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The surface energy density of nano-sized structural elements exhibits an obvious size-dependent feature.
To study this interesting phenomenon, atomistic calculations are carried out in the present paper for dif-
ferent face-centered-cubic (fcc) metallic nano-slabs. Lagrangian and Eulerian descriptions are adopted,
respectively, in order to find the varying trends of surface energy densities in an initially un-deformed
configuration and a current one. It is found that the Lagrangian surface energy density increases mono-
tonically with an increase of the nano-slab’s thickness in the former no matter what the surface orienta-
tion is; while the variation of the Eulerian one is indefinite. The surface relaxation parameters are further
simulated for differently oriented surfaces, which gives a very good explanation for the differences
between the Lagrangian and Eulerian surface energy densities. The results in this paper should be a useful
supplement to theoretical studies on the surface/interface effect of nanomaterials.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The mechanical, physical and chemical properties of a material
will change significantly as its characteristic dimension is reduced
to the nanometer range [1,2]. The main cause for this distinct size-
dependent behavior is the effect of free surfaces [3,4]. Surfaces of
solids possess atoms with fewer neighbors and consequently
excess energies over atoms in the bulk, of which properties can
greatly affect the overall performances of nanostructures having
large surface-to-volume ratios, e.g., the elastic modulus [5], melt-
ing temperature [6] and thermal conductivity [7], etc.

Surface free energy is the most importantly physical attribute
characterizing the nature of surface effects, which can be inter-
preted as a reversible work necessary to create a unit of new sur-
face area [8]. The theoretical formulation of surface free energy
within the framework of continuum mechanics has drawn many
interests. As pointed out by Shuttleworth [9] and Vermaak et al.
[10], surface energy is related to the deformation of solids’ crystal
faces, whose partial derivative with respect to the surface strain
gives rise to a surface stress. Inspired by this basic idea, Gurtin
and Murdoch [11,12] used a linearized constitutive law to formu-
late the surface free energy, based on which the surface elasticity
theory was rigorously developed (G–M theory). Subsequently,
Steigmann and Ogden [13] and Chhapadia et al. [14] modified
the G–M theory by introducing a curvature-dependent term into
the constitutive law in order to analyze the bending and wrinkling
effects of nanowires. Nix and Gao [15] derived the analytical
expressions of surface energy density with Lagrangian and Eulerian
descriptions. Huang and Wang [16] analyzed the corresponding
terms under a finite deformation condition.

Since nanomaterials possess very small characteristic scales, the
surface energy is very difficult to be measured experimentally.
Atomistic computations, including ab initio and molecular dynam-
ics (MD) approaches, are widely used in order to determine the
surface energy of nanomaterials numerically. A database of surface
energy densities for various face-centered-cubic (fcc) and body-
centered-cubic (bcc) metals with differently oriented faces were
established by Vitos [17] and Shenoy [18], based on the first-prin-
ciple and MD calculations, respectively. Similar works were done
by Miller and Shenoy [19], Mi et al. [20] and Sheng et al. [21]. How-
ever, the size dependence of the surface energy density was not
considered in these simulations. For nanomaterials with a large
surface-to-volume ratio, the surface free energy density always
shows a strong dependence on their characteristic scales
[9,10,22]. A series of thermodynamic models were established to
describe the size effect of surface energy density. Ouyang et al.
[23,24] and Liang et al. [25] developed theoretical models by divid-
ing the surface free energy density of nanomaterials into a struc-
tural part related to the surface relaxation and a chemical part
originating from the surface dangling bonds. They predicted that
the total surface energy density exhibits the same size-dependent
behavior as its chemical part, both of which decrease with a
decreasing characteristic length of a nanomaterial. All the works
provide a clear and general insight into the basic physical and
chemical natures of the surface energy density at nanoscale.
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However, studies on size dependencies of surface energy den-
sity are almost confined to the theoretical analysis and the relaxa-
tion parameters were not considered. What is the physical image
of the Lagrangian and Eulerian descriptions of the surface energy
density? Are there any differences of the size-dependent behavior
between the two different descriptions?

In this paper, MD simulations are performed and the Lagrangian
and Eulerian surface energy densities of several typically fcc metal-
lic nano-slabs are calculated systematically for differently oriented
surfaces as well as the surface relaxation parameters. All the MD
results are explained by a simple theoretical analysis. The results
in the present paper should be helpful for better understanding
the size-dependent mechanisms of surface energy density at
nanoscale.
2. MD simulation model and definition of the surface energy
density

2.1. An atomistic model

The atomistic model of an fcc metallic nano-slab is shown in
Fig. 1, which is cut from a bulk crystal. Periodic boundary condi-
tions are applied in x1 and x2 directions. The lengths L1 and L2 in
x1 and x2 directions are taken as about 20 cubic unit cells, of which
values can hardly affect the surface energy densities of surfaces
normal to x1 and x2 directions. The surface normal to x3 direction
is traction-free with a nano-scale thickness in x3 direction. Surface
effect in such a nano-slab should be induced by the surface normal
to x3 direction, whose surface energy density is to be calculated. To
study the size dependence of surface energy density, the slab thick-
ness h varies from 2 to 20 unit cells (8–100 ÅA

0

, roughly).
The atomic interactions abide by the embedded-atom-method

(EAM) potential [26]. The relevant parameters involved in EAM
potential are taken from Sheng et al. [21] where the parameters
of each element were obtained by fitting the potential-energy sur-
face (PES) to the high-precise first-principle calculations. In the
embedded atom formalism, the total energy is written as [21]:

Etot ¼
X

i;j

/ðrijÞ þ
X

i

FðniÞ and ni ¼
X

j

qðrijÞ ð1Þ

where i and j are indices that run over all atoms in the model, rij is
the distance between atoms i and j, F(ni) is the embedding energy
required to place atom i in a local electron density ni and /(rij) is
a two-body potential between atoms i and j. The summation is over
the total number of atoms in the system. It should be noted that the
total energy Etot in Eq. (1) is regarded as an additional energy with
respect to the un-deformed lattice assumed zero energy per atom
[18].
Fig. 1. Schematic of a nano-slab consisting of atoms for MD simulation, where h is
the thickness of the nano-slab in x3 direction and periodic boundary conditions are
used in x1 and x2 directions.
All MD simulations are performed using LAMMPS [27] with a
time step of 1 fs. The system cut from a bulk crystal is relaxed at
a constant atmospheric pressure (1 bar) and constant temperature
(1 K) with Nose–Hoover thermostat and barostat. Note that Nose–
Hoover barostat is only used in the periodic directions and the low
temperature 1 K is chosen in order to avoid the effect of thermal
disturbance on surface energies. When the equilibrium state of
the simulation system is achieved at about 150 ps, the data will
be recorded every 0.1 ps in the next 50 ps.

2.2. Surface energy densities in the reference and current
configurations

Consider a surface element A0 taken from the initially un-de-
formed configuration V0 as shown in Fig. 2. The element has planar
array of atoms with a01, a02 and N0 being the lattice spacing in the
two principal directions of the surface and the total number of
atoms in the surface, respectively. A Lagrangian coordinate system
{123} is imbedded in the surface and attached to the atoms [15].
As V0 deforms into the current configuration V1 (relaxation in our
simulations), the initial element area A0 becomes A1 and the atomic
distances in the two principal directions change from a01, a02 to a1,
a2. According to Nix and Gao [15], the Lagrangian surface energy
density /L in V0 and the Eulerian one /E in V1 can be expressed
as follows,

/L ¼
N0g1

xs

A0
; /E ¼

N0g1
xs

A1
; g1

xs ¼ g0
xs þ

1
2

X2

i¼1

kiðai � a0iÞ2 ð2Þ

where g0
xs and g1

xs represent the excess free energy per surface atom
in the reference and current configurations, respectively. ki (i = 1, 2)
are spring constants in the two principal directions. Moreover, areas
of the surface element in the reference and current configurations
satisfy

A1 ¼ A0ð1þ eL
1Þð1þ eL

2Þ; eL
i ¼

ai � a0i

a0i
; ði ¼ 1;2Þ ð3Þ

where eL
1 and eL

2 are the Lagrangian surface strains in 1 and 2 direc-
tions. Combining Eqs. (2) and (3) yields

/L ¼ /Eð1þ eL
1Þð1þ eL

2Þ ¼ /EJs ð4Þ

where Js ¼ ð1þ eL
1Þð1þ eL

2Þ is an Jacobean determinant characteriz-
ing the deformation between the reference and current configura-
tions [15,16].

2.3. The Lagrangian and Eulerian surface energy densities in MD
simulations

Similar to the previous studies [18,28], an initial nano-slab is
created by placing all the atoms in the same positions as those in
a bulk fcc lattice as shown in Fig. 1, which has an un-deformed lat-
tice and is taken as the reference configuration. The area of the free
surface normal to x3 axis is denoted as A0

slab. Relaxation will be car-
ried out at a constant temperature 1 K with free boundaries in x3

direction in order to minimize the total energy of the nano-slab.
The relaxed nano-slab is in equilibrium and free of any external
loads, which is called the current configuration. Deformation from
the reference configuration to the current one is completely in-
duced by the free surface relaxation and the area of the relaxed
surface normal to x3 direction changes to be Aslab. It should be
noted that A0

slab consists of the same number of atoms as Aslab and
only the distance between each two atoms changes. The total en-
ergy of the deformed nano-slab then becomes Etot comparing to
the initial energy nEbulk, where Ebulk is the free energy per atom
in a bulk and n is the total atom number in the nano-slab. The sur-
face energy at nano-scale is then expressed as Etot � nEbulk, which



Fig. 2. Schematics of the crystal structure of a surface element transferring from the reference configuration to the current one due to relaxation deformation.
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equals to N0g1
xs in Eq. (2). In our MD simulations, the Lagrangian

and Eulerian surface energy densities are defined as follows,

/L ¼
Etot � nEbulk

2A0
slab

; /E ¼
Etot � nEbulk

2Aslab
ð5Þ

In the previous simulation studies, only the Eulerian surface
energy density /E was considered as a constant of nanomaterials
[18,29,30].

According to Eq. (3), area of the free surface in the reference and
current configurations satisfies

Aslab ¼ A0
slabð1þ er1Þð1þ er2Þ ¼ A0

slabk1k2 ð6Þ

where the residual strains in 1 and 2 directions are er1 ¼ k1 � 1,
er2 ¼ k2 � 1. The relations between the lattice constants before
and after relaxation are ar1 ¼ k1a01, ar2 ¼ k2a02. k1 and k2 are surface
relaxation parameters in the two principal directions. Substituting
Eq. (6) into Eq. (5) leads to the relation between the Lagrangian sur-
face energy density and the Eulerian one, which is consistent with
Eq. (4).

3. Results and discussion

The Lagrangian and Eulerian surface energy densities of differ-
ent fcc metallic nano-slabs with different thicknesses are calcu-
lated using Eq. (5). Three crystal orientations viz. (100), (110)
and (111) of the upper and lower surfaces are studied. The fcc
metals considered include Ag, Al, Au, Cu and Ni, whose EAM poten-
tials have already been given by Sheng et al. [21].

The surface energy density of a bulk metal is first calculated
when the thickness of the metallic slab is large enough. It is shown
that both the Lagrangian and Eulerian surface energy densities are
consistent well with those given by Sheng et al. [21]; furthermore,
the Lagrangian and Eulerian surface energy densities are almost
equal to each other for a sufficiently thick slab.

3.1. Size effects of the Lagrangian surface energy density

The Lagrangian surface energy densities for different fcc metal-
lic nano-slabs with different thicknesses as well as different sur-
face orientations are calculated. Fig. 3 presents the Lagrangian
surface energy densities normalized by the corresponding bulk val-
ues /B

L as a function of the nano-slab’s thickness for different met-
als. From Fig. 3, one can see that for all the calculated metals, the
Lagrangian surface energy density increases with an increasing
nano-slab’s thickness no matter what surface orientation is. The
Lagrangian surface energy density tends to be the bulk one as
the thickness of the nano-slab is larger than 8 nm or so. Comparing
Fig. 3(a–c), one can see that the Lagrangian surface energy densi-
ties of surfaces with different lattice orientations are different, too.

As we know that the Lagrangian surface energy density can be
divided into a structural part /stru

L related to the surface relaxation
and a chemical part /chem
L originating from the surface dangling

bond energy [23]:

/L ¼ /chem
L þ /stru

L ;/stru
L ¼ 1

2

X2

i¼1

kie2
ri ð7Þ

Assuming the crystal surface has a symmetrical structure with
an identical distance between each two atoms in the two principal
directions, which leads to the same relaxation parameters
k1 ¼ k2 ¼ k in the two principal directions. Then, the surface resid-
ual strain er1 ¼ er2 ¼ ðar � a0Þ=a0 ¼ k� 1. It is well known that the
value of the relaxation parameter approaches to unity when the
dimension of the structure becomes larger and larger, leading to
a small absolute value of the surface residual strain, then the struc-
tural surface energy density /stru

L will decrease with an increasing
size of the structure. However, it is exhibited that the present re-
sults of the total surface energy density increases with an increas-
ing size of the structure. As a result, the chemical surface energy
density should increase with an increasing size of the structure,
which is well consistent with the conclusions made theoretically
by Ouyang et al. [24] and Liang et al. [25]. The chemical surface en-
ergy density, as a dominant factor, governs the size-dependent
behavior of the Lagrangian surface energy density of a nano-
structure.

3.2. Size effects of the Eulerian surface energy density

The Eulerian surface energy densities for different fcc metallic
nano-slabs with different thickness as well as different surface ori-
entations are also calculated. Fig. 4(a–c) presents the Eulerian sur-
face energy densities normalized by the corresponding bulk value
/B

E as a function of the nano-slab’s thickness for different metals. It
is interesting to find that, for (100) and (110) crystal surfaces, the
Eulerian surface energy densities of all the calculated fcc metals re-
duce with an increasing nano-slab’s thickness, opposite to the
varying trends of /L. However, for the (111) oriented surface, the
Eulerian surface energy densities of Ag, Al, Cu and Ni decrease,
while the one of Au increases, with an increasing nano-slab’s thick-
ness. Therefore, in contrast to the monotonically size-dependent
varying trend of the Lagrangian surface energy density, the varying
trend of the Eulerian one is indefinite. The difference will be ex-
plained briefly in the following sub-section.

3.3. Theoretical interpretations on the MD results

The relation between the surface energy densities in a reference
and current configurations is given in Eqs. (5) and (6), where the
difference between the two terms is due to the surface relaxation
parameters. It is interesting to find that the surface relaxation
parameters depend also on the thickness of the nano-slab as
shown in Fig. 5. Furthermore, the relaxation parameters are differ-
ent for surfaces with different lattice orientations. Since both the



Fig. 3. The normalized Lagrangian surface energy densities of different metallic
nano-slabs by the bulk one as a function of the nano-slab’s thickness. (a) For the
(100) crystal surface; (b) for the (110) crystal surface; (c) for the (111) crystal
surface.

Fig. 4. The normalized Eulerian surface energy densities of different metallic nano-
slabs by the bulk one as a function of the nano-slab’s thickness. (a) For the (100)
crystal surface; (b) for the (110) crystal surface; (c) for the (111) crystal surface.
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(100) and (111) surfaces possess a symmetrical lattice structure
with an identical atomic distance between each two atoms as
shown in the inset of Fig. 5(a) and (d), the surface relaxations in
the two principal directions keep the same, i.e., k1 ¼ k2 ¼ k. How-
ever, the surface relaxation parameter on the (110) surface exhib-
its an anisotropic feature due to the different atomic spacing in the
principal bond directions as illustrated in Fig. 5(b) and (c). Both the
surface relaxation parameters on (100) and (111) surfaces and
that on (110) surface increase monotonically with an increasing
thickness of the nano-slab. Then, the surface residual strain
eri ¼ ki � 1 should be inversely proportional to the nano-slab’s
thickness, which agrees with the previous predictions for fcc met-
als [23,28,31].

Combining Eqs. (4) and (6) leads to the following relation be-
tween the Lagrangian and Eulerian surface energy densities,

/E ¼
/L

Js
¼ /L

ð1þ er1Þð1þ er2Þ
¼ /L

k1k2
ð8Þ

From Figs. 3 and 5, one can see that both the Lagrangian surface
energy density /L and the product term of surface relaxation



Fig. 5. The surface relaxation parameters of different metallic nano-slabs as a function of the nano-slab’s thickness. (a) For the (100) crystal surface; (b) for the 1 direction
and (c) for the 2 direction of (110) crystal surface as shown in the inset; (d) for the (111) crystal surface.
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parameters k1k2 increase with an increasing thickness of the nano-
slab, which would induce an undetermined varying trend of the
Eulerian surface energy /E with an increasing nano-slab’s thick-
ness. The analysis is consistent with the size-dependent behavior
of /E as shown in Fig. 4.
4. Conclusions

Size dependence of the surface energy density of a nano-slab is
investigated systematically in this paper with MD simulations and
theoretical analysis. Both the Lagrangian and Eulerian descriptions
are adopted to express the surface energy densities of surfaces
with different lattice orientations, based on the initially un
-deformed and currently deformed configurations, respectively.
The results show that the Lagrangian surface energy density in-
creases monotonically with an increasing nano-slab’s thickness
no matter what the surface orientation is; while the varying trend
of the Eulerian one is indefinite and dependent of material element
and the surface orientation. The surface relaxation parameters
with different lattice orientations are further achieved. It is found
that the surface relaxation parameters increase also with an
increasing nano-slab’s thickness. Considering the relations among
the Lagrangian surface energy density, the Eulerian one and the
surface relaxation parameters could give a reasonable explanation
to the indefinite varying trend of the size-dependent feature of the
Eulerian surface energy density. The present study incorporating
the classical surface energy description within the framework of
continuum mechanics into the atomistic simulation should be
helpful not only for better understanding the physical mechanism
of size-dependence of nanomaterials’ surface energy density but
also for establishing a novel theory considering the surface/inter-
face effect for nano-structured materials.
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