
Chapter 13
Contact and Friction
of One- and Two-Dimensional Nanostructures

Yin Zhang and Ya-pu Zhao

Abstract Because their thickness dimension is very small compared with other
dimensions, the one-dimensional (1D) nanostructures (such as nanowire, nanotube,
and nanobelt) and two-dimensional (2D) nanostructures (such as graphene) are
highly prone to bend. Because of their large bending flexurality, the 1D and 2D
nanostructures exhibit different contact behavior from those chunky ones. Without
considering the flexurality effect, the analysis on the experimental data of 1D and
2D nanostructures can lead to different and even contradicting results/conclusions
on their mechanical properties. One focus of this chapter is on what can go wrong in
the indentation and three-point bending tests of 1D nanostructures if the flexurality
effect is not accounted. At the same time, the 1D and 2D nanostructures also exhibit
abnormal friction behavior. The assumptions of the classical contact are reviewed,
and their possible deficiencies and difficulties of being used to analyze the contact
and friction of 1D/2D nanostructures are also discussed.

13.1 Introduction

The so-called one-dimensional (1D) nanostructures [1] or wirelike nanoentities [2],
such as nanowire (NW) [3–10], nanotube (NT) [11–15], and nanobelt (NB)
[16–22], have attracted much interest in scientific community because of their
remarkable mechanical, electrical, and thermal properties and potential applications
in wide variety of devices. The mechanical failure of 1D nanostructures can lead
to the malfunction or even failure of an entire device, and 1D nanostructures
may also have size-dependent properties. Therefore, an accurate measurement of
their mechanical properties is of critical importance when integrating them into
nanodevices. Unfortunately, the experimental measurements of 1D nanostructures
mechanical properties are often different and even contradicting to one another
[1, 9]. For example, in the Young’s modulus measurement of Ag NWs using the
three-point bending test, the following different and contradicting experimental
observations were reported: (1) Cuenot et al. [3] observed that the Young’s moduli of
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Ag NWs increase monotonously (76–140 GPa) with the decrease in their diameters
(diameter range of 30–250 nm), and they are all larger than the bulk modulus
of 76 GPa; (2) Wu et al. [4] observed that the Young’s moduli of Ag NWs
(diameter range of 20–35 nm) scatter randomly in the range of 60–140 GPa; and
(3) Chen et al. [5] observed that Young’s moduli of Ag NWs (diameter range
of 65–140 nm) have no size effect at all; they are all around the bulk value.
The same scenario occurs in the Young’s modulus measurements of ZnO NB:
(1) Ni and Li [18] measured the Young’s modulus of ZnO NBs with the 2b=t
range of 2–10 (2b, t : NB width and thickness, respectively) as 31:1 ˙ 1:3GPa
(nanoindentation test) and 38:2 ˙ 1:8GPa (three-point bending test); (2) Bai
et al. [19] measured the ZnO NB Young’s modulus using mechanical resonance
test as 52 GPa (2b=tD 1:1–1:7); (3) Mai and Wang [20] measured the ZnO NB
Young’s modulus using the three-point bending test as 118˙14GPa (2b=tD 1:09),
105 ˙ 10GPa (2b=t D 1:21), and 162 ˙ 12GPa (2b=t D 1:29), respectively; (4)
Lucas et al. [21] measured the ZnO NB Young’s modulus using nanoindentation test
as 62˙5GPa (2b=tD 1:2), 38˙5GPa (2b=tD 1:6), and 17˙5GPa (2b=tD 3:3),
respectively; and (5) another nanoindentation test by Lucas et al. [16] showed the
ZnO NB Young’s modulus decreasing from 100 to 10 GPa with increase of 2b=t
from 1.2 to 10.3. Besides the quantity difference, it is also noticed that there is
no (obvious) dependence of ZnO Young’s modulus on 2b=t in references [18, 19],
but strong 2b=t dependence in references [16, 20, 21]. We are fully aware that the
1D nanostructures from different groups are fabricated/synthesized and processed
differently, which can cause different experimental observations. Physically, surface
tension [3], microstructure [4], surface layer [8], etc., can all be the mechanisms
responsible for the size-dependent properties of 1D nanostructures. The core-shell
model is proposed to explain the increase in the ZnO NW Young’s modulus with
the decrease in diameter [8]. The shell is formed by the surface layer with larger
Young’s modulus and the proportion of shell increases with the decrease in NW
diameter [8]. For this core-shell model to have noticeable surface effects on the
1D ZnO nanostructures, the surface-to-volume ratio is required to be 0:08 nm�1
or larger [16]. However, the surface-to-volume ratio of the NBs showing strong
2b=t dependence of Young’s modulus is more than one order of magnitude smaller
than the required value [16]. Furthermore, Lucas et al. [16, 21] showed that the
Young’s moduli of ZnO NBs have no (clear) correlation with the surface-to-volume
ratio, and the width-to-thickness ratio of 2b=t is the only key parameter. Unlike the
surface-to-volume ratio (larger value indicates smaller physical dimensions), the
width-to-thickness ratio is purely a geometric characterization of a NB. Although
a growth-direction-dependent aspect ratio, stacking faults in NBs growing along
particular directions [16] and point defects [21] are proposed as the (possible)
mechanisms, a clear physical picture on the ZnO NB Young’s modulus dependence
on the width-to-thickness ratio is still unavailable [16]. Because of their extremely
small dimensions, the manipulation of 1D nanostructures is of great difficulty and
imposes tremendous challenges to many existing testing techniques, which can also
be responsible for the experimental error. However, the variance of the measured
data (e.g., those given in reference [3]) is beyond the range of the instrument
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system error. As there are very few models for extracting the mechanical properties
of 1D/2D nanostructures [7], the models used in those experiments can also
be responsible for the different and even contradicting experimental observation.
For 1D and 2D nanostructures, their thickness/diameter is much smaller than other
dimensions, which makes them highly flexural. The flexurality of 1D and 2D
nanostructures is not incorporated in many models used to extract their mechanical
properties from experiments. For example, in the three-point bending test of NW,
the clamped–clamped boundary conditions are assumed because of the NW small
size (thus large surface-to-volume ratio) and strong adhesion effect [3, 4]. Chen
et al. [5] found in their experiments that the NW boundary conditions may not
be a clamped–clamped one, depending on the external load and the NW diameter.
Zhang and Zhao [23] presented an adhesive contact model for the NW three-point
bending test and found that in general the NW boundary conditions are neither
clamped–clamped nor hinged–hinged, but an intermediate one due to the lift-
off caused by the flexurality. The clamped–clamped and hinged–hinged boundary
conditions will cause four times difference in the Young’s modulus in the three-point
bending test [23]; the intermediate boundary conditions can offer some insight into
the experimental observations that the Young’s modulus of Ag NW is 2–3 times
larger than its bulk one [3]. In a nanoindentation test, the Oliver–Pharr method
[24] and Sneddon method [25] are used to extract the 1D nanostructures’ hardness
[6,18,22] and Young’s modulus [6,14]. However, the standard Oliver–Pharr method
[24] assumes the indented sample as a monolithic, semi-infinite elastic half-space
[26], so does the Sneddon method [25]. Recently, lift-off induced by the structural
flexurality has been shown to have significant impact on the interpretation of the
experimental data obtained in the NW [27] and NB [28] indentation tests. Because
of its small size of thickness/diameter, the substrate effect may also influence the
test results [28]. When the indentation depth is more than 10% of the 1D/2D
nanostructure thickness/diameter, the elastic field under indenter is not confined to
the nanostructure itself; it extends into substrate [29,30], and therefore, the substrate
stiffness has impact on the measured contact stiffness.

The 1D and 2D nanostructures also exhibit abnormal friction behavior because
of the structural flexurality. For example, Bhushan et al. [31] found that the intertube
shear strength of carbon NT is much higher than its interlayer shear strength;
Lee et al. [32] found that friction monotonically increases as the number of the
layers of four atomically thin 2D nanostructures decreases. Bhushan et al. [31] have
proposed that the current contact theory (such as the JKR model) may not accurately
calculate the NT contact area [31]. With the decrease of the layer number, the 2D
film bending stiffness also decreases, which makes the film easier to bend and forms
“puckering” [32]. Lee et al. [32] compared the friction tests of atomically thin sheets
on substrate and in suspension and concluded that the increased contact area due to
the flexurality/bending of 2D nanostructures is the (only) reason responsible for the
increase of friction when the layer number decreases. The possible deficiencies and
difficulties of using the classical contact models to analyze the contact and friction
of 1D/2D nanostructures are reviewed.
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This chapter is organized into three parts: (1) review of the classical contact
theories such as Hertz, Bradley, Johnson–Kendall–Roberts (JKR), Derjaguin–
Muller–Toporov (DMT), and Maugis–Dugdale (MD) models which are for the
sphere contact where the structural flexurality is not considered; (2) the flexural
contact and its application in the three-point bending test and nanoindentation test;
and (3) friction of the flexural 1D and 2D structures.

13.2 Classical Contact Theories

The transition and relation between those classical contact models have been given
by Maugis [33], Johnson and Greenwood [34]. The parameter they use to show the
transition between the classical contact models is the elasticity parameter [33, 34]
and the external compressive load [34]. Here, we reveal the transition and relation
from another different angle: the surface interaction outside contact area and the
pressure profile in the contact area [35, 36]. Here, only a brief review is given, the
detailed analysis and other issues such as curved surface effect and instability jump
are presented in references [35, 36].

13.2.1 Surface Interaction Force and Derjaguin
Approximation

If �.h/ is the surface interaction force per unit area, the total surface force outside
the contact area, Pvdw, can be summed up as follows [36]:

Pvdw D
Z
�.h/dA D

1Z

a

�.h/d. r2/ D 2 R

1Z

z

�.h/dh; (13.1)

where a is the contact radius and h is the separation distance. In the above equation,
the parabolic approximation is used for the spheres surface profiles, i.e., h D r2=2R.
For the Lennard-Jones (LJ) force law, �.h/ is given as follows [36, 37]:

�.h/ D 16�

3zo

�� zo

h

�3 �
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h

�9�
: (13.2)

Here, 2� is the work of adhesion, and zo is the equilibrium separation of two
half-spaces in the LJ surface force law [36, 38]. The positive value of � indicates
attraction and the negative repulsion. The 3–9 force law of �.h/ in Eq. 13.2 is
the surface force per unit area of two flat half-spaces separated by a distance h,
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which is derived from the LJ 6–12 potential law for two isolated molecules [36,38].
Substituting Eq. 13.2 into Eq. 13.1, we have
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: (13.3)

During the integration of Eq. 13.1, z is treated as a constant [4]. Therefore,
Eq. 13.1 physically gives the interaction forces of two flat surfaces. The Der-
jaguin approximation states that the interaction energy/force between small areas
of (slightly) curved solids can be (accurately) approximated by the interaction
energy/force of two flat surfaces [37, 39]. In many self-consistent computations,
Eq. 13.2 is used as the local pressure of a curved contact interface. So, in that sense,
besides Eq. 13.3 which expresses the total surface force, Eq. 13.2 is also referred
to as the Derjaguin approximation [36]. From the point of view of elasticity, �.h/
is a normal surface traction [38]. Instead of using the Derjaguin approximation of
Eq. 13.2, Argento et al. [40] derived the surface traction by directly summing up the
body forces of molecules as given by the LJ 6–12 potential through a double volume
integration. Argento et al. [40] also showed that when (at least) one contacting
body is a half-space, the Derjaguin approximation which ignores the surface profile
and is usually regarded as an approximation, in fact, gives the exact total surface
force. The maximum attractive surface interaction force obtained from Eq. 13.3 is
Pvdw D 4�R� at z D zo. The tensile external load required to balance the attractive
surface interaction force is thusP D �Pvdw, and the maximum tensile external load
is �4�R� , which is the DMT pull-off force. Here, it needs to be emphasized that
Pvdw is the surface force outside the contact area and the equilibrium equation of
P D �Pvdw can only be valid for the following two cases: (1) the Bradley model
(there is no contact region for two rigid spheres, i.e., a D 0; z is “the nearest distance
between the centers of surface molecules of the spheres” [41], and therefore, Pvdw

of Eq. 13.3 is the only force for an external load to balance); (2) for the DMT model
at the point of separation (for the DMT model, the spheres separate at a D 0, and
therefore, there is no force contribution from the contact region at that critical point),
the equation of P D �Pvdw does not deal with any elastic deformation, which is
also often referred to as the Bradley model [37].

13.2.2 Contact Pressure and Equilibrium

The contact pressure profile in the JKR model is assumed to have the following
form [42]:

p.r/ D po
�
1 � r2=a2

	1=2 C p0
o

�
1 � r2=a2	�1=2

: (13.4)
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The first term in Eq. 13.4 is the compressive Hertz pressure; the second term is
a tensile one, which is induced by adhesion and often referred to as the Boussinesq
pressure [36, 42]. po and p0

o are given as follows [35, 36, 42]:

po D 2Ea

�R
; p0

o D �
r
4E�

�a
: (13.5)

During the derivation of p0
o, the contact area is assumed to be flat, which can

be proved by an elasticity approach [35, 36]. However, Attard and Parker’s self-
consistent computation shows that the contact area is not exactly flat [43]. In general,
when the two contacting bodies have similar Young’s moduli, the flat contact area is
a good approximation [36], and the effects of the curved contact area are discussed
in reference [36].

The following amount of external load P is required to balance the force due to
the surface interaction force outside the contact area and elastic deformation:

P C Pvdw D
aZ

0

2�rp.r/dr D
�
2

3
po C 2p0

o

�
�a2: (13.6)

Equation 13.6 offers a framework to show how different classical hard contact
models are related:

Bradley Model: Because there is no elastic deformation for rigid spheres,
po Dp0

o D 0, Eq. 13.6 recovers the Bradley model.
Hertz Model: Because it involves a nonadhesive contact, Pvdw of the surface

interaction force outside the contact region and p0
o induced by the adhesion are both

zero. When Pvdw Dp0
o D 0, Eq. 13.6 recovers the Hertz model with po D 2Ea=�R.

DMT Model: p0
o D 0 because in the DMT model, there is no tensile pressure

inside the contact region. Because of its short “neck,” the surface interaction forces
outside the contact region are accounted for. So when p0

o D 0 and Pvdw is taken
with the maximum value of Pvdw D 4�R”, Eq. 13.6 recovers the DMT model with
po D 2Ea=�R.

JKR Model: Because a flat contact area is formed, p0
o D �p

4E�=�a.
Also because of its large “neck” height, the surface interaction force outside contact
region can be ignored. So when p0

o D �p
4E�=�a and Pvdw D 0, Eq. 13.6

recovers the JKR model with po D 2Ea=�R.
The MD model is expressed by two coupled equations [33], which cannot be

recovered by Eq. 13.6. The MD pull-off force is between the JKR one and DMT
one [33, 36]. The contact models are usually presented by the P � a curves,
which can be found by substituting Eq. 13.5 into Eq. 13.6. The detailed discussion
on the transition and relation of the P � a curves of different contact models is
presented in [35, 36], which is essentially the same as the above discussion on po,
p0

o, and Pvdw.
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13.3 Flexural Contact

The above contact models are for spheres, and for the above models to hold the
dimensions of the contact must be small compared (a) with the dimensions of
each contacting bodies and (b) with the relative radii of curvature of the surfaces
[42], which is to say that deformation only occurs around the small contact area.
Similar approach is also used to derive the contact model for cylinder [42, 44].
In those models [42, 44], the elastic deformation of a cylinder is also around
the contact interface, and the cylinder does not bend; therefore, one cross-section
deformation can stand for the whole cylinder. Here, we call this kind of contact
“rigid contact” because the cylinder flexural rigidity is so large that the cylinder
does not bend during contact, as shown in Fig. 13.1. In general, because of the small
thickness/diameter dimension, the 1D/2D nanostructures bend during loading and
some parts of nanostructures separate/lift-off from the supporting substrate. As seen
in Fig. 13.2, the pileup due to plastic deformation only forms around the loading site
and the tilting angle as large as 50ı is also observed [12]. Without considering this
bending effect, the interpretation on the experimental data of the 1D nanostructures
tests can be different and even contradicting [23, 35, 36].

Before we further discuss the 1D nanostructures tests, it is helpful for us to
have a brief review and comment on the previous contact models which have
obfuscating names. The contact problem of flexural structure is called differently as
the receding contact [45], unbonded contact [46–48], tensionless contact [49–52],
and unilateral contact [53]. Despite their different names, they all emphasize one
essential thing: bending and lift-off of flexural structure. The name of receding
contact [45] emphasizes that the contact area under loading is smaller than the
unloaded one because of lift-off. The name of unbonded contact [46–48] emphasizes
that the flexural structure is allowed to lift-off/separate from the contacting medium.
The name of tensionless contact [49–52] emphasizes that in nonadhesive contact,
tensile stress cannot be transmitted to the lifting-off parts of structures. The
names of tensionless contact and unilateral contact [53] both emphasize that only
compressive stress exists in contact area. All these contact mechanics models of
flexural structure [45–53] reach the same conclusion that the contact length is
independent on the load magnitude, which is responsible for the localized effect.
Also in all of the above models, the adhesion effect is not considered. Because of
the large surface-to-volume ratio of 1D nanostructures, adhesion can be important
in some scenarios. As indicated in Eqs. 13.4 and 13.5, adhesion induces the tensile
Boussinesq pressure, which, from the viewpoint of force balance, will lead to a
larger contact area [27, 28, 35, 36]. Generally speaking, adhesion energy is rather
weak compared with elastic energy [28]; only when the dimensions of the contacting
bodies and elastic deformation are small enough can adhesion have significant
influence. The difference between the adhesive contact model (such as JKR) and
nonadhesive contact (such as Hertz) only stand out when the external load is a tensile
one or a compressive one with small magnitude [28, 35, 36]. Usually, in indentation
test, the compressive external load is very large and the adhesion effect can be
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Fig. 13.1 For the rigid contact scenario, the whole cylinder sinks into the elastic medium with
a constant indentation depth. For the flexible contact scenario, the cylinder lifts-off and the
indentation depth varies at different locations. Also for the rigid contact, the contact area is a
rectangle; for the flexible contact scenario, the contact area is an ellipse-like zone (After [27])

ignored. However, with the proper choice of loading, size, and adhesion parameters,
the adhesion can significantly reduce or even suppress the lift-off of a NW [27].

There are two types of problem formulations on this flexural contact problem:
integral and differential formulations. When the elastic medium is modeled as
an elastic half-space [46–48, 50], the formulation is always the integral one. The
integral equation of the elastic half-space model, which indicates the displacement,
strain, and stress at a point, is determined by the elastic deformation all over the
area. In contrast to this, the elastic foundation model, for example, the Winkler
foundation model, assumes the elastic medium consists of a series of independent
springs; therefore, in an elastic foundation, the displacement, strain, and stress at a
point are locally determined. The elastic foundation model leads to the differential
formulation of this contact problem [49, 51, 52]. In the viewpoint of continuum
approach, the elastic foundation model may lead to some physically unrealistic
results, especially on the stress analysis. But Kerr [54] pointed out that the elastic
foundation model is introduced to study the foundation surface response, not
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Fig. 13.2 A restored NT with pileups on the surface of silicon wafer. As noticed, only the portion
around the loading/indentator forms pileups and other parts keep intact, which is due to the lift-off
of NT (After [12])

the stress caused inside the foundation. The mission of our modeling on NW
and NB [27, 28] is stated as follows: finding the indentation depth (i.e., surface
deformation of substrate) for a given indentation load. The elastic foundation model
is introduced to study the foundation surface response, not the stress caused inside
the foundation, the deficiency of elastic foundation model on the stress analysis in
general should not cause serious problem. Elastic foundation model mathematically
is much simpler than the elasticity approach of the elastic half-space model [54].
The integral formulation in general is much more complex and lengthy than the
differential one. Furthermore, the relationship of line load displacement for the 2D
cylinder plane-strain contact is indeterminate in an elastic half-space model [55]
due to some uncertainties of its 2D elasticity features [56]. The Winkler elastic
foundation model is derived for the cylinder-shaped NW [27] and the prism-shaped
NB [28]. From the modeling aspect, the Winkler foundation only consists of the
spring layer [54]. The Reissner foundation, which consists of the spring, shear, and
bending layers [54], is a much better model to approximate the elastic half-space.
The flexural contact of a beam with the Reissner foundation model can be found in
references [49, 52].

13.3.1 Three-Point Bending Test

The 1D micro-/nanomaterials in test are first suspended over porous material, or a
strip, or an etched hole, or over a trench as shown in Fig. 13.3 [23, 57]. The atomic
force microscopy (AFM) tip then exerts a concentrated force on the suspended
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Fig. 13.3 (a) AFM image of NT adhered to the porous alumina ultrafiltration membrane.
(b) Schematic of the measurement: the AFM applies a concentrated load to the NT which is
modeled as an Euler–Bernoulli beam. Notice that the clamped–clamped boundary conditions are
assumed (After [57])

section to form a typical three-point bending test [23, 57]. The AFM tip is often
placed at the center of the suspended section, which is thus referred to as the
midpoint test [23]. By assuming the Euler–Bernoulli beam model, the midpoint
displacement has the following relationship with the testing material properties [23]:

k D F

zmp
D K

E1I

L3s
; (13.7)

where k is the effective spring stiffness of the beam and the AFM measures the
data for the force–displacement .F � zmp/ curves [5, 7–11]. The term F is the
concentrated load exerted at the center of the beam; zmp is the beam midpoint
displacement which is also the maximum displacement for a clamped–clamped
(C–C) beam and a hinged–hinged (H–H) beam with the load at its center. K is a
constant depending on the testing materials boundary conditions; K D 192 for the
C–C boundary conditions, and K D 48 for the H–H boundary conditions. Ls is the
beam suspension length, E1 is the beam (bending) Young’s modulus, I is the beam
cross-sectional moment of inertia, and I D �R4=4 for a solid circular beam (R is
the radius). Therefore, by measuring the midpoint displacement, the concentrated
load, the suspension length, and the radius and choosing the boundary conditions
accordingly, the Young’s modulus of the testing material can be found from the



13 Contact and Friction of One- and Two-Dimensional Nanostructures 345

above equation. Keep in mind that the spring stiffness, k, of a C–C beam (with the
same E1, R, and Ls/ is four times larger than that of a H–H beam because of the
difference in the K values. It should be noticed that for the three-point bending test
of a NW which is bonded to the support by adhesion, the C–C and H–H boundary
conditions can both be the choice [5, 23].

Because of the small size of NW/NT (which results in the large surface-to-
volume ratio), and because of the large adhesion effect [3], many researchers
assume C–C boundary conditions for a NW/NB/NT suspended on a trench/pore
[23]. From Eq. 13.7, the Young’s modulus can be calculated as E1 D kL3s=.KI/

with k supplied by the F � zmp data, measured by the AFM. With K fixed at
192 for a C–C beam, I.R/, Ls can be measured with relatively high accuracy.
By analyzing the experimentalF � zmp data [2,5–7], Cuenot et al. [3] found that the
Young’s modulus of Ag NW increases significantly with a decrease of its diameter—
usually 2–3 times that of the bulk value. Cuenot et al. [3] offered a surface stress
theory to explain the increase in the Young’s modulus with decreasing Ag NW
diameter. According to their theory, the increase of the Ag NW Young’s modulus is
proportional toR�3, which is also supported by their experimental observations [3].
However, the experiment by Wu et al. [4] on Ag NWs does not agree with Cuenot’s
experiments and theories [3]. Wu’s experiment shows that most of the measured
Ag NWs’ Young’s moduli are higher than the bulk one, but their Young’s moduli
are not sensitive to the change of NW radius at all, as shown in their Fig. 13.3 [4];
a novel fivefold twin microstructure mechanism is proposed to explain the increase
of the Ag NW Young’s modulus [4]. Unlike the midpoint test which measures the
force–displacement data only at the suspension center [3, 4], Chen et al. conducted
the three-point bending test by measuring force–displacement data for the whole
profile of the suspended portions of the testing NWs [5]. The reason for conducting
the multiple-point measurements rather than the single point measurement is that
unlike the model used in those experiments [3,4] which assumes the C–C boundary
conditions for the testing NWs, Chen et al. [5] found that the boundary conditions
of the suspended NW may change with the change of the diameter/load. This was
verified by their experimental data. With multiple-point force–displacement data
and curve fitting, the boundary conditions can be specified [5]. By taking into
account that boundary conditions may change, Chen et al. [5] conclude that in their
Ag NW test the Young’s modulus of Ag NW was not significantly different from
the bulk property. Now for the Young’s modulus three-point bending test of the
Ag NWs, three different and contradicting trends were observed: (1) Cuenot et al.
[3] observed that the Young’s moduli of Ag NWs (diameter range of 30–250 nm)
increase monotonously with the decrease of the diameter, and they were all larger
than the bulk property; (2) Wu et al. [4] observed that the Young’s moduli of Ag
NWs (diameter range of 13–35 nm) can be either larger or smaller than the bulk
property, and Young’s moduli were found not to be sensitive to the NWs diameters
at all; (3) Chen et al. [5] concluded that there is no size effect for Ag NWs (diameter
range of 65–140 nm).

Chen’s findings [5, 58] in their experiments with both Ag and GaN NWs are
summarized as follows [23]: (1) The NW boundary conditions were found to be
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Fig. 13.4 (a) Dimension of a NW under an AFM loading and its coordination system. The
schematic diagram of a beam laid on a trench. The beam dimensions and the coordinate system
are also shown. (b) Four typical boundary conditions of the beam under loading: (I ) and (II) full
contact, (III) and (IV) partial contact (After [23])

C–C for those with small diameters and H–H for those with larger diameters
(in their experiments, the suspended length Ls is fixed); (2) the magnitude of the
applied concentrated force influenced on the boundary conditions transition; (3)
a NW can have asymmetric boundary conditions of the clamped–hinged (C–H)
type; and (4) as shown in Fig. 3d and 3e of reference [5], the deflection of a NW
with a relatively large diameter is between a C–C deflection curve and a H–H
curve. Chen et al. also noticed intermediate boundary conditions [58]. All these
experimental observations can be explained by the model presented in reference
[23] as shown in Fig. 13.4. Chen et al. [58] believe that adhesion and its competition
with the applied load is the key to understanding the boundary conditions transition,
and the model proposed in reference [23] confirmed it. In the three-point bending
test for NWs bonded with support by adhesion, the boundary conditions are a
key issue. As indicated in Eq. 13.7, the boundary conditions, being either C–C or
H–H, can contribute to a Young’s modulus evaluation of four times difference.
In our model [23], we find that the NW boundary conditions in general are
the intermediate ones, which is to say that the NW end is neither clamped nor
hinged. The hinged end cannot take any bending moment and a rotation will
occur; the clamped end can take a bending moment and there is no rotation.
For the end with the intermediate boundary conditions, it can take some bending
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moment, but there is also a rotation. The intermediate boundary conditions are
common in many as-grown or as-deposited film/substrate structures [59]. The NW
boundary conditions can be asymmetric, of the clamped–hinged (C–H) type [5,58],
with K� 107 in Eq. 13.7 for the C–H beam in the midpoint test. The effective
structure stiffness of a beam with the intermediate boundary conditions or with
the asymmetric C–H boundary conditions is between that with H–H boundary
conditions and that with C–C boundary conditions. The fact is that a NW with
intermediate boundary conditions or with C–H type during three-point bending test
may offer an insight into the experimental observations that the Ag NW Young’s
modulus is 2–3 times larger than its bulk one [3].

Even in those experiments which assume the C–C boundary conditions, the
researchers all show their concerns for the boundary conditions of NWs under test
and realize the importance of boundary conditions on determining the NW Young’s
modulus [3, 57]. Sliding is one of the mechanisms which may cause the change of
boundary conditions [5,58]. Although the AFM exerts a vertical force, the AFM tip–
NW contact [23] and the midplane stretching during deflection [60] can both induce
a horizontal tensile force which can cause the NW in test to slide. Here, the vertical
direction is the z-axis direction, and horizontal direction is the x-axis direction as
shown in Fig. 13.4a. However, the experimental observations show very little or
no sliding [23]. Lift-off was proposed as another possible mechanism causing the
boundary conditions to change [5, 23]. Unlike sliding which occurs in horizontal
direction and can be observed relatively easily by SEM imaging [61], lift-off occurs
in a vertical direction, which is experimentally difficult to be observed in the three-
point bending test of NWs. Cuenot et al. [62] assumed that strong adhesion should
prevent lift-off, and thus, the boundary conditions should be the C–C type. However,
Chen et al. [58] suspected that under a relatively large applied force, the adhesion
may not be sufficient enough to hold the NW ends clamped. Paulo et al. pointed
out that “the nonideal anchoring using adhesion forces” will introduce “interfacial
mechanical instabilities,” which means the nanobeam may not be “solidly connected
to prefabricated microstructures” [63]. To achieve “a mechanically rigid anchor”
(which is the clamped boundary condition), Paulo et al. [63] used the vapor–liquid–
solid (VLS) method to grow the NWs from small catalyst particles deposited on
a substrate. Similarly, in order to make sure the NWs two ends are clamped after
they are dispersed on a trench, Zhu et al. [1] and Wu et al. [4] enhanced the NWs
bonding with the trench by electron-beam-induced deposition (EBID) welding.
However, the clamps formed by EBID may change the composition and structure
of 1D nanostructure and affect measurement accuracy [17, 28]. The adhesion force
is relatively weak, and its effect stands out only when the surface-to-volume ratio
is large. When the NW diameter is small (the surface-to-volume ratio is large)
and applied force is relatively small, the adhesion effect can be strong enough to
hold the NW two ends clamped. However, when the NW diameter is large or the
applied force is large, the adhesion may not be strong enough to hold the two ends
clamped, which leads to the boundary condition transition from the C–C type to
the H–H one, which has been in Chen’s experiments [5, 58] and Zhang and Zhao’s
computation [23]. In reference [23], a dimensionless parameter is defined, which is
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the key parameter used to show how the boundary conditions changes and given as
follows:

˛ D 4
4
p
2

r
�

�E�R

�
E�

2E1

�3=16
: (13.8)

Here, E� is the reduced modulus. The adhesion effect (�/ and cylinder size effect
(R) are incorporated in the parameter ˛. ˛, in essence, indicates the (order of)
adhesion contribution to the line load, as compared with that due to the Hertzian
contact [23]. ˛ together with the suspension length and external load determines
how the boundary conditions are formed in the three-point bending test [23].

The model presented in reference [23] does not consider the friction effect in
the horizontal direction. When the suspended NW is pushed down, its midplane
is stretched, and a tension force is thus generated. This tension force is balanced
by the NW–trench interfacial friction. When the tension reaches the critical value of
static friction, the NW slides. However, the interfacial shear strength (�) is relatively
large for a NW, for example, � lies between 134 and 139 MPa for Ag NW on Au
substrate [64], and the horizontal force required to cause the NW to slide is so large
that the fracture of NW is observed in the experiment [65]. In general, the deflection
of the suspended NW in a three-point bending test is small, and there is little or no
sliding [61].

13.3.2 Indentation Test

The basic idea on modeling the flexural contact of NB and NW is the same, and the
difference only lies in the different contact pressure due to their different geometries
[27, 28]. The indentation of a flexural NW based on the adhesive cylinder contact
model given by Chaudhury et al. [44] is given in reference [27]. Here, only the NB
indentation is discussed.

Figure 13.5a shows an NB with Young’s modulus EB, Poisson ratio �B, width
2b, thickness t , and length L indented by an atomic force microscope (AFM). The
supporting substrate is with Young’s modulusES and Poisson ratio �S. Here, a three-
spring-in-series system is formed. SpringK1 is due to the bending stiffness of AFM
cantilever; spring K2 is due to the contact between the AFM tip indenter and NB;
spring K3 is due to the contact between NB and substrate. Because there are two
contacting interfaces, the indenter/NB interface and NB/substrate interface, this kind
of contact is also referred to as double contact [7]. In experiment, AFM measures the
travel distance along the indentation direction [14], which is the total displacement
of ı. As shown in Fig. 13.5b, ı consists of three parts: (1) AFM tip normal
displacement due to cantilever bending (ı1), (2) indenter indentation depth into NB
(ı2/, and (3) NB indentation depth into substrate (ı3). Because ı D ı1C ı2 C ı3 and
the three springs are in series (i.e., P=K D P=K1 C P=K2 C P=K3/, the system
compliance is additive, which is 1=K D 1=K1 C 1=K2 C 1=K3. K is the effective
stiffness of the system. K1, K2, and K3 are given as follows [28]:
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Fig. 13.5 (a) AFM indenting a NB on a substrate: a three-spring-in-series system.K1 is due to the
bending stiffness of AFM cantilever; K2 is due to the contact between indenter and NB; K3 is due
to the contact between NB and substrate. L; 2b; t; EB, and �B are the length, width, thickness,
Young’s modulus, and Poisson’s ratio of NB, respectively. (b) The total AFM normal displacement
ı D ı1 C ı2 C ı3. ı1 is the AFM tip displacement due to the cantilever bending deflection; ı2 is
the indenter indentation depth into the NB; and ı3 is the NB indentation depth into the substrate
(After [28])

K1 D Ect
3
c bc

2L3c
; K2 D 4E�a2=R � 3p2�a�1

2a=R � p
��1=.2E�a/

; K3 D 2:01bES; (13.9)

where Ec, tc, 2bc, and Lc are the Young’s modulus, thickness, width, and length of
AFM cantilever, respectively. a is the contact radius, R is the AFM tip radius, and
�1 is the work of adhesion for the indenter/NB contact. When �1 D 0, which is the
nonadhesive Hertz contact,K2 recovers the previous result obtained by Lucas et al.
[16] and Carpick et al. [66] as follows:

K2 D 2E�a D 2E�p
Rı2: (13.10)

Clearly, K2 is a nonlinear function of ı2. E� can be found from Eq. 13.10 as the
following:

E� D K2=.2
p
Rı2/: (13.11)
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In standard indentation test, K2 is extracted from the initial unloading curve
[24, 26] to exclude the plasticity influence. The derivation of K2 does not consider
the influence of tangential friction force [28]. If the indenter and NB have different
elastic constants, the interaction between normal and tangential forces will have
impact on the force–indentation depth curve and make the mechanical property
extraction of NB from the indentation test extremely difficult [67]. In the real-
world application of AFM indentation, the AFM tip cannot be perpendicular to
the sample surface, which causes friction force in tangential direction [6, 66, 68].
Therefore, using a nanoindenter (for vertical loading) in conjunction with an AFM
(for visualization purpose to find 1D nanostructures to indent) is proposed [6,17,18].
One of the remarkable things from the modeling analysis of the flexural NW/NB
indentation is that the indentation depth is independent of the loading location
[27, 28], which is corroborated by Sohn’s experimental observation of the identical
force–indentation depth curves at five different indentation locations of a silicon
NW [10].

Let us have a discussion on how the two-spring-in-series model [16, 66] can
induce the measurement error of NB Young’s modulus and the size effect in
a nanoindentation test. Because the indentation test measures force–indentation
depth, for Eq. 13.10 to be used to extract nanobelt Young’s modulus, modification on
Eq. 13.10 is needed. For Hertz contact, a D 3

p
3RP=.4E�/ (P is the concentrated

load exerted by an indentor), and substituting it into Eq. 13.10, we have [28]

K2 D dP

dı2
D 2E�a D .6E�RP /1=3; (13.12)

where K2 is the slope extracted from the initial unloading curve of P � ı2
experimental data and R is a given value of indenter radius. Therefore, the following
equation is used to extract the NB Young’s modulus from indentation test:

E� D
s

K3
2

6RP
: (13.13)

For the two-spring-in-series model, ı D ı�
1 C ı�

2 ; for the three-spring-in-series
model, ı D ı1 C ı2 C ı3. Suppose that the AFM cantilever stiffness is accurately
calibrated and ı�

1 D ı1. Therefore, ı�
2 D ı2 C ı3, which is to say that physically the

indentation depth of two-spring-in-series model is the indentation depth summation
of the indenter/NB contact and NB/substrate contact. So the extraction of K2 D
dP=dı�

2 from experimental data will differ from the real one of K2 D dP=dı2,
and consequently, Eq. 13.13 can yield erroneous values. Because •3 D P=K3 D
P=.2:01bES/ is NB width (size) dependent, the error of dP=d•�

2 is dependent
on the NB width, which may be responsible for the ZnO NB Young’s modulus
dependence on the width-to-thickness ratio observed in the nanoindentation test
[16, 21]. Shen et al. [12] have realized that large normal indentation load can
cause their NT bending and deformation of substrate, which can influence the
measurement accuracy. So they carefully controlled the normal indentation force
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P up to 16:7 �N. K2 varies nonlinearly with P or ı2. If K2 is not accurately
extracted (e.g.,K2 extracted from the initial unloading curve of P � ı�

2 ), Eq. 13.13
can easily lead to a (wrong) prediction ofP -dependent Young’s modulus of indented
sample as shown in Shen’s Fig. 3 in reference [12]. The similar error on the hardness
measurement of NW/NB may also arise [28].

13.4 Friction of the Flexural 1D and 2D Structures

As shown in Fig. 13.6, a multiwalled carbon nanotube (MWNT) tip attached to a
conventional atomic force microscopy (AFM) probe scans across a single-walled
carbon nanotube (SWNT) suspended over a trench [31]. The coefficient of friction
of 0:006 ˙ 0:003 is obtained for the sliding between NTs, which is comparable
to the reported value of graphite on nanoscale. The shear strength between NTs is
derived to be 4 ˙ 1MPa by using a continuum model, which is nearly 2 orders of
magnitude larger than the interlayer shear strength of 0.05 MPa reported for MWNT
in vacuum. Bhushan et al. [31] attributed the huge difference between the intertube
and the interlayer shear strength to the following two reasons: (1) the presence of
water at the nanotube–nanotube interface in ambient; (2) that the continuum model
(the JKR model) might not be accurate enough for the calculation of the contact
between NTs. Lee et al. [32] conducted the friction tests on four different atomically
thin materials and revealed a universal trend that friction monotonically increased
as the number of layers decreased. Because the four materials in test have widely
varying electronic and vibrational properties (one metallic, one insulating and two
semiconductor materials), as well as the strong substrate effects, Lee et al. [32]

Fig. 13.6 Schematic of the
experimental setup for
tribological measurement.
A MWNT attached to an
AFM scans across a SWNT
suspended over a trench
(After [31])
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Fig. 13.7 A schematic
showing the proposed
puckering effect, where
adhesion to the sliding AFM
tip creates out-of-plane
deformation of a graphene
sheet, leading to increased
contact area and friction; the
color scale of the atoms
indicates their out-of-plane
positions (After [32])

excluded the electronic and phononic dissipations as the cause. Also because they
use an amorphous silicon contact tip, the dislocation mechanism is excluded [32].
The out-of-plane bending as shown in Fig. 13.7, which is referred to as puckering, is
considered by Lee et al. [32] as the only mechanism. Less number of layers means
less bending stiffness. Therefore, under the same normal load, the sheet with less
number of layers bends more, which increases both the contact area and friction
[32]. Conache et al. [65] measured the friction of InAs NW on Si3N4 substrate by
using an AFM to horizontally push the NW as shown in Fig. 13.8a. The following
abnormal friction property as shown in Fig. 13.8b is found [65]: For large wires,
there is a difference between the coefficients of the sliding and static friction of two
to three orders of magnitude. At smaller diameters (around 40 nm), this difference
disappears and the sliding friction values rise to become equal with those for
static friction. Conache et al. [65] interpret this as a transition to stick-slip motion.
Figure 13.8b also shows an increase in static friction with NW diameter, which
Conache et al. [65] ascribed to the consequence of a change in the NW Young’s
modulus due to the oxide shell on NW. It is clearly seen in Fig. 13.8a that during
the friction test, there is a severe in-plane bending of NW. With a fixed length, the
bending stiffness increases with the NW diameter. Therefore, the in-plane bending
should play some role in this friction test.

Despite the heavy volume of work performed, so far there is still no fundamental
understanding of tribological process [69]. Friction, as quoted from Carpick and
Salmeron [69], is “one of the most common, yet least understood, physical
phenomenon.” It may be fair to say that except that friction is ultimately due to the
electromagnetic forces between the electrons and nuclear particles [70], any other
characterization of friction is an open question. The Amontons–Coulomb law states
the following:

F D 	P; (13.14)

where F is the friction force and P is the normal external compression load. 	
is the friction coefficient, which is a constant and independent of nominal contact
area and sliding velocity. There are two types of the frictions: the static and kinetic
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Fig. 13.8 (a) Sliding and static friction experiments performed on a single InAs NW on Si3N4.
This wire was 49 nm in diameter and about 2.5 mm in length. First, the whole wire is translated
uniformly by pushing at its mid-point. Then it is bent into a tighter curve by pushing on one end
at a time. (b) The friction force per unit length versus NW diameter for InAs NWs deposited on a
Si3N4 substrate. The friction is shown on a logarithmic scale (After [65])

frictions [71]. The static friction is the force needed to start sliding, and the kinetic
friction is the force required to maintain sliding [71]. Usually, the static friction is
larger than the kinetic one [71]. If adhesion effect is considered, Derjaguin proposed
the following law [72]:

F D 	.Po C P/: (13.15)

For an adhesive contact, there is still a finite contact area and friction when the
external load P becomes zero [73]. Po is the “internal” load added to external
load to account for the adhesive force [74], and more specifically, Po has the same
magnitude and opposite sign of the pull-off force. However, Eq. 13.15 encounters
some inconsistence of defining the friction coefficient [74]: (1) If the friction
coefficient is defined as a ratio, from Eq. 13.15, we have F=P D	.1C Po=P /.
As Po is fixed for given contacting bodies geometries and adhesion, 	 is not a
constant with varying external load, and 	D 1 when P D 0. (2) If the friction
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coefficient is defined as a slope, then dF=dP D	 is constant. The above friction
laws are just a phenomenological characterization. Despite the success of the
Amontons–Coulomb law, there is no microscopic theory that explains its origins
and wide-ranging applicability [75]. Some analytical theories [76], experiments
[77, 78], and computations [79, 80] show that the static friction (almost) vanishes
between a pair of clean surfaces that deform elastically. Tomlinson presented an
ingenious molecular theory of friction in 1929 [81], which was called by himself as
“molecular plucking action” theory. The basics of Tomlinson’s theory are as follows:
When two molecules come into contact and then separate, they enter the repulsion
and attraction zone of their intermolecular force field. Because of the nonlinear
feature of the intermolecular force, the molecules will experience an instability
jump during the contact-separate process, which loses energy and is manifest as
friction. Muser [82, 83] thinks that this instability jump is an essential thing for
friction, and without this instability, friction should vanish or become extremely
small. However, one challenge is that in most cases the interbulk interactions are too
weak to cause instabilities at the atomic scale [83]. Therefore, the theory that “third
bodies” adsorbed on the contacting surfaces arrange to lock the contacting surfaces
together was proposed [75,83], which can also be used as the molecular mechanism
to explain the Amontons–Coulomb law. From the fracture mechanics viewpoint, the
static friction is the critical tangential force needed to start a mode II crack under
a normal load [84, 85]. Johnson suggests that the principal contribution to sliding
friction comes from propagation dislocation through the whole area of the interface,
i.e., the effective Peierls stress, rather than form nucleation at the periphery [85].
However, as mentioned above, Lee’s experiment results [32] suggest that the Peierls
stress may have nothing to do with friction. Savkoor and Briggs [84] derived the
following friction–load relation (their Eq. 13.19): F / .4��RP C 12�2�2R2/1=2

(notice that their � has the difference of a factor of 2 with ours defined in Eq. 13.2
and the static friction is called by them as the critical tangential force), which
resembles neither the Amontons–Coulomb law nor the Bowden–Tabor law given
as follows. Further confusion on the static friction arises according to the recent
experiment by Ternes et al. [86]. Ternes et al. [86] used an AFM to measure the
force to move a cobalt atom on Pt(111) and Cu(111) surfaces, and they found that
the lateral force to move the atom remained constant, whereas the vertical force
varied by a large factor. In contrast, the Amontons–Coulomb law, “third bodies”
theory [75, 83] and fracture mechanics theory [84, 85] all correlate friction with the
vertical/normal force.

As for the kinetic friction, the argument was raised as early as 1804 by Leslie
who argued that the energy expended on dragging an asperity to the top of another
is simply recovered when it falls down on the other side [74]. Therefore, no energy
is ever lost; the two surfaces should simply continue to move once they are set in
motion without the need of a constant driving force (to overcome the nonexistent
friction force). Some “energy-dissipating” mechanism was therefore called for.
Ultimately, energy is dissipated by conversion of kinetic energy of the moving
bodies into lattice vibrations (heat) [87]. More specifically, the vibrations of the
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surface atoms are damped by energy transfer to bulk phonon modes [88] and in
metals also by electronic excitations [87].

The Amontons–Coulomb law is a phenomenological and macroscopic charac-
terization of friction. At the microscopic level, friction is characterized by the
following Bowden–Tabor law [89]:

F D �A: (13.16)

� is the shear strength and A is the real contact area. According to Bhushan et al.
[90], friction consist of two parts: (1) the force required to shear the junctions formed
at the regions of real contact, which is described by the above Eq. 13.16, and (2)
the force required to plow the surface of the softer material by the asperities of
the harder. It is also important to keep in mind that during the friction test, the
instruments actually measure the lateral forces which arise not only from friction
but also from the local surface slope [69, 90]. Local variations in the microscale
friction of scratched surfaces can be significant and depend on the local surface
slope rather than the surface height distributions [69, 90]. In the friction tests of
the flexural 1D [31] and 2D [32] nanostructures, the bending-induced out-of-plane
deformation should thus contribute more or less the (abnormal) friction observation.

Friction and contact area are measured/calculated in experiment, thus the shear
strength can be obtained as � D F=A [73]. If the interaction force of two contacting
surfaces is van der Waals described by Eq. 13.2, Xu et al. [91] derived � D 0:43�o
(�o is the maximum value given by Eq. 13.2, which is also referred to as the cohesive
strength [36]); if friction is thought to result from the movement of dislocation and
shear strength, it is regarded as the Peierls stress [92], � � G=30 [67, 93]. (1=G D
.2 � �1/=G1 C .2 � �2/=G2. G1, G2 and �1, �2 are the shear moduli and Poisson’s
ratios of the two contacting bodies, respectively.) Because several different contact
models are presented in Sect. 13.2, which give different contact areas, a question
that arises for the real contact is, which model is the appropriate one to describe it?
Carpick’s experiment [73] shows that the JKR model almost perfectly characterize
this real contact even in the range in which the DMT is supposed to apply. There are
still some arguments about this real contact area. At the microscale level, the real
contact area is an ill-defined concept [35, 36]. For example, at the contact edge, the
contact pressure is zero and infinite for the Hertz and the JKR model [35]. At the
molecular level, the contact area between two atoms or molecules is an undefined
and unnecessary quantity [74]. According to Gao et al. [74], the real contact area
is a non-fundamental parameter and the fundamental parameter is the number or
density of atoms, molecules, or bonds.

The Hertz model indicates that the real contact area A / P2=3 and thus
F /P2=3 according to the Bowden–Tabor law, which is inconsistent with F / P

of the Amontons–Coulomb law. Therefore a natural question arises: How does the
Bowden–Tabor law relate with the Amontons–Coulomb law? The simple answer is
the surface roughness because the Bowden–Tabor law characterizes the microscopic
friction and the Amontons–Coulomb law characterizes the macroscopic friction.
Bowden and Tabor [89] gave a straightforward explanation: Because of the surface,
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only small portions of the two surfaces are actually in contact, and all these
contact portions deform plastically, which gives the result that the contact area is
proportional to the external normal load, i.e., P D pmA (pm is the “flow pressure”
and is approximately equal to the hardness of surface layers [94]). However, not
all of the contacting portions deform plastically, and elastic deformation also plays
an important role in contact [95]. In Sect. 13.2, there are two implicit assumptions:
(1) The two contacting surfaces are “molecularly smooth,” and (2) linear elasticity
is used in the derivation of the Hertz, JKR, DMT, and MD models [35, 36]. For
those adhesive contact models such as JKR and DMT models, the contact area
is not proportional to the normal load, either. Fuller and Tabor [96] showed that
adhesion is very sensitive to the surface roughness, which can dramatically reduce
the adhesion effect. Therefore, in the study of the rough surface, the Hertz model
is sufficient. Greenwood and Williamson [95] developed a model considering the
surface roughness and showed how the overall contact area becomes proportional
to the external normal load, whereas each contacting asperity is governed by the
Hertz model. There are three assumptions used in Greenwood and Williamson’s
model [95]: (1) Asperities have a Gaussian height distribution (Persson [70] later
showed that it does not matter whether the distribution is exactly Gaussian or
not; the only important feature of the height distribution is that the number of
asperities of a given height falls off rapidly with increasing height). (2) Asperities
can be treated as having spherical caps (for which the Hertz model applies) and
as being identical except for their heights. (3) “Peaks” on a surface profile, which
are the points higher than their immediate neighbors at the sampling interval used,
correspond to asperities. The third assumption is quite wrong, which was realized
by Greenwood himself quite some time ago [94]. The second assumption also
encounters the “embarrassment” as pointed out by Barber and Ciavarella [97]:
The existence of an apparently inexhaustible sequence of smaller and smaller length
scales is an embarrassment to asperity model theories, because the definition of an
asperity is scale dependent. This scale-dependent model suggests that instruments
with different solutions and scan length yield different values of the statistical
parameters for the same surface [98, 99]. Therefore, the predictions of the scale-
dependent model based on these parameters may not be unique. For example,
Greenwood and Williamson defined a dimensionless parameter called “plasticity
index,” which measures the extent of plastic deformation to be anticipated in elastic–
plastic asperity contact and is given as  D .E 0=H/

p
�=ˇ (E 0, reduced modulus,

and H , hardness; � , the standard deviation of the surface height distribution,
and ˇ, the radius of asperity which is treated as a spherical cap by Greenwood
and Williamson’s 2nd assumption). Clearly, this plasticity index depends on how
the surface is measured (� and ˇ). Furthermore, this plasticity index appears to
increase without limit as the sampling length is reduced. Another example is that
Persson et al. [100, 101] defined a dimensionless parameter called magnification,

 D L=� (L is the arbitrarily chosen reference scale of the lateral size of the nominal
contact area; � is the shortest wavelength roughness which can be resolved at
magnification 
), and they found that the contact area decreases with the increasing
magnification! Furthermore, the fact that surface has hierarchical (or say, fractal)
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structure also challenges Greenwood and Williamson’s second assumption. Archard
in 1957 presented a truly prescient “protuberance on protuberance on protuberance”
model [102], which in essence is to say that the surface is fractal. Again, Archard’s
model [102] demonstrates how the overall contact area becomes proportional to
the external normal, whereas each protuberance/asperity is governed by the Hertz
model. The basic idea of the Archard’s model is like this [70, 102]: Of the primary
result of increasing the load is to cause existing contact areas to grow (as described
by the Hertz model), then the real contact area will not be proportional to the load.
But if the primary result is to form new contact areas of contact, then the area and
load will be proportional (as described by those surface roughness models [96,102]).
To avoid the dilemma of the above scale-dependent asperity models, Majumdar
and Bhushan [98, 99] used the Weierstrass–Mandelbrot function to characterize the
fractal surface as the following:

z.x/ D G.D�1/
1X
nDn1

cos .2��nx/

�.2�D/n
; (13.17)

where z.x/ is the surface profile, G is a scaling constant, and D is the fractal
dimension; the frequency modes �n correspond to the reciprocal of the wavelength
of roughness as �n D 1=�n. The above Weierstrass–Mandelbrot function has the
following self-affine property:

z.�x/ D �.2�D/z.x/: (13.18)

As 1<D<2 and � >1, Eq. 13.16 converges and the advantage of this fractal char-
acterization stands out: z.x/ is composed of a superposition of infinite frequency
modes, it is a multiscale function, and there is no need/worry on the truncation
problem at small scales as encountered by the above asperity models. Choosing � is
essential as Eq. 13.17 takes its power to form a geometric series. � D 1:5 was taken
by Majumdar and Bhushan [98,99]. However, the choosing of � and the whole idea
of the multiscale characterization of surface as given by Eq. 13.17 are challenged by
Greenwood and Wu [94]. The main argument of Greenwood and Wu [94] is based
on the following statement given by Greenwood and Williamson [95]: “When the
asperity has been compressed to the stage shown, the micro-asperities may possibly
have some influence on the actual area of contact, but the nature will depend on the
large scale geometry of the asperity.”

It should be kept in mind that the above Amontons–Coulomb law and Bowden–
Tabor law only characterize the shearing part of friction. As stated before, friction
consists of two parts [90]: shearing and plowing. Plowing can play more important
when the load is large. Bhushan and Kulkarni’s experiment [103] shows that
the Amontons–Coulomb law breaks down, which is that coefficient of friction
increases with the normal load due to plowing. The Amontons–Coulomb law
should only apply for the chunky structure such as a sphere or a block, in which
the deformation only occurs around the contacting interface as discussed at the
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beginning of Sect. 13.3. Increasing normal external load brings more contact area
either by enlarging the existing contact area as described by those contact models
given in Sect. 13.2 or by bringing more new asperity into contact as for a rough
surface, which is true for a chunky structure but not necessarily true for a flexural
structure. If the main function of the external normal load is not to increase
the contact area, the Amontons–Coulomb law breaks down as shown by Yang
et al. [104] in the contact of NT rafts. Because the NT’s Young’s modulus in
the radial direction is relatively small compared with its Young’s modulus in the
axial direction, which leads to relatively large cross-section deformation, the work
done by the normal pressure is transformed more into the elastic energy rather
than to increase the contact area, which leads to the breakdown of the Amontons–
Coulomb law [104]. Besides the cross-section flexurality of the shell structure, the
bending flexurality may play more important role in determining the contact area as
discussed in Sect. 13.3 (for solid NW and NB, there is no worry on the cross-section
flexurality). To use the Bowden–Tabor law to characterize the friction problem of
the flexural 1D and 2D, the good news is that the tangential friction force will
not change the contact area [85]. However, we still face the following additional
difficulties or challenges. Firstly, it is to describe the contact area between indentor
and flexural nanostructure. The flexural contact models in Sect. 13.3 are about the
contact between the flexural nanostructure and substrate. The contact models of
Sect. 13.2 used to predict the contact area are for the nonconforming contact [42],
which is that two contacting surfaces have dissimilar profiles. As seen in Fig. 13.7,
due to the bending of the graphene sheet, the sheet closely wraps the indentor, which
may form the conforming contact or say, the classical contact model may break
down as pointed out by Bhushan et al. [31]. Because the dimensions of the contact is
very small compared with the relative radii of curvature of the surfaces, the relative
radii of curvature .R/ is not influenced by the contact deformation and assumed to
be a constant [42]. Here 1=R D 1=R1 C 1=R2 (R1, R2 are the radii of curvature of
the indentor and nanostructure, respectively). As seen in Fig. 13.7, R1 of indentor
is safe to be assumed constant, but R2 of the graphene sheet is not. R2 should vary
with the normal load and location. Because the constantR is an important parameter
used in the kinematic assumption to derive the contact model [42], the variation of
R2 may make the contact model to deviate more or less. Also, the elastic half-space
model/assumption is also applied in the contact model derivation [42]. The tiny
dimensions of the flexural 1D and 2D nanostructures for sure will break the elastic
half-space assumption, the substrate effect [28, 29] must be considered. Secondly,
it is to evaluate the surface slope effect induced by the bending. Unlike the local
surface slope due to surface roughness which has a fixed titling angle [69, 90],
the local surface slope induced by the bending of the flexural structure varies with
the normal load and mechanical properties of the flexural structure and substrate.
It is expected to be rather difficult to characterize. In general, the indentor–flexural
structure–substrate forms a rather complex coupled system, which is the essential
challenge for modeling the friction of such system. Thirdly, in atomic scale, the
classical contact mechanics breakdown physically due to the atomic-scale roughness
[105]. Equation 13.2 of surface interaction due to LJ 6–12 potential works fine when
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the surface separation is less 10 nm [106]. Due to surface roughness, the LJ 6–12
cannot accurately describe the surface interaction when the surface separation is
more than 50 nm [106]. The Casimir force needs to be brought in to model the
contact [106,107]. Furthermore, this review is limited to the dry contact. Once there
is liquid trapped between the two contacting surfaces, the capillary effect may play
a more important role in contact [106]. Fourthly, at nanometer scale, friction is also
influenced by the way how the two contacting crystalline surfaces align, i.e., the
degree of commensurability [70,75,108]. For 1D nanostructure, the combination of
the sliding and rolling motions can arise due to the change of alignment/orientation
of 1D nanostructure [65, 109].
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