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Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations (VIV) of a 
long slender cylinder. The cylinder has a diameter of 10mm and a length of 3.31 m, giving an aspect ratio of 331. The cylinder 
was towed by a carriage with the velocity up to 1.5 m/s, with the Reynolds number varying from 2500 to 38000. Three differ-
ent weights were used to provide the initial tension. Dual resonance means that resonance occurs simultaneously in both the 
cross-flow (CF) and in-line (IL) directions. The experiments were conducted in two stages. At the first stage, dual-resonant 
dynamic features of the cylinder subjected to vortex-induced excitation were investigated. The features of CF and IL vibration 
amplitude, motion orbits, phase angle differences, dominant frequencies and mode order numbers are presented. At the second 
stage of the experiments, particular emphasis was placed on non-resonant dynamic features. The variation of multi-mode mod-
al displacement amplitudes was investigated in detail. 
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1  Introduction 

Many kinds of structures exposed to air or water flows may 
experience vibrations induced by vortex shedding, such as 
heat exchanger tubes, airplane wings, electric power lines, 
long span bridges, and underwater risers and cables. While 
many studies have been focused on vortex-induced vibra-
tion (VIV) [1–9], this problem is still far from fully under-
stood, especially for long slender cylinders. One important 
reason is that testing of such structures needs a large facility 
and relatively complicated instrumentation, and thus only a 
few full-scale or large-scale experiments have been carried 
out. 

Model tests [10–17] allow a better understanding of mul-

ti-mode behaviors of long slender cylinders. The require-
ments of these tests consist of large aspect ratio of the cyl-
inder, high sampling rates and careful time synchronization 
for measurement systems. These, to some extent, restrict the 
progress in the study of dynamic features of VIV of long 
slender cylinders. In our experiments, a well-designed test 
arrangement was used to investigate the dynamic features of 
a long slender cylinder. 

When the vortex shedding frequency is close to the natu-
ral frequency of the cylinder, large amplitude resonant re-
sponse occurs, known as lock-in, which is the most distinct 
feature of VIV and is observed in numerous laboratory ex-
periments and numerical simulations involving cables, can-
tilevers, bridge models, and elastically held cylinders 
[18,19]. The cylinder under lock-in often exhibits regular 
harmonic vibration responses. Generally, lock-in can be  
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described as the ability of an elastic structure to control the 
shedding process in a bandwidth around its resonant fre-
quency. When lock-in occurs, the amplitude of cylinders 
will increase significantly. However, most of the studies on 
lock-in are focused on the cases with CF freedom only. 

By the end of last century, it had become clear that the 
vibration in IL direction, though not as large as CF direction, 
was significant for long slender cylinders. Trim et al. [11] 
indicated that while IL displacement was less than CF dis-
placement, their modal curvature and vibrating frequency, 
which dominate fatigue damage, were much larger. A long 
slender cylinder with a series of natural frequencies may 
have different modes of vibration excited in CF and IL di-
rections since IL vibration excited by vortex shedding is at 
distinct frequency from that of CF vibration. Dahl et al. [20] 
showed that, when the natural frequency ratio (the ratio of 
natural frequency of IL excited mode to that of CF) equaled 
the excitation frequency ratio (the ratio of IL excitation fre-
quency to that of CF), dual resonance occurred, which 
meant that the IL and CF motions would resonate simulta-
neously. 

When the vortex shedding frequency is not in the neigh-
borhood of any of the natural frequencies, there is no reso-
nance occurring, the dynamic features will be quite different 
from those in lock-in regions. We define those regions as 
non-resonant regions, where the vortex shedding frequency 
is not in the neighborhood of the natural frequencies. How-
ever, little attention has been paid to the dynamic features in 
these regions until now. 

The dynamic features of VIV of long slender structures 
are important for the safety of marine risers, mooring cables 
or other similar structures. It deserves more attention from 
researchers. This paper emphasizes the dual-resonant and 
non-resonant responses for vortex-induced vibration of a 
long slender cylinder. First, the dual-resonant results of a 
test are presented. In our experiments, the dual resonance 
was studied by analyzing cylinder motion orbits and steady 
phase angle difference between IL and CF vibrations. Then 
a summary is given for all tests on dual resonance. Finally, 
further investigation is conducted on non-resonant dynamic 
features.  

2  Experimental arrangements 

The experiments were carried out in a towing tank of 29 m 
in length, 4.5 m in width and 4 m in depth. The tank is 
equipped with a carriage which tows the model at a given 
speed, and the overall arrangement of the experiments is 
shown in Figure 1.  

The cylinder model was installed with two universal 
joints at each end. One universal joint was fixed to a side 
plate installed at the carriage. The two universal joints con-
nected to the carriage restrict twisting motion of the model, 
but allow rotating motion of the model. The other universal  

 

Figure 1  Schematic of the experimental layout. 

joint was connected to a weight under the mounting plate 
through three pulleys by a steel wire. The weight offers an 
initial tension in the cylinder model. In the experiments, 
three different weights were used. A ball bearing sleeve was 
designed to reduce the friction force induced by the sliding 
of the universal joint, as shown in Figure 2. An acceleration 
sensor was adopted to monitor the noise induced by the car-
riage during the experiments. 

2.1  Test model 

In the experiments the model was a 3.31 m long cylinder 
with a diameter of 0.01 m, giving an aspect ratio of 331. 
Table 1 presents detailed properties of the model. The natu-
ral frequencies of the model were obtained through free 
vibration tests in water. Table 2 shows the first five natural 
frequencies. It is noted that although the initial tension is 
different, the last three natural frequencies are similar for all 
three cases. The reason is that the natural frequencies of 
higher order modes are less controlled by tension, but dom-
inated by the bending stiffness of the cylinder. 

2.2  Test instrumentation 

It is common that the number of strain sensors must be 
larger than twice the maximum mode numbers excited in  

 

Figure 2  Photo of the side plate and universal joint sleeve. 
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Table 1  Model properties 

 Symbol Dimension Value 

External diameter D m 0.01 

Length L m 3.31 

Aspect ratio L/D  331 

Slender stiffness EI Nm2 26.111 

Initial tension T N 25,50,75 

Mass ratio m*  1.867 

Wall thickness Wt m 0.0015 

Axial stiffness EA N 2803871 

Mass m kg/m 0.1466 

Reynolds number Re _ 2500–38000 

Table 2  Natural frequencies, note that the tension provided by weight is nominal tension, actual tension is influenced by friction 

Tension (N) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz) 

25 2 6.4 13.5 23 36.0 

50 2.2 6.7 13.9 23.5 36.2 

75 2.7 6.9 14.3 24.1 36.3 

 
 
CF and IL directions to make sure that spatial aliasing in 
computing modal contribution does not occur. Therefore, 
according to the model material properties, tension and the 
maximum towing speed, the maximum mode number of the 
model in our experiments was simulated. The numerical 
result shows that the max. mode number amounts up to 4 in 
CF direction and 5 in IL direction. Thus a total number of 
12 strain gauges in each direction were employed, including 
the extra sensors. The sampling frequency of the strain 
gauges is 1 kHz. The strain gauges in CF and IL directions 
share the same space distribution along the model. In the 
experiments, the fiber optic strain gauges were used, which 
obtain the strain signal by measuring the wavelength shift of 
the reflected light.  

Displacements were calculated from measured strains by 
using modal analysis method proposed by Lie and Kaasen 
[13]. This method is based on the fact that the displacement 
and strain share the same modal weights. The modal 
weights are obtained by fitting measured strain to the su-
perposition of sinusoidal mode shape functions that corre-
spond to certain modes. The displacement obtained by this 
method was in good agreement with the result computed by 
double spatial integral of the curvature.  

3  Results and discussions 

At the first stage of the experiments, except for the case 
with tension of 25 N, the model was towed in a speed range 
from 0.2 m/s to 1.5 m/s, with an increment of 50 mm/s. It 
was observed that under the tension of 25 N, when the tow-
ing speed was over 1.1 m/s, large deformation of the model 
would make the universal joint to slip out of the sleeve. 
Thus the maximum towing speed for the case of 25 N ten-

sion was set to 1.1 m/s. At this stage, a total of 328 tests 
were carried out. 

In this section, both the CF and IL amplitudes of strain 
and displacement, vibrating frequencies, motion orbits, to-
gether with phase angle differences are analyzed to study 
the dual-resonant dynamic characteristics of the model. 
Firstly, the representative results of one test are given in 
sect. 3.1. Then all the test results are summarized in sect. 
3.2. 

3.1  Results of one representative test  

Figures 3–8 present typical results of one representative test 
in which the initial tension is 25 N and the towing speed is 
0.75 m/s. This test is an example that is used to illustrate the 
dual resonance. 

Figure 3 shows the cross-flow displacement results at 
some locations along the length of the model. The time se-
ries of the cross-flow displacement and an enlargement of a 
segment are given in the first and second columns, respec-
tively. All the displacement results are normalized with re-
spect to the diameter of the model. After about 5 s, the re-
sponse seems to reach a steady state. The amplitude of 
cross-flow displacement is about one diameter of the model. 
The spectra of each cross-flow displacement are shown in 
the third column. At each location, only one clear peak is 
observed at about 11 Hz. The instantaneous cross-flow de-
flections along the length of the model between 20–20.2 s 
are given in the last column. The deflections clearly indicate 
that the cross-flow responses are of the third order mode. 

Figure 4 illustrates the in-line displacement results. The 
time series of displacement, an enlargement of a segment, 
the spectra and instantaneous in-line deflections are given in 
each column. Here the mean defections are removed from  
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Figure 3  CF displacements along the length of the model for a test with 
V=0.75 m/s and T=25 N. First column shows the time series of CF dis-
placements along the length of the model. Second column shows an en-
largement of a time segment. Third column shows the spectra of each 
displacement. Fourth column shows deflections inside a time segment.  

 

Figure 4  IL displacements along the length of the model for a test with 
V=0.75 m/s and T=25 N. First column shows the time series of IL dis-
placements along the length of the model. Second column shows an en-
largement of a time segment. Third column shows the spectra of each 
displacement. Fourth column shows deflections inside a time segment. 

the in-line displacements. The in-line exciting frequency is 
twice that in the cross-flow direction, thus the frequency of 
in-line displacement is higher than that of cross-flow dis-
placement, as shown in the spectra listed in the third column. 
The mode order of in-line displacement is the fourth order, 
higher than that of cross-flow displacement. 

Figures 5(a) and 5(b) are surface plots of the spatial 
spectra distributions of cross-flow and in-line displacements. 
It can be clearly seen that the dominant frequencies of  

 

Figure 5  Surface plots of the spatial spectra distributions of (a) cross- 
flow and (b) in-line displacements for a test: V=0.75 m/s, T=25 N. 

cross-flow and in-line displacements are about 13 and 26 
Hz, respectively. The spatial spectrum distributions of 
cross-flow and in-line displacements clearly indicate that 
the cross-flow and in-line responses are of the third and 
fourth order modes, respectively. This is consistent with the 
mode order obtained through mode deflections shown in 
Figures 3 and 4. 

The motion orbits along the length of the model between 
20–20.3 s are shown in Figure 6. The motion orbit shapes 
vary significantly along the length of the model. The orbit 
shape appears as a clear figure of Arabic numeral eight at 
the location of z/L=0.041 while it becomes very messy at 
the location of z/L=0.62. The motion orbit shape has an in-
fluence on vortex shedding pattern, and therefore on the lift 
and drag forces [20]. The significant variation of the motion 
orbit shape along the model length indicates variation of the 
lift and drag forces even in a uniform flow. 

Vandiver et al. [21] suggested that the motion orbit shape 
was controlled by the phase angle difference between the 
cross-flow and in-line motions. The motion orbit shapes 
vary significantly along the length of the model. Therefore 
the phase angle differences along the length of the model 
are expected to change significantly. The phase angle dif-
ferences will be investigated in detail below. 

For the purpose of obtaining the instantaneous phase an-
gle of cross-flow or in-line displacement, the measured data  
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Figure 6  Motion orbits along the length of the model for a test with V= 
0.75 m/s and T=25 N. 

 

Figure 7  Phase angle differences along the length of the model for a test 
with V=0.75 m/s and T=25 N. First column shows time series of phase 
angle differences for the whole run. The other four columns the probability 
distributions of the phase angle difference along the length of the model at 
different time intervals. 

have to be translated into analytical signals using time fre-
quency analysis such as Hilbert transform [22]: 

          i ,
, , i , , e ,i jz t

i j i j H i j i jz t s z t s z t A z t
     (1) 

where  i js z ,t  is the cross-flow or in-line displacement at 

height iz  and instant jt ,
  ,H i js z t  is the Hilbert trans-

form of  i js z ,t  and  i jA z ,t  and  ,i jz t  are the 

instantaneous amplitude and phase angle, respectively. The 
cross-flow or in-line instantaneous frequency is defined by 
the following equation: 
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where T  is the sampling instant and  i jz ,t  is the 

instantaneous frequency at height iz  and instant jt . The 

definition of the phase angle difference of two periodic sig-
nals is given as [23]: 
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where  , ,IL CF i jz t  is the phase angle difference, n
 

and 

m  are integers, relating to the cross-flow and in-line in-
stantaneous frequencies by the following equation: 
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 (4) 

For narrow banded signals, the phase angle difference 
exhibits a plateau in its variation curve versus time. How-
ever, the measured data include noise, and for long slender 
cylinder the response is excited in more than one mode. 
Hence, the computed phase angle difference may deviate 
from its real value. Figure 7 shows the phase angle differ-
ences at different locations along the model for the same 
test. The phase angle differences are normalized by 2. The 
first column shows the time series of the phase angle dif-
ferences, which indicates that the phase angle differences at 
each location fluctuate around a steady value as time pro-
gresses, except for the locations of z L =0.53 and 0.7. 

Other columns in Figure 7 show the probability distribu-
tions of the phase angle difference along the length of the 
model at different time intervals. It is shown that there is a 
peak at each probability distribution diagram, indicating the 
existence of steady phase angle differences. In this paper, a 
statistical method [24] is adopted to compute the steady 
phase angle differences. It is supposed to find the best 
Gaussian fit to the computed phase angle differences by the 
following equation: 

     2

,
1

,
2

1
, e ,

2

IL CF i jz t

i jz t
  




   


 (5) 

where  is the mean value and  is the standard deviation of 
the distribution. Figure 8 shows the fitted phase angle dif-
ferences at different locations. The phase angle difference  
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Figure 8  Fitted phase angle differences along the length of the model for 
a test with V=0.75 m/s and T=25 N. 

varies significantly along the length of the model as ex-
pected. 

3.2  Summary of all text results in the first stage 

In this section, the maximum RMS (root mean square) am-
plitudes of CF and IL displacements and strains, mode order 
number and frequency of the strain are presented as func-
tions of the towing speed. The peak frequency of strain at 
the midpoint of the model is adopted as the dominant fre-
quency. 

Figure 9 shows how the maximum RMS amplitude of 
displacement varies with the towing speed. The cross-flow 
RMS amplitude keeps increasing until it reaches a peak of 
about 0.63D at about 0.3 m/s, and then decreases. Three 
peaks are observed within the towing speed range. The 
in-line maximum RMS amplitude increases with the towing 
speed until 0.6 m/s, and then remains almost the same. Be-
sides, the in-line RMS displacement amplitude is consider-
ably smaller than the cross-flow one. 

Figure 10 suggests that the cross-flow and in-line maxi 

 

Figure 9  (Color online) Maximum RMS displacement amplitude along 
the length. 

 

Figure 10  (Color online) Maximum RMS strain amplitude along the 
length. 

mum RMS amplitudes of strain increase progressively with 
the towing speed for all three cases with different tensions. 
It is noted that the in-line strain is not much smaller than the 
cross-flow strain. 

The excited mode at each location may be different. The 
dominant mode order number along the length is adopted as 
the mode order number in Figure 11. It seems from the fig-
ure that the mode order number increases with the towing 
speed for all three different tension cases. The maximum 
excited mode order numbers in cross-flow and in-line direc-
tions are 4 and 5, respectively.  

Figure 12 presents the strain frequencies varying with the 
towing speed for three different tension cases. The frequen-
cies show linearly, slowly increasing trends over the whole 
towing speed range, except that they rise abruptly at those 
towing speeds at which the mode order number changes.  

 

Figure 11  (Color online) Mode order numbers versus the towing speed. 
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Figure 12  (Color online) Strain frequencies versus the towing speed. 

The lower straight line is the Strouhal frequency, based on 
the towing speed and the Strouhal number of 0.17. The up-
per straight line is twice the Strouhal frequency. It is ob-
served that the difference between the cross-flow strain 
frequency and the Strouhal frequency increases with the 
towing speed, and the difference between the in-line strain 
frequency and the double of the Strouhal frequency behaves 
the same way.  

3.3  Investigation of dynamic characteristics in non- 
resonant regions 

The speed range is roughly divided into resonant regions 
and non-resonant regions, based on whether the vortex 
shedding frequency is close to one of the natural frequen-
cies. The vortex shedding frequency in the resonant regions 
is close to one of the natural frequencies, and thus lock-in is 
most likely to occur. The vortex shedding frequency in 
non-resonant regions is not close to any of the natural fre-
quencies, and thus the vibration of the model in these re-
gions is unlikely to resonate with the vortex shedding. Table 
3 presents the resonant regions and non-resonant regions. 
As shown in Figures 9–12, in the non-resonant regions, the 
displacement amplitude is considerably smaller than that in 
the resonant regions, the mode order number changes, and 
the frequency of strain experiences sudden rises. However, 
the variation of strain amplitude in the non-resonant regions 
shares the same increasing trend as in the resonant regions. 

Figure 13 presents the IL displacements of one repre-
sentative test in the non-resonant regions, in which the ini-
tial tension is 25 N and the towing speed is 0.66 m/s. It is 
noted that the time series of IL displacements are modulated 
with time, exhibiting several modal contents, except for 
those strongly periodic at the locations of z/L=0.041 and 
0.21. The spectra of IL displacements at most of the loca-
tions have more than one peak, indicating that more than  

Table 3  Resonant regions and non-resonant regions, note that the divi-
sion of the speed range is based on the variation of the amplitudes of dis-
placement and strain and it is relatively rough 

Region Speed range (m/s) 

Resonant region 1 0.1–0.2 

Non-resonant region 1 0.2–0.3 

Resonant region 2 0.3–0.55 

Non-resonant region 2 0.55–0.75 

Resonant region 3 0.75–1.1 

Non-resonant region 3 1.1–1.3 

Resonant region 4 1.3–1.5 

 

Figure 13  (Color online) IL displacements along the length of the model 
for a test with V=0.66 m/s and T=25 N. First column shows the time series 
of IL displacements along the length of the model. Second column shows 
an enlargement of a time segment. Third column shows the spectra of each 
displacement. Fourth column shows deflections inside a time segment. 

one mode participate in the vibrations of the model. The 
fourth column also shows that the vibration is not of a cer-
tain mode, but a superposition of several modes. The time 
series of IL modal displacement from 13–16 s at the loca-
tion of z/L=0.041 are shown in Figure 14. Each time series 
represents the displacement of one mode. Their sum, 
weighted by the value of the respective mode shapes at each 
location, equals the local displacement there. It is indicated 
that each modal displacement has almost the same ampli-
tude except for mode 5. Figure 15 presents the motion orbits 
of one test in the non-resonant regions. The motion orbit 
shapes are quite messy at all locations along the model. 
Therefore, it is concluded that there are no steady phase 
angle differences along the model in this test.  

The second stage of the experiments was to investigate 
the dynamic characteristics in non-resonant regions in more 
detail. The towing speed covered the range of 5.5 m/s to 7.5 
m/s, with a refined increment of 5 mm/s. A total of 275 
cases were tested in this stage. Figures 16(a) and 16(b) show 
how the RMS values of CF and IL modal displacement vary 
with the towing speed for the initial tension of 75 N. The  
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Figure 14  Time series of IL modal displacements at the location of z/L= 
0.041 for a test with V=0.66 m/s and T=25 N. 

 

Figure 15  Motion orbits along the length of the model for a test in non- 
resonant regions: V=0.66 m/s, T=25 N. 

RMS value of individual modal displacement exhibits a 
peak in their respective excited speed ranges. These excited 
ranges fall in the corresponding resonant regions. In the 
resonant regions, the amplitude of one modal displacement 
is significantly larger than that of other modal displace-

ments. However, in non-resonant regions, no single mode is 
found to dominate the displacement amplitude. Figures 16(a) 
and 16(b) also show that, in non-resonant regions, modal 
displacements share almost the same amplitudes. These 
modes compete with each other to dominate the vibration of 
model. Table 4 gives these competing modes in different 
non-resonant regions, respectively. 

4  Conclusions 

In this paper, the dual-resonant and non-resonant responses 
are investigated for vortex-induced vibration of a long  

 

Figure 16  (Color online) (a) CF and (b) IL Maximum RMS modal dis-
placement amplitudes along the length. 

Table 4  Competing modes in non-resonant regions  

Region CF modes IL modes 

Non-resonant region 1 1,2 2,3 

Non-resonant region 2 2,3 2,3,4 

Non-resonant region 3 2,3,4 3,4,5 
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slender cylinder. The experimental results show that, when 
dual resonance occurs, the CF and IL displacements exhibit 
regular harmonic responses. Steady motion orbits and phase 
angle differences were also observed along the length of the 
model. The variations of strain, displacement and the dom-
inant frequency with the towing speed are presented. 

For each test in non-resonant regions, the motion orbit 
shapes are quite messy without any steady phase angle dif-
ference prevailing at all measured points along the model. 
The spectra of the displacement or strain at most of the lo-
cations exhibit more than one peak, indicating that more 
than one mode participate in the vibrations of the model. In 
non-resonant regions, the mode order number changes, and 
the dominant frequency of strain experiences suddenly rises. 
The CF and IL modal displacements indicate that mode 
competition is the dominant factor in the non-resonant re-
gions compared to that in the resonant regions, and thus no 
one mode can prevail over other modes. It may be inferred 
that due to the competition, some vibration energy dissi-
pates, resulting in a lower displacement amplitude in 
non-resonant regions.  
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nese Academy of Sciences (Grant No. KJCX2-YW-L07) and Construction 
Technology Program of Ministry of Transport (Grant No. 2013 318 740 
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