
AN OPTIMIZED ALGORITHM FOR DISCRETE ELEMENT SYSTEM 
ANALYSIS USING CUDA 

Zhaosong Ma, Chun Feng, Tianping Liu, Shihai Li 
Institute of Mechanics, Chinese Academy of Sciences  

In this paper a parallel computing algorithm for discrete element systems is presented. 
The discrete model is consisted of finite elements and contacts among the elements. The 
algorithm is realized using C++ and CUDA and was optimized for NVIDIA GPUs. As a 
result, the performance of the GPU code is 43 times faster than the sequential code on 
CPU. The parallel algorithm, the optimism strategy, and the test results are discussed. 

INTRODUCTION  

The CDEM method is a kind of combined discrete-finite element system, which is consisted 
of finite elements and contact interfaces among the elements. A contact interface contains several 
springs that connect the two nodes of the elements of the both side, as was introduced in the 
theses [1] [2]. In the thesis [2], we introduced a parallel algorithm for continuous problems, but it 
was not available for discrete problems. 

In this paper, a parallel algorithm for discrete problems is introduced, which is also realized 
on GPU, programmed with C++ and CUDA. 

PARALLEL ALGORITHM  
The method consists of three procedures: element elastic calculation, contact force calculation 

and dynamic response calculation. The element elastic calculation uses stiffness matrix to obtain 
nodal forces, given a set of nodal displacements. The contact calculation is to determine the 
springs’ condition, and to calculate the spring forces.  

The parallel algorithm meets a problem of access conflict, as shown in Fig 1. When the spring 
forces are calculated in parallel, the forces may be accumulated in the same place, for example, 
node 3 of element 1. This may lead to write conflict.  

 

Element 1

Element

1 

Element 2

Element 3

2 3 

4 

Spring

 
Fig 1. Elements and springs 

To resolve the problem of write conflict, a spring force group strategy is used. The spring 

-  170 - DEM6 - International Conference on DEMs



force group works as a buffer or cache. First, the spring forces are calculated in parallel and 
stored in the spring data structure, separately. Then, the spring groups are calculated in parallel, 
each thread accumulates spring forces and save the results in the associated node. A spring group 
is presented by a data structure which stores a pointer to the associated node and 2 pointers to 
springs (in 2D cases) or 3 pointers to springs (in 3D cases), as shown in Fig 2. 

Element 1

Spring 

-> Spring 

Element 2

Element 3

-> Spring 

-> Node 

 
Fig 2. Node group linkage 

Now both the element calculation and the contact calculation are parallelized. The problem of 
write conflict in element calculation is resolved in the very same way of thesis [2]. So the 
flowchart of the whole procedure is given in Fig 3. 

 

Element calculation 

Nodal force redistribution 

Global synchronization 

Element calculation Element calculation … 

… 

Preprocessing Copy data to GPU 

Meet iteration conditions? 

Yes 

Post processing End 

Nodal force redistribution Nodal force redistribution 

Contact calculation 

Global synchronization 

Contact calculation Contact calculation … 

Sping force accumulation … Sping force accumulation Sping force accumulation 

 
Fig 3. Flowchart of the parallel algorithm  

-  171 - DEM6 - International Conference on DEMs



OPTIMIZATION STRATEGIES 
The program is written in C++ and developed based on the CUDA architecture, version 3.0. 

The shared memory strategy is used to maximize the memory bandwidth. Because the springs of 
a contact (four normal, eight tangential for quadrilateral contact as an example) share the 
common contact, and thus have a common transformation matrix, we load the transformation 
matrix into shared memory, so that one copy of the matrix can be used by multiple threads that 
calculate spring forces. The process of loading matrix is also in parallel, each loading of a 
column is assigned to a thread. Besides, the bandwidth of shared memory is much wider than 
that of conventional memory. 

The best performance is achieved when the thread number (each block) is 256 for element 
calculation (whatever single or double precision). For double precision contact calculation, the 
thread number is 128, for single precision contact calculation, the thread number is 256. The 
program has been tested on NVIDIA GTX 285, GTX 480, GTX 460, GTX 580, and Tesla C2070. 
Some performance results are given in Table 1. 

RESULTS 
In the first case, the GPU boosts performance by up to 43 times, the damage state is shown in 

Fig 4. In the second case, the model is too large for the CPU program to achieve convergence in 
time. 

 
Fig 4. Displacement result of the 111,322 elements landslide simulation 

 

-  172 - DEM6 - International Conference on DEMs



Test case  Platform  Time cost 
(CPU) Time cost (GPU) 

111,322 elements with 
216,923 contacts 

Intel I5 3.30 GHz / 
NVIDIA GTX680 

532.82 s/kilo 
step 12.41 s/kilo step 

995,181 elements with 
1,954,671 contacts 

Intel Xeon E5506 2.13GHz 
/ NVIDIA GTX580 - 76.20 s/ kilo step 

Table 1. Performance results 

ACKNOWLEDGMENTS  
This work was sponsored by The National Basic Research Program (2010CB731500).  

REFERENCES  
1.  Li SH, Zhao MH, Wang YN, Rao Y, ‘A New Numerical Method for DEM-Block and 

Particle Model’, International Journal of Rock Mechanics and Mining Sciences, Volume, 
No.3/41, 436, 2004. 

2. Zhao Song Ma, Chun Feng, Tian Ping Liu, Shi Hai Li, ‘A GPU Accelerated 
Continuous-Based Discrete Element Method for Elastodynamics Analysis’, Advanced 
Materials Research, Volume, No.320, 329-334, 2011.  

-  173 - DEM6 - International Conference on DEMs




