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Perturbational finite volume method for the solution of 2-D

Navier-Stokes equations on unstructured colocated meshes
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Abstract

In this paper, perturbational finite volume (PFV) method of the Navier-Stokes equations for
incompressible flow is developed. PFV scheme retains the advantages of second-order
accurate central finite volume (2CFV) scheme. Both of them have the same terse
formulation and use the same nodes. However, the interpolation approximation of PFV
scheme is of higher order accurate. In PFV method, higher order accurate of the
interpolation approximation is obtained by a numerical value pertubation technique. i.e. the
mass fluxes of the cell faces are expanded into power series of the grid spacing and the
coefficients of the power series are determined with the aid of the conservation equation
itself. PFV schemes are used to compute the flow in a lid-driven cavity. The SIMPLE
algorithm is used to predict the pressure-velocity coupling correction. Numerical results
show that PFV scheme has higher accuracy, higher resolution, better stability and wider
applicable range of Reynolds number than those of 2CFV scheme. For instance, in the case
of coarse grid, the applicable Reynolds number ranges of second and fourth orders accurate
PFV schemes are about a thousand times greater than that of 2CFV scheme.

1 INTRODUCTION.

The finite volume (FV) method has been widely
used in commercial codes of computational fluid
dynamics. FV method uses the integral form of
the conservation equation as its starting point and
can utilize conveniently diversified grids
(structured and unstructured grids) and is suitable
for very complex geometry, which are why it is
popular with engineer. The disadvantage of the
finite volume method compared to the finite
difference method and finite element method is

that its accuracy is not high and that FV methods
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of order higher than second are more difficult to
develop in the three-dimensional cases!.
The pertubational finite volume (PFV) method

presented by Z. Gao'>?

retains the advantages of
the first-order upwind and second-order central
methods, however, its interpolation (or call it
reconstruction) approximation are of order higher
than second. In PFV method, the integral
approximation i1s of second order accuracy,
therefore, the theoretical accuracy of PFV scheme
is of second-order in spite of its reconstruction
approximation being of order higher than second.
However, PFV schemes have some practical
benefits and considerable advantages, which were
verified numerically>!. Numerical tests of using
PFV schemes to compute the scalar transport
equation show that PFV schemes have higher
accuracy, higher resolution, better stability and



wider applicable range of Reynolds number than
those of the normal second-order central scheme.

In this paper, the PFV method for the
Navier-Stokes equations for incompressible fluid
flow is developed, in which the SIMPLE
algorithm™ ® is wused to predict the
pressure-velocity coupling correction. The flow
in a lid-driven cavity is solved numenically by
second and fourth-order cell-centered PFV
schemes, first-order upwind and normal
second-order central schemes. A comparison
between numerical results of the above-cited four
schemes is given and discussed.

2 PERTURBATIONAL FINITE VOLUME

(PFV) SCHEME.

The general form of a scalar transport equation is
2fp¢dV +jp¢u-nd5=jyv¢-nds (1)
at 14 N A

where ¢ is the scalar variable, p, u, ¢ and u are
the fluid density, velocity, time and dynamic
viscosity respectively, ¥ and S are respectively
the volume and surface area of control volume
(CV), n is the normal unit vector of the cell face.
For the case of that the line connecting two
central nodes P, and P; of adjacent control
volumes is nearly orthogonal to the cell face, see
Fig. 1 and Fig. 2, the semi-discretized
cell-centered PFV schemes of second-order and

fourth-order accurcy are, respectively!'
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Fig. 1 Sketch of 2-D triangular meshes
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Fig. 2 Sketch of 2-D Cartesian meshes

where ¢p, is the value of ¢ at the central node P,
of the control volume, Vpg is the volume of the
control volume Po, d, is the vector linking two
center nodes P; and P, with directional being
from P, to P, S, is the area-vector of the j-face
and its directional agrees with the outer normal
of that face, R=F|d;["/ud;S, can be considered
as the cell Reynolds number in the d; direction,
Fy is the mass flux of the cell j-face. The



continuity equation of fluid flow gives

'Ry

2 Fy =0 @)
j=

It should be noted that both second and
fourth-order accurate PFV schemes are cell
centered positive FV schemes for any value of
cell Reynolds number. In addition, the last terms
in the right-hand side of second and fourth-order
schemes (2) and (3) are usually very small, this is
because that the line connecting two center nodes
Py and P; of adjacent control volumes is nearly
orthogonal to the cell face.

3 PERTURBATIONAL FINITE VOLUME
(PFV) SCHEME OF N-S EQUATIONS.

The integral form of the Navier-Stokes (NS)

equations for the two-dimensional, steady,
incompressible flow are
I pnds=0 &)

Ipu¢-nds=—Ipnds+f,ugrad¢-nds ©)
N N S

where u=(x, v), u and v are respectively the
velocity components in the Cartesian x- and y-
coordinate directions, p denotes the pressure.

3.1 PFV scheme of the NS momentum
equation (6)

For the case of that the line connecting two center
nodes P, and P; of adjacent control volumes is
nearly orthogonal to the cell j-face, the PFV
scheme for the NS momentum equation (6) is
deduced as
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in which the term, labeled old, is computed in the
previous iteration. Above equation is finally

expressed as
)
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The under-relaxation is always used in the
numerical computation to avoid the divergence
of the iterative procedure!’!. Therefor we use the

following equation instead of the discretized
momentum equation (8)




(e, )0 05 (12)

where ay is the under-relaxation factor for the
variable ¢, and it is equal to 0.7 in present paper.

3.2 The pressure-velocity coupling correction
equation and its numerical discretization

Regarded the pressure p'py determined in the
previous iteration as the initial value of the
present iteration, the initial velocity u’p can be
obtained by solving the discretized momentum
equation (12), which is not necessary to satisfy
the continuity equation. Therefor the SIMPLE
algorithm 1is adopted here to obtan the
corrections for the initial pressure and velocity, in
which the correction for the cell face velocity u';
1s defined as:

Pr, =~ Pr, | S,

—_ 13
ol s, )

where p'py and p'p are the pressure corrections of
the control volume (CV) P, and P; respectively.
The linear interpolation of the initial velocity
u’po is adopted to obtain the cell face velocity u'J.
Then u; should make (u "+ w) satisfy the
continuity equation. Substituting above equation
into the continuity equation, we can reach the
following discretized equation about the pressure

correction p'py
' "h '
ag pp, :Zafppj +by (14)
Jj=1
where the superscript p denotes that the

coefficients are in the pressure-correction

equation. And the coefficients are given by

S,
ar =1 (Lj +[£j s (15)
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where by’ denotes the sum of mass fluxes
through the faces of the CV P;. After obtained
the pressure correction p'po, the pressure and the
velocity are corrected by

P, = Pr, +Q,Pp, (18)
Ve . . & pS

up, =up ~ = Vpp, —up, — > L (19)
a, 7=l ag

where a, 1s the under-relaxation factor for the
pressure, which is given 0.5 here.

4 NUMERICAL TESTS FOR THE
FLOW IN A LID-DRIVEN CAVITY.

Some numerical results of using the present
cell-centered PFV scheme, second-order central
and first-order upwind schemes to compute the
viscous flow in a lid-driven cavity are given and
compared with those of the benchmark solution!®’.
2158 tnangular clements generated by the
Delaunay triangulation method are adopted, as
shown in Figure 3. The algebraic equation
system 1s solved by the Gauss-Seidel method.
The estimated convergence error of the inner
iteration 1s the maximum relative error between
two neighboring iterations, the convergence
criterion is I1x10°. The estimated convergence
error of the outer iteration is the global mass flux

. . . . 5
residue, and the convergence criterion is 1x107.

Fig. 4 and Fig. 5 give the horizontal and
vertical velocity components # and v at the
vertical and horizontal centerlines of the cavity,
respectively. The computational results of PFV



schemes match the benchmark solution well. In
the benchmark solution™, the multigrid
technique was used and the mesh-number
reaches to 320 X320, which is about 47times
greater than that adopted in PFV solution.
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Fig.3 Triangular meshes for the flow in a
lid-driven cavity
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Fig. 4 Horizontal velocity component u at the
vertical centerline

For the case of Reynolds number being equal
to 10%, Fig. 6 gives an estimation of convergence
of the global mass flux residue. The convergence
rates of the second and fourth-order cell-centered
PFV schemes are respectively about 7 and 5
times as fast as the first-order upwind scheme.
Moreover, both solutions of second and
fourth-order PFV schemes converge
monotonously with increase of iterative numbers,
the solution of first-order upwind scheme is not
monotonously convergence.
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Fig. 5 vertical velocity component v at the
horizontal centerline
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Fig. 6 Global mass flux residue (N: Numbers of
iterations)

Tab. 1 gives a comparison of applicable
Reynolds number ranges of the PFV schemes
with that of second-order central scheme(2CS).
In the case of coarse grid the applicable Reynolds
number ranges of second and fourth-order PFV
schemes are about a thousand times greater than
that of the normal second-order scheme. The
applicable Reynolds number ranges are expanded
so much, this is because of that both second and
fourth-order PFV schemes are positive one for
any value of grid Reynolds number and that the
normal second-order central scheme is positive
one only when the grid Reynolds number is less
than two. The meshes will become not
well-distributed with locally crowded of meshes,
which will weaken the advantages of PFV



Table. 1 Applicable Reynolds number ranges of PFV and normal second-order central schemes.

Number of Equivalent grid 2CS 3CPFV 4CPFV
control number in the x
volume: N direction: (N/2)"? | maxR. | maxR, | maxR. | maxR, | maxR. | maxR,
200 10 114 11.4 | 1.13x10° | 1.13x10* | 6.82x10° | 6.82x10°
1.8x10° 30 360 120 | 2.75x10° | 9.2x10° | 2.78x10° | 9.3x10°
3.2x10° 40 368 9.2 4.44x10° | 1.1x10* | 4.41x10° | 1.1x10*
5.0x10° S0 378 7.56 | 1.37x10° | 2.7x10' | 1.31x10° | 2.6x10'
7.2x10° 60 562 937 | 1.89x10° | 3.2x10' | 1.66x10° | 2.8x10'
1.28x10* 80 477 596 | 3.52x10° | 4.4x10" | 2.59x10° | 3.2x10’
schemes, however, the applicable Reynolds 2 Z. Gao. Perturbational finite volume method for
number ranges of PFV schemes have increased convective-diffusion equation and discussion (in
by three to eight times compared with that of the Chinese). In Proc. 11™ National Conference on
second-order central scheme(2CS). Computational Fluid Dynamics(pp.29-35), Luoyang,
China, Sep., 2002(To be published in Acta
5 CONCLUSION. Mechanics Sinica.)
3 Gao Zhi. Perturbational finite volume method — a
Perturbational finite volume (PFV) scheme of the numerical-value perturbation treatment of solving
Navier-Stokes equations for incompressible flow convective diffusion integral equation.
has the same terse formulations and uses the ICM2002-Beijing, Satellite Conference on Scientific
same nodes as those of the normal second-order Computing, Aug. 2002,Xi’an (pp30-31).
central scheme. However, the reconstruction 4 Z. Gao, H. Xiang. Perturbational finite volume
approximations of PFV schemes are of higher method and the significance of higher order
order accuracy, PFV scheme has some practical accuracy of reconstruction approximation (in
benefits and considerable advantages. Numerical Chinese). In Proc. 4™ Cross-Strait CFD Workshop,
results of using PFV schemes, first-order upwind, Yunnan, China, April, 2003.
and second-order central scheme to compute the 5  Patankar S V, Spalding D B. A calculation procedure
flow in a lid-driven cavity show that PFV for heat, mass and momentum ftransfer in
scheme’s accuracy, resolution, efficiency and three-dimensional parabolic flows. Int. Jour. Heat
applicable Reynolds number range are higher (or Mass Transfer, 1972, 15, 1787-1806.
larger) than those of the normal second-order 6  Van Doormaal J P, Raithby G D. Enhancement of
central scheme. the SIMPLE method for predicting incompressible
fluid flows. Numer. Heat Transfer, 1984, 7, 147-163.
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