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ABSTRACT 
Simulation of fluid-structure interaction (FSI) of flexible 

bodies are challenging due to complex geometries and freely 

moving boundaries. Immersed boundary method has found to 

be an efficient technique for dealing with FSI problems because 

of the use of non-body-fitted mesh and simple implementation. 

In the present work, we developed a FSI solver by coupling a 

direct forcing immersed boundary method for the fluid with a 

finite difference method of the structure. Several flow problems 

are simulated to validate our method. The testing cases include 

flow over a stationary cylinder and flat plate, two-dimensional 

flow past an inextensible flexible filament and three-

dimensional flow past a flag. The results obtained agree well 

with those from previously published literatures. 

 

INTRODUCTION 
The phenomena of fluid-structure interaction (FSI) are 

ubiquitous in nature such as flapping flags interacting with 

ambient fluid and fish swimming in water. The problems 

involving the coupled response of structures and flows are of 

interest in various engineering areas such as aeronautical 

engineering, coastal engineering and biomedical engineering. In 

such systems, the structures deform due to inertial, 

hydrodynamic and internal forces; at the same time they also 

exert forces on the surrounding fluid.  

From a computational viewpoint, FSI simulations are 

challenging due to the following facts: a) numerical issues (such 

as instability) in handling two-way coupling between fluid and 

structure; b) large mesh deformation when body-fitted mesh is 

used. The immersed boundary (IB) method overcomes the latter 

difficulty by using a non-body-fitted mesh and adding a body 

force to the momentum equation to enforce the no-slip 

boundary condition [1]. The IB method can be further classified 

into two types: continuous forcing and direct forcing [2]. In the 

continuous forcing approach, the forcing is incorporated into 

the continuous equations before discretization, whereas in the 

direct forcing approach, the forcing is introduced after the 

equations are discretized. The continuous forcing approach is 

often used for treating elastic boundaries whereas the direct 

forcing approach is originally designed for rigid-boundary 

problems.  

   In this paper, we developed a FSI solver by coupling a 

direct forcing IB method based on discrete stream function 

formulation [3] for the fluid and a finite different method for the 

structure. By using the original method proposed in [3], 

although an accurate prediction of total force can be achieved, 

unphysical spatial oscillation is observed in the force 

distribution. This oscillation is detrimental to the prediction of 

structure response in FSI. In this work, several modifications 

are made to improve this method. Firstly, the implicit forcing is 

replaced by an explicit forcing. Secondly, a more consistent way 

of computing each component of the forcing on a staggered 

mesh is proposed. Thirdly, for a slender body of zero thickness, 

the discrete delta-function with a 'negative-tail' is adopted for 

the interpolation at the endpoints. Numerical simulations 

(including FSI) are performed to test the efficacy of the 

modifications. It is found that the measures taken can 

successfully reduce the oscillation and the results obtained 

agree well with those from the literatures.  

The rest of the paper is arranged as follows. The numerical 

method are briefly introduced in Section 2. Three testing cases, 

including flow over a stationary cylinder, vortex-induced 
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vibration of elastically mounted cylinder and flexible filament 

in free stream are presented in section 3. Finally, conclusions 

are drawn in section 4. 

 

NUMERICAL METHODS 
The fluid motion is governed by the incompressible 

Navier-Stokes equations, which in dimensionless form are 

written as  
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where u is the velocity vector, p the pressure and Re the 

Reynolds number. f is the Eulerian body-force that is used to 

mimic the effects of the immersed body on the flow. The 

Reynolds number is defined as Re = UL/ν, where U, L and ν are 

the reference length, reference velocity and kinematic viscosity, 

respectively.  

The flow solver is based on discrete stream function 

formulation and direct forcing IB method, for more details, 

please refer to [3]. Although an accurate prediction of total 

force can be achieved by using this method, unphysical spatial 

oscillation is observed in the force distribution on the surface of 

the immersed body. This oscillation is detrimental to the 

prediction of structure response in FSI. In this work, several 

modifications are made to improve this method.  

    Firstly, the implicit forcing is replaced by the explicit 

forcing proposed by Uhlmann [4]. Secondly, a more consistent 

way of computing the momentum forcing on a staggered mesh 

is proposed (see Figure 1). Instead of interpolating at cell 

centers to obtain the forcing vectors and then averaging them to 

face centers to obtain individual components, the x- and y-

components of the forcing vectors are computed separately and 

directly at face centers by interpolation. It is well-known that 

the interpolation of non-smooth function (such as velocity) 

tends to create oscillation and reduce accuracy. These two 

measures reduce the number of velocity interpolation required 

in computing the momentum forcing component and thus 

reduce the spatial oscillations produced. Thirdly, for a slender 

body of zero thickness, the discrete delta-function with a 

'negative-tail' is adopted for the interpolation at endpoints. The 

mathematical form of this delta function is 
2 3
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           (a)                    (b) 

Figure 1. Two ways of computing forcing component on a staggered 

mesh: (a) original way used in Wang and Zhang [3]; (b) more 

consistent way of computing forcing component. In (a), the Eulerian 

forcing (vector) are defined at cell centers and each forcing component 

is interpolated (individually) to cell edges via simple average. In (b), 

each Eulerian forcing component is defined at cell edges and no extra 

interpolation is needed.  

 

It is found that the strong (unphysical) backflow at the leading- 

and trailing-edge is another source of spatial oscillation. The 

use of this type of kernel function can effectively eliminate the 

backflows at endpoints. For the rest of the Lagrangian points, a 

regular 3-point delta function [1] is used. 

   In this paper, two FSI simulations are performed. The first 

case is the interaction of an inextensible flexible filament with a 

two-dimensional flow. The governing equations for the motion 

of the filament is written as 
2 2
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where ρ is density ratio, T is the tension force, γ is the bending 

rigidity and Fr is the Froude number. g is the acceleration of 

gravity and F is the force exerted on the structure by the fluid.   

A finite difference method on staggered grid [5] is used to 

discretize Eq. (3). The displacement X is defined at grid nodes 

while the tension T is defined at the centroids of grid cells. Let 

Ds denote the central difference operator with respect to s and 

Fb denote the bending force (i.e., the second term on the right-

hand-side of Eq. (3-1)). The solution procedure can be 

summarized as follows. 
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Eq. (4-2) is the discretized form of the Poison equation 

which can be derived from Eq. (3-1) and the inextensibility 

condition (Eq. (3-2)).  
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   The second case of FSI is the interaction of a flag (flexible 

plate) with a three-dimensional flow. The governing equation of 

the motion of the flag is written as  
2 22
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where
ij (i, j = 1 or 2) are the stretching and shearing 

coefficients; ij (i, j = 1 or 2) are the bending and twisting 

coefficients. In this study, we assume that the flag is 

inextensible by making the stretching coefficients 
11  and 

22 sufficiently large. Moreover, large 
12  and 

21  are also 

used to resist in-plane shear strain. 

  In the structure solver, Eq. (5) is discretized by using the 

finite different scheme proposed in [6], which is very similar to 

Eq.(4-2).  

  For the coupling of the fluid and structure, we use a 

staggered or loosely-coupled method, in which the flow solver 

and structure solver are alternatively advanced by one step in 

time. In the framework of the direct-forcing immersed boundary 

method, the velocity of the filament obtained in the structural 

solver provides one boundary condition for the fluid solver, i.e., 

b U X ; while the Lagrangian force F determined in the flow 

solver acts as the source term in the structural equation.    

        
NUMERICAL VALIDATIONS AND RESULTS 
I. Flows over a cylinder and a flat plate 

To validate the solver, first the numerical study of flow 

over a stationary cylinder at Re = 40 is conducted. The 

simulation is performed in a rectangular domain of 60D×40D, 

where D is the diameter of the cylinder. The grid size in the 

vicinity of the cylinder (a region of 2D×2D) is 0.04D. The 

grids are stretched to the boundaries with an expansion factor of 

1.05 and the maximum grid size is 0.5D. The Lagrangian points 

are evenly distributed along the circumference of the circular 

cylinder such that the inter-distance equals the local size of the 

Eulerian grid approximately. As that listed in Table 1, the mean 

drag coefficient Cd obtained in the present study agrees well 

with the those from the references. 
 

Table 1. Comparisons of drag coefficients for Re=40. 

 
 Taira and Colonius [7]  Linnick and Fasel [8]  Present 

Cd 1.54 1.54 1.55 

 

The distributions of the pressure coefficient Cp and skin-

friction coefficient Cf obtained by using the improved method  

are also compared with reference solutions in [8] and the 

solutions using the original method proposed in [3]. It is seen 

that a good agreement between the present result and the 

reference solution in [8] has been achieved (see Figure 2). The 

slight discrepancy in the skin-friction coefficient near the 

shoulder is attributed to the insufficient grid resolution near this 

region (the grid size is 0.05D). From this figure, it is also seen 

that the result obtained by using the method in [3] exhibits large 

spatial oscillations in both the pressure and skin-friction 

coefficients.  

We then simulate the flow over a flat plate at Re = 200 and 

two angles of attack ( 0 and10 ). The purpose of this validation 

is to test the accuracy of force distribution prediction for a 

slender body of zero thickness. In this simulation, We use a 

rectangular domain of 30D × 20D. The grid size in the vicinity 

of the plate (a region of 2D × 2D) is 0.02D. For reference 

purpose, we also seek the solution of this problem by using the 

commercial CFD software - FLUENT. A body-fitted 

unstructured mesh with 140,000 cells is used in the computation 

by FLUENT. The mesh resolution used in FLUENT is 

comparable to that in the in-house flow solver (with the 

thickness of the plate represented by 3 mesh points). Other 

numerical settings in FLUENT are: second order upwind 

scheme for convection; second order central scheme for 

diffusion; first order Euler scheme for time advancing.  

The distributions of pressure (difference) and skin-friction, 

obtained by using the improved method, the improved method 

but without the 'negative-tailed' delta function and FLUENT are 

plotted in Figure 3. It is seen that the agreement between the 

result obtained using the improved method and the one using 

FLUENT is reasonably well. The result using the improved 

method but without the 'negative-tailed' delta function exhibits 

some oscillations near the leading- and trailing-edge of the flat 

plate. 

 
           (a)                    (b) 

Figure2. Distribution of (a) pressure coefficient Cp and (b) skin-

friction coefficient Cf .  

    

 
(a) 
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L 

 
           (b)                      (c) 

Figure 3. Distributions of pressure coefficient difference 
pc  and 

skin-friction coefficient (Cf) along the flat-plate surface at Re = 200 

and two angles of attack. (a) Cf for 0  ; (b) 
pc for 10  ; (c) 

Cf for 10  . 

 

II. Flapping of flexible filament 
 Before performing any FSI simulation, we first validate the 

stand-alone structure solver by simulating a flexible filament 

moving under gravity in vacuum. The simply supported 

(pinned) boundary condition is used at one end and the free-end 

boundary condition ( 2 2 3 3(0,0), (0,0)s s     X X ) is used 

at the other (see Figure 4). The initial position condition of the 

filament is given 

by
0( ,0) ( )(cos ,sin ), ( ,0) (0,0)s L s k k s t     X X X , where k 

is a constant and X0 = (0,0). At t = 0, the filament is released 

and starts swinging due to the gravitational force.  

 

 
Figure 4. Schematic of the Lagrangian coordinate system s on the 

filament. The length of the filament is L. 
 

We use β = 1.0, L = 1.0, Fr = 10.0, γ = 0 and k = 0.1π as 

the control parameters. As shown in figure 5, the numerically 

predicted free-end position agrees well with the analytical 

solution in [5]. 

   

    
Figure 5. Comparison of the predicted free-end position with the 

analytical result. 

 

We then simulate the interaction of a flexible filament with 

a free stream at Re = 200. We use a computational domain of  

16L×10 L. The distance between the leading edge of the 

filament and the inlet is 6 L. The mesh size is 0.02 L in the 

vicinity of the filament (a region of 6 L×2 L). The number of 

the Lagrangian points representing the immersed filament is 50. 

The parameters used here are β = 1.5, Fr = 0.5, L = 1.0. To 

trigger the instability, the filament is initially placed inclined at 

an angle of 0.1π with respect to the flow direction.  

Figure 6 shows the vorticity distribution in the wake for γ = 

0.0015. Figure 7 shows the time histories of the y-position of 

the trailing edge for two different bending rigidities. It is seen 

that the present results agree well with those from [5] for both 

cases.  

 

 
Figure 6. Vorticity contours in wake of a flapping flexible filament.  

 

 
  (a) 

 
                          (b) 
Figure 7. Time history of y-position of the trailing edge: (a) γ = 

0.0015; (b) γ = 0.0. Solid line denotes the result of the present study; 

square denotes the result from Huang, Jing & Sung [5]. 

 

III. Three-dimensional simulation of a flapping flag 
  The 3D simulation of a flapping flag is also performed in this 

paper. The simply supported (pinned) boundary condition 
2 2

2 1(0,0, ),s s   X X 0  is used at the pole ( 1 0s  ) (see 

Figure 8). The conditions at the free boundaries are: 
2 2 3 3

1 1, ,s s     X 0 X 0 at the free end 1s L ;                      

X0 

s 

X2 

X1 
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H 

L 

O 

s2 

s1 

X1 

X3 

X2 

A 

2 2 3 3

2 2, ,s s     X 0 X 0 at other two free ends
2 0s  and 

2 Hs  . 

  In the simulation of the flapping flag, we use
12 =

21 = 10.0, 

11 =
22 = 10.0, 

12 =
21 =

11 =
22 = 0.0001 and as the control 

parameters, with a free stream of Re = 500. The computational 

domain is 8L×8L×4L, with the mesh size being 0.02L in the 

vicinity of the flag (a domain of 2L×2L×2L). The total 

number of cells is 2.2 million. Other control parameters are  

β = 1.0, Fr = 2.0 and L = H = 1.0. The flag is initially held at 

an angle of 0.1  from the X1X3 plane, as expressed by 

1 2 1 1 20
( , ) ( cos , sin , 2)

t
s s s s s H 


 X .  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8. Schematic of the Lagrangian coordinate system (s1, s2) on the 

flag. The width and length of the flag are H and L, respectively.  

 

   Figure 9 shows the instantaneous shape of a flapping flag in 

the three-dimensional simulation. The flag sags down slightly 

due to the gravitational force. The rolling motion of the upper 

corner is also seen. These observations are consistent with the 

report in [10]. Figure 10 shows the time histories of the 

transverse displacements of points A in Figure 8 for Fr = 0.0. 

Both the result of present study and that of Huang & Sung [10] 

are plotted in the figure. An excellent agreement between the 

two results is clearly seen.  

 
Figure 9. The instantaneous shape of a flapping flag in the three-

dimensional simulation.  

 

   

 
Figure 10. Time histories of the transverse displacements of points A 

in figure 8 for Fr = 0.0. Solid line denotes the result of the present 

study; square denotes the result from Huang & Sung [10]. 

 
CONCLUSIONS 

In this study, a FSI solver is developed or the study of 

slender structures interacting with fluid. The present solver 

couples a direct forcing immersed boundary method based on 

discrete stream function formulation for fluid flow and a  

staggered-grid finite difference method for the structural 

motion. Modifications to the original immersed boundary 

method are made to suppress the unphysical spatial oscillations 

in the force distribution on the surface of the structure. The 

solver is validated by a series of problems, including flow over 

stationary circular cylinder and flat plate. FSI simulations 

performed in this paper include 2D flow over an inextensible 

filament and 3D flow over a flapping flag. The results obtained 

in the present study agree well with those in the literatures. 

 

NOMENCLATURE 
Cd        drag coefficient 

Cf         skin friction coefficient 

Cp        pressure coefficient 

D      diameter of the circular cylinder 

Fr Froude number 

g magnitude of gravitational acceleration  

g gravitational acceleration 

f Eulerian forcing in fluid momentum equation 

F      Lagrangian forcing in structure equation 

H      width of the flag 

k      initial inclined angle of the filament 

L      length of the filament (or flag) 

p fluid pressure 

r      independent variable in the delta function 

Re     Reynolds number 

s       Lagrangian coordinate  

T      tension coefficient of the filament 

u fluid velocity 

x Eulerian coordinate 

X  displacement of the structure 

 

Greek Symbols 

      angle of attack 

      mass ratio 

      Regularized delta function 
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      bending coefficient of the filament or also bending and  

       twisting coefficients of the flag 

      stretching and shearing coefficients of the flag 

 

Superscripts 

n     index of time steps 

Subscripts 

i, j    index in the tensorial material coefficients of structure 

k     index of node in finite different discretization 
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