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Abstract Thermocapillary migration of a planar
droplet in a uniform temperature gradient at large
Marangoni numbers is studied numerically by using
the front tracking method. It is investigated that the
thermocapillary motion of the planar droplet in the
uniform temperature gradient is unsteady. For a
fixed migration  distance, the instantaneous
thermocapillary droplet migration speed decreases
as Marangoni number increases in the range of large
Marangoni numbers. The result of above numerical
simulation is qualitatively agreement with to those of
experimental investigations. By using the asymptotic
expansion method, a nonconservative integral
thermal flux across the surface is identified in the
steady thermocapillary droplet migration at large
Marangoni numbers. This nonconservative flux may
well result from the invalid assumption of
quasi-steady  state, which indicates that the
thermocapillary  droplet  migration at large
Marangoni numbers cannot reach steady state and is
thus a unsteady process.
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1. Introduction

The motion of a drop or bubble in microgravity
environment embedded in an immiscible mother
liquid at a uniform temperature gradient is termed
thermocapillary migration of the drop or bubble,
which is a very interesting topic on both fundamental
theory and engineering application [1]. Young,
Goldstein and Block (1959) carried out an initial
study in this area and gave an analytical prediction
for its migration speed at zero limit Reynolds(Re)
and Marangoni(Ma) numbers, which is called as
YGB model[2]. A series of theoretical analyses,
numerical simulations and experimental
investigations on this subject were carried out since
then. For large Ma numbers, using thermal boundary
layers, Balasubramanian and Subramanian (2000)[3]

found that the migration speed of a drop increases
with increase of Ma number, as is in qualitative
agreement with the corresponding numerical
simulation[4]. Both the theoretical analysis and
numerical simulation are based on assumptions of the
quasi-steady state and non-deformation of the drop.
However, the experimental investigation carried out
by Hadland et al(1999)[5] and Xie et al(2005)[6]
gave results not in qualitative agreement with the
above theoretical and numerical results, and it was
shown that the drop  migration speed
non-dimensionalized by the YGB velocity decreases
as Ma number increases. Therefore, the
thermocapillary drop migration at large Ma numbers
remains a topic to be studied with respect to its
physical mechanism.

The planar or cylindrical drop/bubble as a simple
model has been extensively used to study its
dynamical mechanism. In this paper, theoretical and
numerical studies on thermocapillary migration of
droplet in a microgravity environment[7-9] are
reviewed. Firstly, using the front-tracking method,
we numerically study thermocapillary migration of a
planar non-deformable drop in the liquid at large Ma
numbers. Then, by using the asymptotic expansion
method, a nonconservative integral thermal flux
across the surface is identified in the steady
thermocapillary droplet migration at large Ma
numbers.

2. Physical models

Consider the thermocapillary migration of a planar
droplet in a continuous phase fluid of infinite extent
under a uniform temperature gradient G in Fig
1.Two-dimensional continuous, momentum and
energy equations for the continuous phase fluid and
the drop in a laboratory coordinate system are written
as follows

899 |Page


User
Line

User
Typewriter
 899  Page

User
Line


= +Ve(pv)=0,

C;N +Velpvw)==-Vp+ ﬁ"? o (Vv 4+ Vvh) + f,,
Ve (vT)= £V e (kVT),

(1)

interface. The solutions are satisfied boundary

where v and T are velocity and temperature, conditions at the infinity

respectively. f; is the surface tension acting on the

v=0, T=Ta+Gx
(2)

and non-slip/periodic boundary conditions at the top and bottom walls/the horizontal boundarics.
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Fig. 1. Schematic of the computation domain for a planar droplet migration.

MAC grid in the computational domain. To discretize
3. Numerical methods Egs. (1), we adopt a second-order central difference
scheme for the spatial variables and an explicit
predictor-corrector second-order scheme for time

In the computation, we use a fixed regular staggered integration.
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(3)
interface. The interface is captured and updated by
the front-tracking method. A weighting function
suggested by Peskin[10] is adopted as

Since both fluids are assumed immiscible, all
physical coefficients are discontinuous across the
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and (x,, z,) is the interface node.
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Fig. 2. Relation between nodes at the interface and mesh in the domain described by the Peskin wieghting function.

4. Numerical results

Fig. 3 displays the computed velocity fields at =20 in
both the laboratory coordinate frame and the
reference frame moving with the droplet at
Re=16.5(Ma=1118.1). In the laboratory coordinate
frame, the streamlines for a moving droplet are
closed and symmetric about the z-axis. In the
reference frame, when the external streamlines go
around the droplet, a pair of vortices is formed inside

\

the droplet. Fig. 4 displays the time evolution of
droplet migration velocities for five sets of
non-dimensional coefficients. In the present range of
Ma, the migration velocities versus time have
complex behaviors, which can be classified into three
types based on the curve characters. At

Ma=44.7(Re=0.66), the initial migration velocity
increases sharply before =3, and then drops to
approach a steady value.

Fig. 3. Computed velocity fields at =20 under R,=0.25¢m, Re=16.5, Ma=1118.1 in (a) the laboratory coordinate frame

and (b) the reference frame moving with the droplet.
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Fig. 4 Isotherms in a laboratory cooredinate frame are selected from the computation of the droplet migration under

Re=5.93 and Ma=402.5.
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Fig. 5 Droplet migration velocity in a flow field with the temperature gradient G=12K/cm versus non-dimensional

time at Ma=44.7, 402.5, 1118.1, 2191.6 and 3622.8.

For Ma=402.5-1118.1(Re=5.93-16.5), the initial
accelerating process has smaller peak value as Ma
increases. After the increasing-decreasing oscillation
process, the terminal droplet migration velocity
increases with time, i.e., the droplet migration is in an
accelerating state. The slope of the curve increases
as Ma increases. For
Ma=2191.6-3622.8(Re=32.3-53.4), the  droplet
migration velocity increases monotonously with time
and decreases with increasing Ma. We can thus
conclude that in the time frame under investigation
the thermocapillary droplet migration is steady at
moderate Ma numbers, but becomes unsteady at large
Ma numbers. In the two space experiments, Figs. 4 of
[5] and [6] showed that the whole migration
processes were unsteady and didn't reach any steady
state. Even a plateau appears in the curve of

migration velocity vs migration distance, the
migration process seems to be an accelerating one
after the slow varying period.

5. Theoretical analysis

The overall steady-state energy balance with two
phases in a flow domain requires that the change in
energy of the domain is equal to the difference
between the total energy entering the domain and that
leaving the domain. From the condition, the integral
thermal flux across the surface is studied for a steady
thermocapillary drop migration in a flow field with
uniform temperature gradient at large Ma(Re)
numbers. Under quasi-steady state assumption,
Eqgs.(1) can be formulated as
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Fig.6 Two flow domains for steady thermocapillary migration of droplet

In two flow domains for the steady droplet migration,

1 +wdT/dr +vi/r 6T)/0 0 = &°AT,,
1 + wdTo/dr + vo/r OTy/0 0 =X &?AT, ,

where e=1/(MaV..)"* and A = k ,/ x , . Integrating Eq.
(6) and Eq. (7) in the continuous phase domain (r&

the energy equations in Egs. (5) can be written in the
following dimensionless form

(6)

O

[1,r=], 0 €]0, 2x]) and within the drop region (r&
[0,1], 0 €]0, 2@]) and using the zero normal velocity
boundary condition at the interface, we can derive

B § oTy/or|ids- § oT /or| ds=n(1+ B/ L) ¢ *=n(1+ S/ L )V..Ma (8)

where 3 =k./ki. Since both 8 and A are positive, we
B § aT,/or|ids- § 9T /ar|;ds>>0

at large Ma numbers. From the thermal flux
§ oT\/or|ids= B § oTy/or]ds.

So, if the overall steady-state energy with two phases
in the flow domain under integral boundary
conditions is balanced, Eq. (9) should be reduced to
Eq. (10), which seems impossible. It is termed as a
nonconservative integral thermal flux across the
surface for the steady thermocapillary drop migration
at large Ma (Re) numbers. This implies the overall
steady-state energy unbalance of two phases in the
flow domain in the co-moving frame of reference and
indicates that the thermocapillary drop migration at
large Ma (Re) numbers cannot reach steady state.

have

€

boundary condition at the interface, we obtain

(10)

Thus, it is clear that the invalid assumption of
quasi-steady state for the thermocapillary drop
migration process is a reasonable explanation for the
nonconservative integral thermal flux across the drop
surface.

6. Conclusion

By using the frant tracking method, it is
observed that the thermocapillary migration of a
planar non-deformed droplet with an uniform
temperature gradients is steady at moderate Ma
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numbers, but unsteady at large Ma numbers. The
numerical results at large Ma numbers qualitatively
agree with of those of experimental investigations.
From the overal steady-state energy balance in the
flow domain, a non-conservative integral thermal
flux across the surface for a steady thermocapillary
droplet migration at large Ma numbers is found by
using the asymptotic analysis. It presents that the
thermocapillary droplet migration at large Ma
numbers cannot reach any steady states and is thus an
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