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Reynolds-Number Unsteady Flows 

Shizhao Wang
1
, Xing Zhang

2
 and Guowei He

3
  

LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 

and 

Tianshu Liu
4
 

Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008 

The limitations of the Kutta-Joukowski (K-J) theorem in prediction of the time-averaged 

and instantaneous lift of an airfoil and a wing in low-Reynolds-number unsteady flows are 

examined.  A general lift formula for a rectangular control volume is given in a very simple 

form in the framework of viscous flow theory, which provides a rational foundation for a 

direct comparison with the K-J theorem considered as a reduced case.  Direct numerical 

simulations on the stationary and flapping flat plate and rectangular wing are conducted to 

assess the accuracy of both the K-J theorem and the general lift formula.  In particular, the 

Lamb vector integral for the vortex force and the acceleration term of fluid for the unsteady 

inertial effect are evaluated as the main contributions to the unsteady lift generation of a 

flapping wing. 

Nomenclature 

 A = flapping amplitude 

 f = flapping frequency 

F  = aerodynamic force 

lC  = time-average lift coefficient 

L  = lift  

'L  = lift per unit span 

n  = unit normal vector pointing to the outside of the control volume 

p  = pressure 

u  = velocity of fluid 

effu  = effective velocity 

U  =  velocity of upstream flow 

fV  =  control volume of the fluid 

  = geometry angle of attack 

  = circulation around the foil 

  =  density of fluid 

  = control surface 

  = surface shear stress vector 

  = vorticity 

B  = solid boundary of a body 
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I. Introduction 

OW-Reynolds-number flight particularly flapping flight has recently attracted considerable attention in the 

aeronautical communities due to the need of developing biologically-inspired micro air vehicles (MAV)
1, 2

.  

Therefore, animal flight, which has been traditionally studied by avian zoologists, becomes immediately relevant to 

this engineering research.  Natural flyers include birds, insects and bats.  In bird flight, the Reynolds numbers based 

on the mean wing chord range from 10
4
 to 10

6
 while the Reynolds numbers for bat flight are 10

3
-10

5
.  In contrast, 

the Reynolds numbers for insects are typically less than 5000.  To understand unsteady flow fields around flying 

birds and bats, particle image velocimetry  measurements have been conducted in wind tunnels
3-7

. Since the 

aerodynamic forces of a flying animal cannot be directly measured using a force balance, the Kutta-Joukowski (K-J) 

theorem has been used in these studies to infer the lift after the circulation is estimated by integrating the vorticity 

field in a selected cross-section region near wings or in wakes generated in flapping flight.  The K-J theorem gives 

the lift per unit span on an airfoil by  UL ' , where   is the circulation around the airfoil, U  is the 

incoming flow velocity, and   is the fluid density.  Then, integration of 'L  along an effective span provides the 

total lift of a flying animal.  Clearly, the distinct advantage of using the K-J theorem is its simplicity, which is 

directly related to vorticty fields that can be measured by PIV.  In particularly, it allows estimation of the lift 

components contributed by certain distinct vortical structures such as the leading-edge vortices.  On the other hand, 

to calculate the lift, the K-J theorem has served as an essential mechanism in vortex-based aerodynamics models for 

low-Reynolds-number flapping flight
3, 8-12

. The classical aerodynamics models have been adapted further by 

incorporating some relevant flow phenomena like the leading-and trailing-edge vortices for additional lift 

generation
13, 14

.   

However, lift estimation using the K-J theorem based on PIV measurements in the wakes of slowly-flying birds 

(pigeons and jackdaws) gave a significantly lower value of the lift that cannot support the bird weight, which is 

called “the wake momentum paradox” by Spedding et al.
3
. The wake momentum paradox is considered presumably 

as a result of under-resolved vorticity measurements that lead to underestimation of the circulation in complex 

wakes.  Another possibility for this paradox is that certain high-lift-generation mechanisms in low-Reynolds-number 

flight such as the wake capture in insect flight may exist in slowly-flying birds, but they are not detectable in wake 

measurements.  Recent PIV measurements in the wakes of flying bats by Hubel et al.
6, 7

 also indicated that the 

average circulation was only about one half of the value required for weight support at the observed flight speed.  At 

this stage, the wake momentum paradox remains unanswered.  In this work, this problem is viewed from a different 

perspective, and our attention is paid on the K-J theorem itself.  A fundamental question is whether the K-J theorem 

captures the main lift-generating mechanisms in highly unsteady separated flows at low Reynolds numbers in 

flapping flight.  It is necessary to quantitatively evaluate the accuracy of the K-J theorem when it is applied to low-

Reynolds-number unsteady flows.   

The objectives of this study are two-fold.  First, the applicability of the K-J theorem will be discussed in a light 

of the general viscous flow theory and quantitatively examined through direct comparison with the lift calculated 

from direct numerical simulations (DNS) on low-Reynolds-number flows over the stationary and flapping two-

dimensional (2D) flat plate and rectangular flat-plate wing.  Further, a general lift formula will be given in a very 

simple form and validated for more accurate estimation of the unsteady lift.  This paper is organized as follows.  The 

K-J theorem is first discussed as a reduced case of the general lift formula derived from the Navier-Stokes equations 

for a rectangular control volume.  The mechanisms neglected in the K-J theorem applied to unsteady flows are 

identified.  The numerical method, the immersed boundary method based on discrete stream function formulation, 

and its validation are briefly described.  Then, the flows over the stationary and flapping flat plate are simulated, and 

the lift coefficients given by using the K-J theorem and the general lift formula are directly compared with DNS.  

Finally, the flows over the stationary and flapping rectangular flat-plate wing with the aspect ratio of 4 are simulated 

to further examine the accuracy of the K-J theorem and the general lift formula in three-dimensional (3D) cases.   

II. Lift Expressions 

A. General lift formula 

In classical aerodynamics, the K-J theorem is derived in the 2D potential flow over a circular cylinder with a 

given value of the circulation, and then it is extended to an airfoil via a conformal transformation where the 

circulation is determined by applying the Kutta condition at the trailing edge
15, 16

. Further, in the Prandtl lifting-line 

theory, the K-J theorem is applied to a bound vortex line along the wing span to model the aerodynamic flow over a 

finite wing.  Although the K-J theorem is originally derived in the framework of the inviscid flow theory, the 
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circulation is physically originated from the viscous shearing motion in a boundary layer around an airfoil.  Actually, 

the Kutta condition represents the outcome of the generation of the circulation through viscous shearing.  The 

application of the K-J theorem is well founded for high-Reynolds-number attached flows over airfoils since the flow 

outside a thin boundary layer can be considered to be inviscid.  The circulation can be calculated by integrating the 

vorticity field in a boundary layer in a suitably large integration domain covering the upper and lower surfaces of an 

airfoil.  However, in flight of small birds, bats and insects, not only the Reynolds numbers are usually much smaller, 

but also the flow around a flapping thin wing at high angle of attack (AoA) is highly unsteady and separated, 

generating energetic and organized vortices such as the leading- and trailing-edge vortices.  In fact, the lift generated 

by these vortices in unsteady separated flows is necessary for low-Reynolds number animal flight.  In this case, the 

legitimacy of applying the K-J theorem has to be examined in the framework of the viscous flow theory.   

In an incompressible viscous flow, as shown in Fig. 1, the force acting on a solid body is given by  

     
 dSpdVdSp

fVB
 nanF  , (1) 

where p  is the pressure,   is the surface shear stress vector, 

/DtDua   is the acceleration,   is the fluid density, B  

denotes a solid boundary of the body domain B, fV  denotes the 

control volume of fluid,   denotes an outside control surface in 

which the body is enclosed, and n  is the unit normal vector 

pointing to the outside of a control surface.  However, it is difficult 

to use Eq. (1) to infer the force in measurements.  It is not easy to 

measure surface pressure and skin friction fields in low-speed flows 

even though pressure-sensitive paint measurement and global skin 

friction diagnostics are promising to obtain the integrated forces
17, 18

.  

Therefore, a simple alternative force formula is desirable.   

 

Substitution of  2/2qt/t//DtD  uuuuuua   into Eq. (1) leads to  

     







BVV
dSqdSdSqpdV

t
dV

ff

nn
u

ωuF 2/2/ 22   , (2) 

where u  is the velocity,   is the vorticity, and uq .  The first term in the right-hand side (RHS) of Eq. (2) is a 

volume integral of the Lamb vector u  that represents the vortex force.  For convenience, it is simply called the 

Lamb vector integral.  The second term is a volume integral of the local acceleration of fluid for the unsteady inertial 

effect.  The third and fourth terms are the surface integrals of the total pressure of flow and the surface shear stress 

on the control surface  .  The fifth term represents the effect of a moving surface of a body on the force.  Since the 

pressure p  in space is very difficult to measure, the third term related to p  in Eq. (2) should be transformed to the 

terms related to the velocity that is measurable.  Several general force expressions have been given by Wu & Wu
19

, 

Noca, Shiells & Jeon
20

, Wu, Ma & Zhou
21

, and Wu, Lu & Zhuang
22

.  However, for a general control surface, 

eliminating the troublesome pressure term usually leads to more complicated expressions in which the physical 

meanings and relative contributions of some terms are not easily elucidated.  The expressions based on "derivative-

moment transformations" of Wu et al
22

 provide a better way to investigate the role of local flow structures on the 

force and moment.  However, some major terms, such as 2  and t/ , are difficult to measure accurately in 

experiments since the third-order spatial and second-order mixed derivatives of velocity fields are required.   

In this work, we circumvent this problem by selecting a rectangular control volume to obtain a very simple lift 

formula.  Consider a coordinate system ),,( zyx  defined by the unit orthogonal vectors ),,( kji  where i  and k  

are the unit vectors parallel and normal to the freestream, respectively, and ikj   is the unit vector along the 

spanwise direction.  The lift on a body is given by Fk  zFL .  More specifically, as shown in Fig. 2, a 

rectangular domain D  is selected as a control volume to simplify the lift expression.  The unit normal vectors on 

 
Figure 1. Schematic of a control surface 

around a body 
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the left and right faces (sections) of the boundary D  are 

perpendicular to k , i.e., 0nk .  Note that for 3D flows the unit 

vectors on the side faces of the control volume are also perpendicular 

to k , i.e., 0nj .  Furthermore, if the upper and lower sections of 

D  are located so far away from the body that 

.2/2 constqp    (the Bernoulli equation) in the inviscid flow, 

the integrals on these sections are cancelled out.  Therefore, the 

contribution of the troublesome third term of RHS of Eq. (2) to the lift 

is zero.  For a sufficiently large boundary D , k  on the most 

portion of D  is zero except in a wake, and thus the contribution of 

the fourth term in RHS of Eq. (2) to the lift can be neglected.   

The fifth term in RHS of Eq. (2) reflects the effect of a moving 

boundary.  If a body is stationary in flow, this term is zero due to the 

zero-velocity boundary condition.  For a moving rigid body, the 

velocity of a point on the body boundary can be expressed as 

rΩuu  c , where cu  and Ω  are the translation and angular 

velocities of the body, respectively, and oxx r  is the positional vector from the rotating center to a point in the 

body.  To evaluate the fifth term in RHS of Eq. (2), we use the following relation  

           BBBBBc
BB

VVVdVqdSq rr   ΩΩΩΩΩun 2/2/ 22
, (3) 

where BV  is the volume of the body and 
B

r  is a domain-averaged position vector defined as  

 


B
BB

dVV r
1

r . (4) 

An estimate is  cc C uu 1 , where 1C  is a positive constant.  Without loss of generality, another 

estimate is      linBB
C urr 2 , where 2C  is a positive coefficient and linu  is a 

characteristic linear velocity of the rotating body.  To evaluate the fifth term compared to the Lamb vector integral 

(the first term), we consider the following condition  

 1
 D

B

D

char

V

Vu





u
, (5) 

where lincchar CCu uu 21   is the total characteristics velocity of the moving body, and 
D

u  is the 

domain-averaged Lamb vector over the domain D .  Here the domain averaged operator is defined as  

   

DV
DD

dVV 1
. (6) 

When Eq. (5) holds, the contribution of the fifth term to the lift can be neglected compared to the Lamb integral.   

Further, an estimate is 
DDD

C  uu 3 , where 3C  is a positive coefficient and 
D

  is 

proportional to the circulation.  Thus, Eq. (5) is re-written as  

Figure 2. Integral domains enclosing 

an airfoil or a wing 
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 1
D

B

DD

char

V

Vu





u
. (7) 

For a fixed wing, 0/ 
Dcharu u , and for a flapping wing )1(~/ Ou

Dchar u .  It is assumed that the 

rotational rate   of a body is in the same order of 
D

 , i.e., )1(~/ O
D

 .  This assumption is 

supported by DNS on a flapping wing in this work.  In other words, the Stokes number is )1(~/ OttSt   , 

where 
1

  t  is the timescale of a body rotation and 
1


D

t   is the timescale of the fluid vorticity.  For 

a thin wing, the volume ratio between the wing and the control volume is small, i.e., 1/ DB VV , where DV  is 

the volume of the rectangular domain D .  Hence, Eq. (5) or (7) is a reasonable assumption, and the fifth term in 

RHS of Eq. (2) can be neglected.   

After the higher-order smaller terms are neglected, the contributions of the first and second terms in RHS of Eq. 

(2) are retained, and as a result the lift is given by a very simple formula  

  
DDD tVL  u/uk  . (8) 

Compared to the K-J theorem, Eq. (8) is a general lift formula which contains only the two leading-order terms: 

the Lamb vector integral for the vortex force and the local vertical acceleration for the unsteady inertial effect.  

Particularly, in 2D, the sectional lift is given by  

  
DzDyx tuuDL  /'  , (9) 

where ),,( zyx uuuu  is the fluid velocity vector, the x-, y- and z-coordinates are in the freestream, spanwise and 

vertical directions, D  denotes the domain area in two dimensions, and 
D

  becomes the area-averaged operator 

  

DD
dSD 1

 in 2D.  Rigorously speaking, the general lift formula, Eq. (8), is valid only for a rectangular 

control volume, which seems a considerably constrained case in theory.  Nevertheless, this does not limit the 

usefulness of Eq. (8) because a simple rectangular domain is often used anyway for data processing in experiments 

and computations.  Equation (9) is particularly suitable for lift estimation in experiments since the two velocity 

components ),( zx uu  on a streamwise cross-section and the spanwise vorticity y  are routinely measured using 

planar PIV in wind and water tunnels.   

To compare Eq. (9) with the K-J theorem, the local effective velocity (the vorticity-weighted velocity) is defined 

as 
Dyyxeff uu  / , where 

Dy  is the area-averaged vorticity.  Further, by introducing the area-averaged 

effective velocity 
Deffeff uU  , Eq. (9) can be written in a form analogous to the K-J theorem  

 
Dzeff tuDUL  /'  , (10) 

where D
Dy  is the circulation.  Unlike the classical K-J theorem   UL JK ' , the domain-averaged 

effective velocity effU  rather than U  is used in Eq. (10), which depends on not only the velocity and vorticity 

distributions around a body but also time in general.  In addition, the vertical acceleration term 
Dz tuD  /  

explicitly represents the unsteady inertial effect that is omitted by the K-J theorem.  For unsteady flows, application 
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of the K-J theorem implies the quasi-steady-state assumption in which )(' tL JK  is synchronized with )(t .  This 

assumption is generally problematic, which could lead to errors in the time-averaged magnitude and phase of the 

unsteady lift.  To illustrate this point, by introducing a velocity difference  UtUtv eff )()(  that represents a 

certain perturbation velocity, Eq. (10) gives 
DzJK tuDttvtLtL   /)()()(')('  .  Clearly, it is 

indicated that )(' tL  and )(' tL JK  could considerably differ in the phase, amplitude and waveform of the 

unsteady lift particularly when the velocity fluctuation )(tv  and the acceleration term are large.  The relation for the 

time-averaged lift is 
D

zJK tuDvLL   /''  .  The time-averaged magnitude change is given by the 

correlation term )()( ttv   plus the mean vertical acceleration term 
D

z tuD  / , where the bar  denotes 

the time-average.  If 
Dz tu  /  is a symmetric function with respect to the time axis like a sinusoidal function, 

D
z tu  /  vanishes.  In asymmetric wing flapping of a flyer, the mean acceleration term 

D
z tu  /  will 

contribute to the mean lift.   

B. The Kutta-Joukowski Theorem 

The classical K-J theorem is a reduced form of Eq. (10).  In a steady 2D flow where 0/ 
Dz tu , a 

vorticity patch bounded in a finite region that is much smaller than the rectangular control domain D is considered.  

The x-component velocity can be decomposed into xx uUu '  , where xu'  is the velocity induced by the 

vorticity patch along the x-coordinate that is given by  

  
 

   







dd

zx

z
zxu

D

y

x 





22

),(

2

1
, . (11) 

Therefore, since 
DyyxDyyDyyxeff uUuu  ///   , the domain-averaged effective 

velocity is  

 
 

    



  dxdzdd

zx

zxz

D
UuU

yy

Dy
Deffeff 





 222

),(),(1

2

1
, (12) 

where the integration domain in both ),(   and ),( zx  is D.  When the variables ),(   and ),( zx  are 

interchanged, the factor z  in Eq. (12) changes its sign.  It is known that the integral in Eq. (12) must vanish 

such that UUeff .  In this case, the K-J theorem   UtL JK )('  is exactly recovered from Eq. (10).  The 

above deduction is similar to that given by von Karman & Burgers
23

 for a bundle of vortex lines.  The derivation of 

the K-J theorem from a general theory of viscous flows has been also given by Wu
24

, Wu et al.
21

 and Schmitz & 

Chattot
25

.  In Sections 4 and 5, we will examine the above analysis based on direct numerical simulation (DNS) of 

low-Reynolds flows over a flat plate and a rectangular flat-plate wing.   

III. Numerical Method and Settings 

The 2D and 3D flows around a flat plate are simulated using an immersed boundary method based on discrete 

stream function formulation developed by Wang & Zhang
26

.  The incompressible Navier-Stokes equations with 

additional body forces and the continuity equation are used as the governing equations  
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 fuuu
u







2

Re

1

c

p
t

, (13) 

 0  u , (14) 

where, u is the non-dimensional velocity, p the non-dimensional pressure, and f the non-dimensional body forces 

representing the effects of the boundaries.  The Reynolds number is defined as /Re Ucc  , where U is the 

upstream flow velocity, c the chord length, and   the kinematic viscosity.  Eqs. (13) and (14) are solved on a 

unstructured Cartesian (Eulerian) mesh in the framework of discrete stream function formulation.  The plate is 

marked using a set of Lagrangian points.  The Eulerian mesh and Lagrangian points are coupled using the 

interpolation based on discrete   function.  The discrete form of body force f is determined implicitly by solving a 

linear system to implement the non-slip boundary conditions on the surface of the plate.   

The simulations are conducted in a domain of [-12, 20] [-16, 16] in streamwise (x) and vertical (z) directions 

for 2D flows, and [-12, 20] [-16, 16] [-16, 16] in streamwise (x), spanwise (y) and vertical (z) directions for 3D 

flows.  The center of the plate is positioned at the origin.  The unstructured mesh with hanging-node is used in the 

simulations to refine the mesh around the plate.  The minimum grid size used for the 2D and 3D flows are 0.01c and 

0.02c, respectively.  The time step is selected to keep the maximum CFL number at 0.5 in the simulations.  The 

maximum CFL number is defined as  

 face ofnumber  ,,3,2,1     ,
11

max
21

max 






















 i

dd
dtuCFL fi , (15) 

where ufi is the normal component of the velocity at face i, and d1 and d2 the distances between the centroid of face i 

and the centroids of its two neighboring cells, respectively.  The uniform flow (U, 0, 0) is specified at the inlet, the 

free convection boundary condition is used at the outlet. The non-slip boundary condition is set at the surface of the 

plate.  The symmetric boundary conditions are used at the other boundaries.  The flow is uniform (U, 0, 0) at t = 0 

before the plate instantaneously appears at t = 0
+
.   

To validate the present numerical method by comparing with the published results by Taira & Colonius
27

, flows 

around an impulsively-starting rectangular flat-plate wing with the aspect ratio AR = 2 are simulated at different 

angles of attack (AoA,  ) for the Reynolds number based on the chord Rec = 100.  The lift and drag coefficients of 

the flat-plate wing calculated as a function of AoA are in good agreement with the numerical and experimental 

results obtained by Taira & Colonius
27

.  More details about the numerical method and its validations are given in our 

previous work
26

.  

IV. Flat Plate 

A. Stationary Plate 
The sectional lift of a stationary flat plate (a flat-plate airfoil) is calculated by using the K-J theorem 

  UL JK '  and the general lift formula 
Dzeff tuDUL  /'  .  The domain D  for the 

circulation integral and the general lift formula is a sufficiently large area on the cross-section plane ),( zx .  Figure 

2 shows typical rectangular domains used here.  The left boundary is located at 1/ cx  upstream the leading 

edge, the right boundary at the trailing edge and two locations in the wake, and the top and bottom boundaries at 

6/ cz , where c is the chord.  The main results in this paper are calculated based on the domain 1D  where the 

right boundary is at the trailing edge.  For a stationary flat plate in the incoming freestream flow that starts suddenly, 

as shown in Fig. 3, the time-averaged lift coefficients calculated by using the K-J theorem and the general lift 

formula as a function of AoA are directly compared with those obtained from Eq. (1) for Rec = 300.  The time-

averaged lift coefficient is defined as  2/' 2cULCl   , where the bar  denotes the time-average.  In the 

relevant figures in this paper, “DNS” denotes the result calculated directly from Eq. (1), “K-J” denotes the K-J 

theorem, “General” denotes the general lift formula [Eq. (8) or (9)], and “Thin Wing” denotes the thin-wing theory.  
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The K-J theorem predicts the time-averaged lift coefficients lC  well 

for 
o30 , but it over-predicts lC  in 

oo 5030   and 

considerably under-predicts lC  for 
o50 .  The prediction by the 

classical thin-wing theory 2lC  is also plotted in Fig. 3 as a 

reference.  In contrast, the general lift formula gives lC  that is in very 

good agreement with DNS.  Table 1 lists the time-averaged lift and drag 

coefficients of the flat plate at different AoAs along with the vortex 

shedding Strouhal numbers.  The error in lC  given by the K-J theorem 

is less than 7% for 
o30 , but it increases to about 20% in 

oo 5030  .  The error in lC  given by the general lift formula is 

less than 2% for 
oo 8010  .   

Figure 4 shows the snap-shot fields of the non-dimensional vorticity, 

vertically-projected Lamb vector and vertically-projected acceleration 

around a flat plate at the non-dimensional time *t  = 147.6 for Rec = 

300 and 
 3 .  Throughout this paper, the non-dimensional 

vorticity, vertically-projected Lamb vector, vertically-projected 

acceleration and time are defined as )(c/U , )2(c/U (uk , 

)2(c/Ut/  uk , and )/ c(Utt*

 , respectively.  According to 

Eq. (8), the vertically-projected Lamb vector and vertically-projected acceleration are the leading terms contributing 

to the lift.  Vortex shedding occurs when 
   even though the flat plate is stationary, and therefore lC  is 

time-dependent.  The vortex-shedding Strouhal number based on the front-projected height, defined as 

 UcfSt s /sin , is 17.014.0 St  as shown in Table 1, which is consistent with the experimental data  

 

 
 

for flat-plates
28

.  Figure 5(a) shows the time histories of the lift coefficient of the stationary plate for Rec = 300 and 
 3 .  The general lift formula gives lC  that is in good agreement with DNS in both the amplitude and phase.  

Table 1. Vortex shedding Strouhal number, time-averaged lift and drag coefficients of the stationary 2D flat 

plate 

  St  dC  lC  genlC ,  Error of genlC ,  JKlC ,  Error of JKlC ,  

0 -- 0.2 0.0 0.0 -- 0.0 -- 

10 -- 0.25 0.68 0.67 1% 0.69 1% 

20 0.16 0.45 0.92 0.92 0 0.92 0 

30 0.17 0.83 1.22 1.22 0 1.31 7% 

40 0.17 1.30 1.36 1.39 2% 1.58 16% 

50 0.15 1.88 1.39 1.41 1% 1.47 6% 

60 0.15 2.62 1.40 1.41 1% 1.19 15% 

70 0.14 3.02 1.03 1.02 1% 0.85 17% 

80 0.14 3.23 0.53 0.52 2% 0.26 50% 

90 0.14 3.34 0.0 0.0 -- 0.0 -- 

 

Note: lC and dC  denote the time-averaged lift and drag coefficients directly obtained from DNS for Rec = 300, 

and JKlC ,  and genlC ,  denote the time-averaged lift coefficients given by using the K-J theorem and the general 

lift formula, respectively.  

 
Figure 3. The time-averaged lift 

coefficients of the flat plate as a 

function of AoA for Rec = 300, where 

“DNS” denotes the result calculated 

directly from the surface pressure and 

skin friction fields, “K-J” denotes the 

K-J theorem, “General” denotes the 

general lift formula [equation (8)], and 

“Thin Wing” denotes the thin-wing 

theory 
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In this case, as shown in Fig. 5(b), the Lamb vector integral is 

the major contribution to the lift, while the acceleration term has 

a relatively small effect.  As indicated in Fig. 4(c), the vertically-

projected acceleration around the flat plate is indeed small.   

Even for the stationary plate, as indicated in Fig. 5(a), there is 

a large phase difference between )(' tL  given by the general lift 

formula and )(' tL JK  by the K-J theorem.  The amplitude 

given by the K-J theorem is lower than that given by the general 

lift formula particularly when the flow becomes unsteady for 

large AoAs.  The K-J theorem )()(' tUtL JK     

indicates that the lift on the flat plate has the same phase with the 

circulation around the wing since U  is a constant for a 

stationary flat plate.  However, the general lift formula 

Dzeff tuDUL  /'   shows that the lift is out of 

phase with the circulation due to not only the time-dependent 

effective velocity )(tUeff  but also the unsteady acceleration 

term 
Dz tu  / .  In this case, )(' tL  is out of phase with 

)(t  by about 180
o
, and the phase of )(' tL  is dominated by 

the phase of )(tUeff .  The K-J theorem as a quasi-steady model 

does not reflect the unsteady coupling between )(tUeff  and 

)(t .  The time-averaged lift difference given by the 

generalized lift formula and the K-J theorem is 

D
zvJK tuDvCLL   /''  , where a correlation coefficient  vvCv  is introduced.  

This difference is proportional to  1/   UUUv eff .  It is found that UUeff /  increasingly deviates from 

one as AoA increases after 
 3 , which corresponds to the difference JKLL  ''  shown in Fig. 3.   

 

In the derivation of the general lift formula Eq. (8), the rectangular domain is not specified.  Theoretically 

speaking, lift calculation is independent of a rectangular domain selected, but actual result is affected by the 

selection of a domain depending on the numerical or measurement accuracy.  To illustrate this issue, three 

a)  

b)  

c)  

Figure 4. Non-dimensional snap-shot fields 

around the stationary flat plate for Rec = 300 

and 
 3 , (a) vorticity, (b) vertically-

projected Lamb vector, and (c) vertically-

projected acceleration 

a) b)  

Figure 5. Time histories of the lift coefficient of the stationary flat plate for Rec = 300 and 
 3 , 

(a) comparison between DNS, the K-J theorem and the general lift formula, and (b) contributions 

from the Lamb vector integral and acceleration term 
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rectangular domains shown in Fig. 2 are used for Eq. (8).  Figure 6 

shows the time histories of the lift coefficient of the stationary flat plate 

calculated based on the three domains for Rec = 300 and 
 3 .  

The value of lC  calculated based on the domain 1D  where the right 

boundary is at the trailing edge is very close to DNS.  In contrast, 

calculations based on the domains 2D  and 3D  that contain the portion 

of the wake structures under-predict lC  somewhat particularly near the 

peaks.  The more pronounced deviation is found for the larger domain 

3D .  The underestimate is mainly due to the coarser grid in the wake in 

computations such that the vorticity field is not fully resolved there.  

Therefore, the main results in this paper are obtained based on the 

domain 1D .   

B. Flapping Plate 

The applicability of the K-J theorem and the general lift formula to 

a flapping plate is examined.  The kinematics of a flapping flat plate is 

prescribed as a superposition of the pitching and heaving motions by  

 )2cos(0 tfm   , )2sin( tfAzc  , (16) 

where the time-averaged AoA is 
o100  , the pitching amplitude is 

o

m 30 , the heaving amplitude is A = c/4, 

cz  is the vertical position of the plate center and f is the flapping frequency.  The flapping Strouhal number is 

3.0/2  UfASt f  that is close the optimal Strouhal number ( 4.02.0  fSt ) of various flying and 

swimming animals for high power efficiency
29

.  The 

corresponding reduced frequency is 6.0/ Ucf   The total 

sectional force on the plate calculated by using the K-J theorem 

is  UF ' , where 
22

cUUU    is the effective local 

upstream velocity, U  is the freestream velocity, 

)2cos(2 ftfAyU cc    is the heaving velocity of the 

plate center.  The direction of the effective upstream velocity is 

given by   UUc /arctan .  The sectional lift is the 

vertical component of the total force )cos('' FL  .   

Figure 7 shows the snap-shot fields of the non-dimensional 

vorticity, vertically-projected Lamb vector, and vertically-

projected acceleration around the flapping flat plate at one 

moment for Rec = 300.  Compared with Fig. 4 for the stationary 

plate, the significant vertically-projected acceleration of fluid is 

found around the flapping plate, which contributes to the 

unsteady lift.  Figure 8 shows the histories of the lift coefficient 

of the flapping flat plate.  The general lift formula gives the result 

that is consistent with DNS.  The Lamb vector integral itself has 

a considerable phase shift compared to DNS, while the 

acceleration term has a significant contribution to the unsteady 

lift in the phase, amplitude and waveform.  Nevertheless, the sum 

of the Lamb vector integral and the acceleration term recovers 

the true waveform.   

 

 Figure 6. Time histories of the lift 

coefficient of the stationary plate 

calculated based on three domains for 

Rec = 300 and 
 3  

a)  

b)  

c)  

Figure 7. Non-dimensional snap-shot fields 

around the flapping flat plate at one moment 

for Rec = 300, (a) vorticity, (b) vertically-

projected Lamb vector, and (c) vertically-

projected acceleration 
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The time-averaged lift coefficients calculated based on different methods are showed in Table 2 along with the 

contributions of the Lamb vector integral and acceleration term to the time-averaged lift.  It is shown that the time-

averaged lift calculated by using the K-J theorem just captures the contribution of Lamb vector integral.  In this case, 

the flapping kinematics of the plate is not symmetric with respect to the time axis, the time-averaged quantity 

D
z tu  /  contributes about 10% of the time-averaged lift.  The more asymmetric flapping of a bird or bat may 

contribute more to the mean lift through the acceleration term.  When the time-averaged AoA in Eq. (16) is 
o00   in the symmetric flapping, the time-averaged contribution of the acceleration term is zero.  The above 

analysis indicates that a quasi-steady model like the K-J theorem (even the Lamb vector integral alone) based on the 

snap-shot vorticity fields cannot capture the unsteady nature of the lift in flapping flight.  The acceleration term for 

the unsteady inertial effect is significant, and time-resolved velocity measurements or computations are required to 

obtain the unsteady lift.   

 

 

V. Rectangular Flat-Plate Wing 

A. Stationary Wing 
Flow fields over a stationary rectangular flat-plate wing with AR = 4 are calculated at different AoAs for Rec = 

300 after the incoming freestream flow starts suddenly.  For a finite wing, Eq. (8) can be expressed as  

  
DzDDxyDyxD tuVuuVL  / . (17) 

The first term in the Lamb vector integral on RHS of Eq. (17) is the dominant component, and the second term is 

a relatively small component for a rectangular wing since interaction between the spanwise velocity and the 

streamwise vorticity is weak.  The third term is the acceleration term.  Figure 9 shows the time-averaged lift 

Table 2. Time-averaged lift coefficient of the flapping flat plate 

DNSlC ,  genlC ,  JKlC ,  LamblC ,  acclC ,  

2.07 2.07 1.86 1.86 0.21 

Note: DNSlC ,  represents the time-averaged lift coefficient calculated directly from DNS for Rec = 300 and 

3.0fSt , genlC ,  and JKlC ,  are given by the general lift formula and the K-J theorem, respectively, and 

LamblC ,  and acclC , represent the contributions of the Lamb vector integral and acceleration term in the general lift 

formula, respectively. 

a)  b)  

Figure 8. Histories of the lift coefficient of the flapping flat plate for Rec = 300, (a) comparison 

between DNS, the K-J theorem and the general lift formula, and (b) contributions from the Lamb 

vector integral and acceleration term 
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coefficient as a 

function of AoA.  

The general lift 

formula predicts 

well the lift for all 

AoAs.  In planar 

PIV measurements, 

2D velocity fields 

on different 

spanwise slices 

along the wing span 

are usually obtained, 

and therefore the 

sectional lift 'L  is 

calculated for each 

slice.  Then, the 

total lift L  of the 

wing is obtained by 

summing the 

contributions from 

all the slices.  This approach is a quasi-2D approximation 

where only the first term in the Lamb vector integral in Eq. (17) 

is used since the streamwise vorticity and the spanwise velocity 

cannot be measured at the same time in planar PIV.  The 

general lift formula with the quasi-2D approximation is 

compared with DNS in Fig. 9.  It is indicated that this quasi-2D 

method is reasonably good even though the time-averaged lift 

is over-predicted slightly for 
 3 .  Interestingly, in this 

case, the K-J theorem gives the time-averaged lift that is 

consistent with DNS as well.  This may be coincident.  For 

comparison, Fig. 9 also includes the lift for a finite wing given 

by McCormick’s formula where the lift slope is
30

  

 
)2/()4(2

0




ARARAR

ARa

d

dC
a l


, (18) 

where 20 a  according to the thin-wing theory.   

Figure 9. The time-averaged lift 

coefficient as a function of AoA for the 

stationary rectangular flat-plate wing 

with AR = 4 for Re = 300 

a)  

b)  

c)  

Figure 10. Non-dimensional snap-shot fields 

around a stationary rectangular flat-plate 

wing with AR = 4 for Rec = 300 and 
 3 , (a) vorticity, (b) vertically-

projected Lamb vector, and (c) vertically-

projected acceleration 

a) b)  

Figure 11. Histories of the lift coefficient of the stationary rectangular flat-plate wing with AR = 4 for 

Rec = 300 and 
 3 , (a) comparison between DNS, the K-J theorem and the general lift formula, 

and (b) contributions from the Lamb vector integral and acceleration term 
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Figure 10 shows the snap-shot fields of the non-dimensional 

vorticity, vertically-projected Lamb vector, and vertically-

projected acceleration around a stationary rectangular flat-plate 

wing with AR = 4 at one moment for Rec = 300 and 
 3 .  

Similar to Fig. 4 for the 2D case, the vertically-projected 

acceleration of fluid around the wing is small, indicating its 

contribution to the time-averaged lift is not significant.  Figure 

11(a) shows the histories of the lift coefficient of the wing for 

Rec = 300 and 
 3 .  The general lift formula gives a 

consistent result with DNS.  In contrast, the lift coefficient given 

by the K-J theorem has a lower time-averaged value and a 

significant phase shift.  It is indicated that the first term the 

Lamb vector integral in Eq. (17) makes the most contribution to 

the lift from the spanwise vorticity field.  Although the 

contribution of the acceleration to the time-averaged lift is 

relatively small for the stationary wing, it affects the phase as 

indicated in Fig. 11(b).   

B. Flapping Wing 

The kinematics of a flapping rectangular flat-plate wing is 

prescribed using Eq. (16).  Figure 12 shows the snap-shot fields 

of the non-dimensional vorticity, vertically-projected Lamb 

vector, and vertically-projected acceleration around the flapping 

wing at one moment for Rec = 300.  In contrast to the stationary 

wing shown in Fig. 10, the vertically-projected acceleration 

around the flapping wing is significantly large.  Figure 13(a) 

shows the histories of the lift coefficient of the flapping wing.  

The general lift formula gives the consistent result with DNS.  

The lift predicted by the K-J theorem has not only a considerable 

phase shift but also a different waveform compared to DNS.  Interestingly, in this case, the Lamb vector integral in 

the general lift formula gives a waveform that is close to that given by the K-J theorem.  Nevertheless, as indicated 

in Fig. 13(b), the acceleration term for the unsteady inertial effect has a considerably large effect on both the 

amplitude and phase of the lift for the flapping wing.  The sum of the Lamb vector integral and the acceleration term 

recovers the true waveform.  Table 3 gives the time-averaged lift coefficients calculated based on different methods 

along with the contributions of the Lamb vector term and acceleration term.  Similar to the 2D flow case in Table 2, 

a)  

b)  

c)  

Figure 12. Non-dimensional snap-shot fields 

around the flapping rectangular flat-plate 

wing with AR = 4 at one moment for Rec = 

300, (a) vorticity, (b) vertically-projected 

Lamb vector, and (c) vertically-projected 

acceleration 

a) b)  

Figure 13. Histories of the lift coefficient for the flapping rectangular flat-plate wing with AR = 4 for Rec = 

300, (a) comparison between DNS, the K-J theorem and the general lift formula, and (b) contributions 

from the Lamb vector integral and acceleration term. 
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the K-J theorem does not capture the contribution of the flow acceleration to the time-averaged lift.  The 

acceleration term 
D

z tu  /  contributes about 10% of the time-averaged lift.   

 

 

VI. Conclusions 

The general lift formula is given for a rectangular control volume in the framework of the general viscous flow 

theory, and it has a lucid form with the two leading-order terms: the Lamb vector integral for the vortex force and 

the acceleration term of fluid for the unsteady inertial effect.  Since the Kutta-Joukowski (K-J) theorem is just a 

reduced case from this formula, the limitations of the K-J theorem can be critically examined.  It is found that the 

application of the K-J theorem to unsteady low-Reynolds-number flows will inevitably lead to errors in the phase, 

amplitude and waveform of the unsteady lift particularly on a flapping wing.  From a physical point of view, the K-J 

theorem as a quasi-steady model ignores interaction or correlation between the domain-averaged effective velocity 

and the circulation in unsteady flows.  Furthermore, the K-J theorem does not take into account the acceleration of 

fluid that becomes significant around flapping wings as the unsteady inertial effect on the lift.  The general lift 

formula is validated and the relevant theoretical arguments are supported by direct numerical simulation (DNS) on 

the stationary and flapping flat plates and rectangular wings.  As indicated by DNS, the fields of the vertically-

projected Lamb vector and vertically-projected acceleration around a flapping wing, rather than the vorticity field 

itself, are more directly responsible to the lift generation.  Due to its simplicity, the general lift formula is 

particularly useful for estimation of the unsteady lift from velocity fields obtained in measurements and 

computations.   
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