]. For the
concentrated load model, Gurtin et al. [19] argued that owing to membrane stretching, the two
surface layers (of a very thin beam, i.e. the h � b case) store an energy of

∫L
0 bσ (∂w/∂x)2 dx, which,

in terms of the force balance, exerts a distributed transverse load of 2bσ∂2w/∂x2. The concentrated
load owing to surface stress is F = 2bσ , which also generates a membrane-stretching energy
of 1/2

∫L
0 F(∂w/∂x)2 dx and a distributed transverse load of −F∂2w/∂x2. We have −F∂2w/∂x2 +

2bσ∂2w/∂x2 = 0, and Gurtin et al. [19] thus concluded that surface stress has no influence on the
beam resonant frequency. Here, the energy contribution of the surface stress in Gurtin’s model has
been accounted for twice: as

∫L
0 bσ (∂w/∂x)2dx and as 1/2

∫L
0 F(∂w/∂x)2 dx. Gurtin’s membrane-

stretching energy of
∫L

0 bσ (∂w/∂x)2 dx treats the surface stress effect as a concentrated load. In
comparison, for the distributed load model, the membrane-stretching energy is calculated as
1/2

∫L
0 s(L − x)(∂w/∂x)2 dx = ∫L

0 bσ (L − x)/L(∂w/∂x)2 dx [35].
By introducing ξ = x/L, τ =

√
EI/(mL4)t and W = w/L, the governing equation of the

concentrated load model, equation (2.1), is non-dimensionalized as follows:

(1 + Δ)
∂4W
∂ξ4 − N

∂2W
∂ξ2 + ∂2W

∂τ 2 = 0, (2.7)

where the dimensionless quantities Δ and N are defined as follows:

Δ =

⎧⎪⎪⎨
⎪⎪⎩

Cs

E∗

(
6
h

+ 2
b

)
(rectangular),

8Cs

E∗D
(circular),

N = FL2

E∗I
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

24σ

E∗

(
L2

h3 + L2

bh2

)
(rectangular),

64σL2

E∗D3 (circular).

(2.8)

Here, Δ indicates the bending rigidity ratio of the surface layer to the bulk; N is the ratio of the
concentrated load to the beam (transverse) stiffness. The size-dependent properties of Δ and N are
also noted. Compared with Δ, N has an amplification factor of (L/h)2 for a rectangular beam and
(L/D)2 for a circular beam; L/h or L/D have been identified as important geometric parameters in
the buckling and resonant frequencies of a nanowire [25,26,30]. Surface elasticity (Δ) in essence
changes the effective Young modulus of a micro/nanostructure [42]. For a nanocomposite with
a spherical shell structure, the change of the effective Young modulus can be significant [42].
However, because of the amplification factor of (L/h)2, the effect of surface elasticity can be
remarkably reduced when compared with that of surface stress for a slender beam structure,
as discussed later.

The boundary conditions of equation (2.4) are now non-dimensionalized as follows:

W(0, τ ) = 0,
∂W
∂ξ

(0, τ ) = 0,
∂2W
∂ξ2 (1, τ ) = 0 and (1 + Δ)

∂3W
∂ξ3 (1, τ ) − N

∂W
∂ξ

(1, τ ) = 0. (2.9)

By assuming W(ξ , τ ) = V(ξ )eiωτ (ω is the dimensionless circular frequency), V(ξ ) can be solved
from equation (2.7) as the following:

V(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φT(ξ ) = C1e f2ξ + C2e−f2ξ + C3 sin( f1ξ ) + C4 cos( f1ξ ),
N

1 + Δ
> 0,

φ0(ξ ) = C1e f0ξ + C2e−f0ξ + C3 sin( f0ξ ) + C4 cos( f0ξ ),
N

1 + Δ
= 0,

φC(ξ ) = C1e f1ξ + C2e−f1ξ + C3 sin( f2ξ ) + C4 cos( f2ξ ),
N

1 + Δ
< 0,

(2.10)

where φT, φ0 and φC are the mode shapes when the concentrated axial load is tensile, zero and
compressive, respectively. Here, C1, C2, C3 and C4 are four unknown constant; f0, f1 and f2 are the
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quantities defined as follows:

f0 = 4
√

ω2

1+Δ
, f1 =

√√√√√ ω2

1 + Δ
+ 1

4

(
N

1 + Δ

)2
− 1

2

(
N

1 + Δ

)

and f2 =

√√√√√ ω2

1 + Δ
+ 1

4

(
N

1 + Δ

)2
+ 1

2

(
N

1 + Δ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

By substituting equation (2.10) into equation (2.9), an eigenvalue problem is formed and the
eigenfrequencies (resonant frequencies), ω, can thus be computed. Clearly, as seen in equation
(2.10), N/(1 + Δ) has a direct impact on the beam mode shapes and eigenfrequencies.

For the distributed load model, the governing equation of equation (2.5) and boundary
conditions of equation (2.6) are non-dimensionalized as follows:

(1 + Δ)
∂4W
∂ξ4 − N(1 − ξ )

∂2W
∂ξ2 + N

∂W
∂ξ

+ ∂2W
∂τ 2 = 0, (2.12)

W(0, τ ) = 0,
∂W
∂ξ

(0, τ ) = 0,
∂2W
∂ξ2 (1, τ ) = 0 and

∂3W
∂ξ3 (1, τ ) = 0. (2.13)

To compute the eigenfrequencies of equation (2.12), the Galerkin method [24,43] is applied, which
assumes the following form for W(ξ , τ ):

W(ξ , τ ) = eiωτ
H∑

j=1

φ0
j (ξ ), (2.14)

where H is the mode number and φ0
j (ξ ) is the jth mode shape of a uniform cantilever beam with

the zero axial concentrated load (N = 0) as given in equation (2.10) [44]. Clearly, the mode shape
of φ0

j (ξ ) also satisfies the boundary conditions of equation (2.13). Substituting equation (2.14)

into equation (2.12), time φ0
i (ξ ), and integrating from 0 to 1, the following eigenvalue problem is

formed:

K − Mω2 = 0. (2.15)

K and M are the H × H matrices of stiffness and mass, which are given as follows:

Kij = (1 + Δ)
∫ 1

0
φ0

i

d4φ0
j

dξ4 dξ − N
∫ 1

0
(1 − ξ )φ0

i

d2φ0
j

dξ2 dξ + N
∫ 1

0
φ0

i

dφ0
j

dξ
dξ and Mij =

∫ 1

0
φ0

i φ0
j dξ .

(2.16)
There is no damping in equations (2.7) and (2.12), which is also the case in many studies [3,4,6,7,
13,18,19,33]. The presence of damping reduces the resonance, and damping can be determined by
the so-called half-power method from the frequency response curve obtained by experiment [45].
However, the high quality factor (i.e. small damping) is a much sought-after property in
many applications of micro/nanoresonators, which can significantly enhance the sensitivity [46].
Therefore, the shifts of resonant frequencies owing to small damping can be ignored in many
dynamic models of microstructure vibration in air or vacuum. However, when a microstructure
vibrates in liquid [24] or in contact with a viscous material [43], damping plays an important role
and cannot be ignored. The eigenfrequency computation of a damped system using the above
Galerkin method is presented by Zhang & Murphy [43]. It also needs to be kept in mind that
damping, or say, the quality factor, is different for different modes [46]. It is also worth mentioning
that equations (2.7) and (2.12) are confined to the linear theory of surface elasticity. The finite
deformation effects can be important in some cases [26]. The higher-order terms of strain
owing to finite deformation will result in a nonlinear governing equation such as the Duffing
equation [47].
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Figure 2. Comparison of the first mode shapes (φ1) under different axial concentrated loads with Timoshenko’s mode shapes.

3. Results and discussions
Figure 2 examines how the first mode shape given in equation (2.10) changes as the axial
concentrated load N varies when Δ = 0. Three values of N = −2.46, N = 0 and N = 10 are taken.
Timoshenko’s [48] mode shape of 4(ξ2/2 − ξ3/3 + ξ4/12) is also presented for comparison (the
factor of 4 is to normalize the shape). Here, N = −π2/4 ≈ −2.46 is the dimensionless concentrated
buckling load of a cantilever beam [49]. If N is smaller than this critical value, the beam enters
the post-buckling regime and equation (2.7) cannot apply. The mode shape of N = 0 is very close
to Timoshenko’s, which is actually the static deflection shape of a cantilever under a uniformly
distributed load [50]. Clearly, as seen in figure 2, the change of mode shape is significant as N
varies. This shape variation can cause significant errors in the eigenfrequency computation of
the cantilever. Therefore, when the Rayleigh–Ritz or Galerkin method is used for eigenfrequency
computation, the mode shape should be recalculated whenever N varies [24,36,40]. Figure 3
shows the second and third mode shape changes with variation of N. Clearly, the changes of
higher-mode shapes with variation of N are much less than those of the first mode shape.

Figure 4 plots the first eigenfrequency (ω1) calculated by the concentrated load model, the
distributed load model and Timoshenko’s load model. Timoshenko [48] gave the following
approximate first eigenfrequency expression of the concentrated load model:

ω1 = ω0
1

√
1 + 5

14
N, (3.1)

where ω0
1 is the first eigenfrequency of a cantilever with zero Δ and N. The first three

eigenfrequencies with zero Δ and N are given by Chang & Craig [44] as

ω0
1 = 1.8752 = 3.516, ω0

2 = 4.6942 = 22.034 and ω0
3 = 7.8552 = 61.697. (3.2)

Because of the softening effect of compressive load, the effective stiffness of a structure becomes
zero at the buckling load [49], which causes the first eigenfrequency to be zero. As mentioned
above, Gurtin et al. [19] argued that surface stress has no impact on the beam resonant frequencies.
However, Gurtin & Murdoch [51] concluded that the compressive surface stress can cause
buckling. It is noted that, at N = −2.46 of the buckling load, Timoshenko’s ω1 is not zero.
Timoshenko’s eigenfrequency is close to our concentrated load model when the magnitude of
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Figure 4. The first resonant frequency (ω1) calculated by the concentrated load model and the distributed load model.

N is relatively small, and the difference enlarges as the magnitude of N increases. Because the
Rayleigh–Ritz method is used in the derivation by Timoshenko [48], the reason for the enlarging
error between equation (3.1) and our concentrated load model is that Timoshenko’s mode shape
deviates more and more from ours as the magnitude of N increases, as shown in figure 2.
At N = −2.46, ω1 of the distributed load model is not zero, either. The reason has already been
given by Timoshenko [48] that for a cantilever under a distributed load of s = F/L, its effect on ω1 is
as if a concentrated load of 7F/20 is applied at the free end. Compared with the concentrated load,
the distributed load has a much less softening effect when N is negative and a much less stiffening
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effect when N is positive. Therefore, as shown in figure 4, ω1 of the distributed load model is
smaller/larger than that of the concentrated load when N is tensile/compressive. When surface
stress (N) is tensile, Olsson & Park [31] also found that both the concentrated load (YL) model and
the modified YL model of Song et al. [28] have significantly higher ω1 values than those obtained
by an atomistic simulation. The difference between the concentrated load model, distributed load
model and Timoshenko’s model of equation (3.1) vanishes when N = 0. We see that ω1 values
predicated by the three models are the same at N = 0, and (N, ω1) = (0, 3.516) is the intersection
point of the three curves, which is marked as a circle in figure 4. Figure 5 plots the second and
third eigenfrequencies as N varies. Again, both ω2 and ω3 of the distributed load model are
larger/smaller than those of the concentrated load model when N is compressive/tensile; the
intersection points marked as circles are (N, ω2) = (0, 22.034) for the second eigenfrequency curve
and (N, ω3) = (0, 61.697) for the third eigenfrequency curve.

Now let us discuss how to use the shifts of eigenfrequencies to determine the surface
elasticity of Δ and the surface stress of N. As shown above, the concentrated load model
underestimates/overestimates the eigenfrequencies when N is compressive/tensile. Here, only
the distributed model is used for eigenfrequency computation. The following quantities are taken
from Gavan et al.’s [13] experimental data of a SiNx rectangular microcantilever: L = 100 µm,
b = 8 µm, h = 100 nm, Cs ≈ 1170 Nm−1, σ ≈ 1 Nm−1 and E = 300 GPa. We see that Δ and N are
thus calculated as Δ = 0.235 and N = 0.81 using equation (2.8). Substituting these two Δ and N
values into equation (2.15), the first three eigenfrequencies are obtained as follows:

ω1 = 4.065, ω2 = 24.628 and ω3 = 68.71. (3.3)

Clearly because of the positive Δ and N, the beam stiffness is enhanced and the eigenfrequencies
thus all increase when compared with those in equation (3.2). In the beam resonance test, Δ and
N are unknown; the eigenfrequencies are extracted from the beam frequency response curves
[13,16,32,33]. Therefore, using the eigenfrequencies to determine Δ and N forms an inverse
problem. A similar inverse problem is also encountered in the case of the resonant frequency
shifts induced by surface stress and mass [36].

Figure 6 plots the variation of the first eigenfrequency, ω1, as a function of Δ and N, which is a
tilted plane. ω1 increases monotonically with the increase of both Δ and N. The level plane is the
one with the fixed first eigenfrequency value of ω1 = 4.065. The intersection of these two planes is
all the combinations of Δ and N, which results in the same first eigenfrequency of ω1 = 4.065. The
intersection is a line, which also indicates that these combinations are infinite.
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Figure 7 plots the variation of the second eigenfrequency, ω2, as a function of Δ and N.
Compared with figure 6, the plane tilts much more along the Δ-axis and much less along the
N-axis. Physically, this means that Δ and N have different impacts on different eigenfrequencies,
which is also the mechanism that leads us to use the eigenfrequency shifts to determine the
effects of surface elasticity (Δ) and surface stress (N). From the viewpoint of the forward problem,
Park & Klein [26] found that the given values of surface elasticity and surface stress have different
impacts on the first and second bending resonant frequencies; Dorignac et al. [24] also noted that
the variation of the first eigenfrequency is the most sensitive to N and the variations of the higher
eigenfrequencies are much less sensitive to N. In figure 7, the level plane is the one with the fixed
value of ω2 = 24.628. The intersection line of the two planes is the combinations of Δ and N, which
result in ω2 = 24.628. For any given Δ and N, each eigenfrequency is uniquely determined by
equation (2.15). As an inverse problem, for a given eigenfrequency, there are infinite combinations
of Δ and N. However, for two given eigenfrequencies, the combinations of Δ and N are two lines
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intersecting each other, which is used here to uniquely determine the combination of Δ and N.
When the two lines of figures 6 and 7, which are obtained by intersecting two planes, are projected
on to the Δ−N plane, the two lines intersect, as shown in figure 8. The intersection point is marked
as a circle, which happens to be exactly (Δ, N) = (0.235, 0.81).

Atomistic simulation is often used to obtain Cs and σ , which are determined by the underlying

lattice structure and interatomic potential [1,26,52]. For example, CAg
s = 1.22 Nm−1 and σAg =

0.89 Nm−1 [1,5], with EAg = 76 GPa for Ag(001); CAu
s = −3.6 Nm−1 and σAu = 1.4 Nm−1 [1,4], with

EAu = 37 GPa for Au(100); CSi
s = −11.5 Nm−1 and σ Si = −0.5 Nm−1 [2,52], with ESi = 130 GPa for

Si(100). For a nanowire with dimensions of L = 0.5 µm and D = 40 nm, the corresponding Δ and
N can be calculated using equation (2.8) as ΔAg = 3.2 × 10−3 and NAg = 2.9276, ΔAu = −1.95 ×
10−2 and NAu = 9.4595, ΔSi = −1.77 × 10−2 and NSi = −0.9615. For SiNx calculated above,
ΔSiNx/NSiNx ≈ 0.29, and as seen in figure 6, Δ and N contributions to the first eigenfrequency
variation are comparable. For the nanowires of the above three materials, ΔAg/NAg ≈ 1.1 × 10−3,
ΔAu/NAu ≈ −2.1 × 10−3 and ΔSi/NSi ≈ 1.84 × 10−2. As seen in equation (2.8), Δ and N are
both size-dependent quantities; at the same time, L = 0.5 µm and D = 40 nm are relatively small
dimensions. Therefore, for those materials that have very small Δ/N ratios such as silver, gold
and silicon, the effect of surface stress is the dominant factor influencing the micro/nanobeam
eigenfrequencies [4,16]. As given in equation (2.8), Δ ∝ CsD−1 and N ∝ σD−1(L/D)2. For a beam
structure, L/D is around 10 or larger. Because of this additional amplification factor of (L/D)2,
the magnitude of Cs/σ needs to be around 102 or larger for the surface elasticity effect to be
comparable with that of surface stress. For example, Cs/σ ≈ 103 for SiNx, as computed above.
Shenoy [1] computed Cs and σ for several face centred cubic metals, whose |Cs/σ | ratios range
around 1–102. By checking the two ratios of Cs/σ and L/D, the effects of surface elasticity and
surface stress can be estimated. Similarly, Chiu & Chen [30] derived an analytical expression
for the buckling load of a nanowire, which indicates that the surface stress contribution to the
buckling load is also amplified by a factor of (L/D)2 compared with that of surface elasticity. It is
also necessary to bear in mind that in the modified YL models [28,31], the transverse surface stress
and surface stress from side surfaces can significantly enhance the effective surface elasticity effect
by increasing the nanowire bending stiffness.

It is noted that Cs and σ calculated by atomistic simulation can be significantly different
for the same material. For example, the surface stress of Au(100) is calculated as σAu =
1.4 Nm−1 [1] and σAu = 4.56 Nm−1 using the first-principle approach and σAu = 1.79 Nm−1 using
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the semi-empirical approach [52]. For a nanowire of L = 0.5 µm and D = 40 nm, the corresponding
N values are NAu = 9.4595, NAu = 30.8109 and NAu = 12.0946, which are the values large enough
to have a significant impact on the beam eigenfrequencies. Using the above method, it is not
difficult to tell which surface stress value is the correct one.

4. Conclusion
Two models of the resonant frequencies of a micro/nanocantilever beam with the presence
of surface elasticity and surface stress are presented and compared. The concentrated
load model violates the boundary conditions at the cantilever free end, which also
underestimates/overestimates the resonant frequencies when the load is compressive/tensile.
The distributed load model reserves the net zero force boundary condition at the free end.
Surface elasticity and surface stress play different roles in the variation of the beam resonant
frequencies. Mathematically, the effect of surface elasticity is embodied in the fourth-order
differential term of the governing equation; the effect of surface stress is in the second-
order differential term (both the concentrated load and distributed load models) and the
first-order differential term (the distributed load model only). That surface elasticity and surface
stress have different impacts on different resonant frequencies is used as a mechanism to uniquely
determine their effects. The method of using the shifts of different resonant frequencies to
determine the effects of surface elasticity and surface stress is only applied to the distributed
load model and a cantilever beam in this study. However, the method can also be applied to the
concentrated load model, modified YL models and a beam with different boundary conditions.
The method is shown to be accurate and provides a new experimental approach for determining
surface elasticity and surface stress.
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