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Abstract 

A fast dynamic mesh method based on radial basis function (RBF) is developed, which can be suitable of the mesh 
deformation of any kind of topology. In order to improve the deforming efficiency, firstly, a searching algorithm coupling with 
a reduced surface point option is used for the choice of control points; then the RBF can be determined by the coordinates and 
deforming displacements of these control points; then, the deformations of volume mesh are calculated by point-to-point; lastly, 
the new mesh can be obtained by adding the deformations to the original mesh. To validate the deforming capability, several 
two- and three-dimensional meshes with rigid rotation are performed. Then, the method is used for the aeroelasticanalysis of 
the AGARD 445.6 standard model. 
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Nomenclature 

u X  displacement 

X  surface point location 
 radial basis function 
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p linear polynomials 

i  interpolation coefficients 
A interpolation matrix

 

M matrix for the solution of coefficients

 

1. Introduction 

Fluid-structure interaction, multi-bodies motion, aerodynamic optimization and multi-disciplinary design 
optimization need to move CFD mesh based on deforming geometries. The deformed mesh quality, deforming 
efficiency, and deforming ability are very important for these complex flow simulations. Further, it may be the 
best if the developed mesh deformation method can be suitable of the mesh deformation of any kind of topology. 

In the past decades, the Transfinite Interpolation (TFI) was extensively used for mesh deformation [1-3]. Since 
TFI is an algebraic method, it has higher efficiency, however, which is only suitable of structured mesh 
deformation. Supposing the edges of mesh cell as linear spring, Batina [4] proposed a spring analogy for 
unstructured mesh deformation. For two-dimensional unstructured mesh, Fahart[5] extended its capability by the 
addition of a torsional spring. Based on the geometrical character of tetrahedron mesh cells, Burg [6] established a 
three-dimensional torsional spring network model, which is robust for three-dimensional unstructured mesh 
movement. However, these methods have lower computational efficiency due to the necessary of iterative 
calculation, and also only suitable for unstructured mesh. 

Liu [7] provided a fast dynamic mesh method with Delaunay graph mapping, which is suitable of any 
topological mesh, however, the Delaunay graph is hard to construct for complex geometrical configuration. 
Combined with spring analogy, the authors developed a background mesh deformation method [8-9]. Firstly an 
unstructured background mesh is generated, which is solved with Burg’s spring network method and only for the 
mesh deformation, then the interpolation relation between background mesh and the original CFD mesh can be 
pre-constructed based on volume weighting. After the deformation of background mesh is obtained, it is easy to 
determine the CFD mesh deformation with the interpolation relation. The method can be used for any topological 
mesh movement for complex geometrical configurations.However, its efficiency is still lower. 

Recently, a new mesh deformation method based on radial basis function (RBF) interpolation was put forward 
by Boer [10-11], which only use CFD surface mesh nodes to establish the interpolation coefficients and the 
deformations of the volume mesh nodes was calculated with the RBF. The method is also independent of mesh 
topology. However, its efficiency is related with the number of CFD surface mesh points. 

In the paper, the minimum number of control points is searched based on a reduced surface point option. Since 
the RBF interpolation is constructed only with these selected control points, the mesh deformation efficiency can 
be improved largely. The ARGARD 445.6 aeroelasticstandard modelis then analyzed with the new mesh 
deformation method. 

2. Dynamic mesh method 

2.1. RBF interpolation 

The solution of Fluid Structure Interaction (FSI) problems need to interpolate the surface data between the 
displacements of structure and the loads of fluid. As the solutions of structure model with the plate assumption 
and the aerodynamic loads with linear aerodynamic model, the two-dimensional Infinite Plate Spline (IPS) is 
extensively adapted. As the aerodynamic loads solved with nonlinear Euler or Navier-Stokes equations, three-
dimensional surface interpolation needs to be used.    RBF was put forward by Wendland et al [12] for the three-
dimensional data interpolations between fluid and structure. The interpolation takes the form 
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Here,u X  is the displacement to be evaluated at surface point location of X, iX X  is the radial 

basis function which can be taken as different types of functions, iX is the location at which displacement is 

known, p X is linear polynomials so that translation and rotation are recovered, the coefficients of i  need to 

be solved by requiring exact recovery of the known displacement at iX . Typically, the Euclidean norm is used, so 
that  

2 2 2
i i i iX X x x y y z z

                                                (2) 
With the known coordinates and displacements of iX  substitute in to X of Eq. (1), N equations can be obtained. 

Based on total force and moment equilibrium, another four equations can be determined. Then the unknown 
coefficients of i can be solved with any exact solution of algebraic equations, in the paper, LU decomposition is 
used. Therefore, any other surface point of X substitutes into the RBF, then its displacement can be obtained. Its 
accuracy and efficiency has been widely testified for the surface data interpolation in the solution of FSI problems. 

Recently, the method was extended for dynamic mesh deformation [10-11]. Generally, taken the total surface 
points and far-field boundary points as assembles ofin Eq. (1), the displacements on the surface points of CFD 
mesh are known by the CSD solution or the rigid rotation and translation. The RBF can be constructed with the 
above same method and then the deformations of volume mesh points are calculated by point-to-point.  However, 
the dimensions of RBF algebraic equations solved are very large, its computational consuming increases quickly 
as the dimension of equation group. Another Eq. (1) needs to be repeated to use at each time step. In order to 
improve the deforming efficiency, the reduced surface point option has to be studied.   

2.2. Reduced surface point option 

For the CFD mesh deformation, the far-boundary points are generally assumed to be fixed, namely, whose 
displacements are taken as zero. Several control points can be uniformly selected at far-boundary as control points. 
How to select the minimum number of surface points needs to be studied in detail. Before the CSD solution, the 
displacements of CFD surface mesh points are unknown,therefore a criterion of reduced point option needs to be 
provided. In the paper, the unit deformation in the three coordinate directions are assumed, then the error between 
exact unit deformation and interpolating deformations at the each surface point can be calculated as 

11 1x y z
i ie e e AM                                                                      (3) 

Here, the interpolation coefficients can be determined by  based on the selected control points. is the 
interpolation matrix obtained with the surface point (x,y,z) into the known RBF function of (1). 

The processing of the surface point selection is as follows. First, 4 control points are selected randomly from 
the CFD surface points; then a RBF interpolation is constructed based on the 4 control points; then the maximum 
of errors is searched for all of the CFD surface points; then this surface point with maximum error are added to be 
as new a control point. Repeating the above searching, as the maximum error is less than the given value, we can 
get the control points needed. 

As an example, CFD surface mesh is generated with , namely, total 4758 points on the upper and lower 
surfaces of a wing as shown in figure (1a). Through the above searching, only 370 control points are obtained as 
the maximum is less than the error of 1.e-4.  
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                                 (a)                 (b) 

Fig. 1 CFD surface mesh and control selected by RBF 

2.3. Dynamic mesh deformation 

Through the above searching, the CFD surface control points and their corresponding displacements are known. 
The control points at CFD far-boundaries are distributed with several points. In the paper, only 5 points are 
selected uniformly at each far-boundary surface, whose displacements are set to be zero. The total control points 
and their displacements are substituted into Eq.(1). Then RBF coefficients can be solved by any solution method 
of algebraic equations such as LU decomposition. After RBF is solved, the displacement of any volume mesh 
point can be determined. 

To validate the deformation method, 4 cases of mesh deformation from simple to complex configurations 
are calculated.  

Fig.2 (a) shows the structured mesh for the NACA0012 airfoil and the surface control points selected. We 
assume that the airfoil rotates 300 based on the quarter chord-wise position. The mesh after deformation shown in 
Fig.2 (b) indicates that the mesh quality is good as the original mesh. 

 
(a) (b) 

Fig.2 Mesh deformation for NACA0012 airfoil with 300 rotation 
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Fig. 3(a) shows the multi-block structured mesh for the NLR7301 two-element airfoil and the control points 
selected. The flap is assumed to rotate 200 with its leading-edge. The dynamic mesh shown in Fig. 3(b) also 
indicates that the mesh quality is conserved. 

 

 
(a)                               (b) 

Fig.3 Mesh deformation for two-element airfoil with 200 deflection of flap 
 

Fig. 4(a) shows the swept wing of Fig. (1) with 20% deformation of span length at the wing tip. Fig. 4(b) gives 
the mesh comparison before and after the deformation, which indicates the mesh quality can be conserved. 

   
(a)                  (b) 

Fig. 4 Mesh deformation of a swept wing with spanwise bending 
 

Fig. 5(a) shows the multi-block mesh of a complex aircraft with wing/body/nacelle. We assume the aircraft 
rotates 300 around quarter axisalong longitudinal direction. Fig.5(b) shows the comparison before and after mesh 
deformation.  

 
 

(a) (b) 
Fig. 5 Mesh deformation for a wing/body/nacelle configuration with rigid rotation 
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  Though the above 5 examples of mesh deformation, it indicates that the developed method can conserve the 
higher mesh quality and possess higher efficiency. The method can be used for aeroelasticanalyses and 
optimization design.  

3. Aeroelastic Analyses 

The weakened model of transonic aeroelastic wing of AGARD445.6 [13] is considered. The wing shape and 
mesh are shown in Fig.1 and Fig.4. Fig.6 (a-c) shows only the time histories of generalized displacement of the 
first four structural modes at Mach number of 0.96 with different air densities. The comparison of the generalized 
displacement of first mode is shown in Fig. 6(d). The experimental flutter air density is 0.000123slugs/ft3, the 
calculated results agree with experiments very well. It indicates the mesh deformation method can be suitable of 
aeroelastic analyses.  
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(d) 

Fig.6  Time histories of generilised displacement at M=0.96 

4. Conclusion 

A mesh deformation method based on RBF and reduced point option has been developed in the paper, which can 
conserve higher mesh quality and has higher computational efficiency. The method is suitable of the mesh 
deformation of any mesh topology. It indicates preliminary that the developed method can be used for the 
aeroelastic analyses and optimization design.  
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