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Molecular dynamics �MD� simulations are used to compute the flow stress of amorphous metallic nanowires
that are deformed at temperatures near the glass transition. The simulations predict a strong size dependence of
flow stress and predict the existence of a critical wire radius that minimizes the flow stress. Examination of the
cross sections of the wires shows evidence of significant free-volume nucleation and diffusion during straining.
The MD results are interpreted using a simple analytical model that assumes that the wire deforms by a
combination of viscous flow, together with a diffusional deformation process in which free volume is continu-
ously nucleated in the interior of the wire, and subsequently diffuses to the surface. The predictions of the
model are in good qualitative agreement with simulation results. The analytical model is used to estimate the
critical wire dimensions where this diffusional mechanism is likely to replace viscous creep at time scales that
are inaccessible using MD simulations.
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I. INTRODUCTION

Amorphous materials have a wide range of attractive
properties, including good structural stability and formabil-
ity, and their unique microstructure and composition pro-
vides opportunities to tune their performance through mi-
croalloying. There is currently particular interest in
developing techniques to fabricate and test submicron and
nanoscale components of amorphous materials.1–3 This is
partly motivated by applications: for example, metallic
glasses have been successfully utilized for precision compo-
nents such as miniaturized geared motors in microelectrome-
chanical systems.4 In addition, tensile and compression tests
on amorphous nanowires �NWs� provide a novel approach to
probe the underlying mechanisms of deformation in metallic
glasses, which have been the subject of much debate. Recent
experimental observations of large tensile deformability1 and
homogeneous compressive deformation2,3 in metallic glass
nanopillars are particularly intriguing and suggest that the
large surface area to volume ratio in these specimens pro-
vides a mechanism to prevent the formation of shear bands,
which typically limit the ductility of bulk tensile specimens
at room temperatures. Further, machine stiffness and sample
size in combination may play a role for plasticity in metallic
glass micropillars.5

Existing studies of the size dependence of flow stress in
nanowires have largely focused on deformation at room tem-
peratures. In this paper, our goal is to investigate flow
mechanisms in nanowires at temperatures close to the glass
transition. To this end, molecular dynamics �MD� simula-
tions are used to model the uniaxial tensile deformation of
amorphous Cu50Zr50 nanowires. Atomic interactions are ap-
proximated using a mixed embedded atom potential, which
yields an onset glass transition temperature for the bulk
amorphous glass of about 700 K. Model nanowires with radii
ranging from 3 to 20 nm are deformed at temperatures rang-
ing from 300–1000 K and nominal strain rates of order
108 s−1. The nanowires show no signs of developing the

shear bands that typically limit the ductility of bulk amor-
phous specimens and instead fail by necking at strains that
exceed 100%. The flow stress of the wires is strongly sensi-
tive to strain rate and temperature, suggesting that deforma-
tion occurs at least in part due to viscous flow. In addition,
the flow stress of the nanowires �at fixed strain rate� is found
to be strongly dependent on wire radius. The flow stress is
minimized at a critical wire radius, which appears to be only
weakly dependent on strain rate and temperature.

An examination of the cross sections of the nanowires
shows evidence of extensive free-volume nucleation, as well
as migration of atoms from the surface of the wire toward the
interior. This suggests that, as the wire radius is reduced, the
deformation mode transitions from predominantly viscous
flow �in large wires� to a process that involves continuous
nucleation of free volume within the bulk of the wire, which
subsequently diffuses to the surface. Nucleation of free vol-
ume is known to play a central role in controlling deforma-
tion in amorphous materials. In particular, local free-volume
nucleation and diffusion accommodates shearing in shear-
transformation zones �STZs�.6 It is thought that large gradi-
ents in free volume, such as those that occur in shear bands,
can also give rise to diffusion. Long-range diffusion of free
volume is not normally regarded as a mechanism of defor-
mation, although fast diffusion of single elements in amor-
phous materials has been observed at sufficiently high
temperatures.7–10 Recent molecular dynamics simulations
also suggest that long-range diffusion is feasible under cer-
tain conditions.11–13 Drawing an analogy from polycrystal-
line materials—where deformation is accommodated by
competing mechanisms with relative contributions deter-
mined by different rates—we suggest that such kinetics may
apply to the deformation in amorphous solids at sufficiently
high temperatures.

To this end, we develop an approximate analytical model
of deformation in amorphous nanowires by a combination of
diffusion and viscous flow. The model gives closed-form ex-
pressions for the stress and strain rate distributions in the
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wire, as well as the flow stress as a function of wire radius.
With relevant model parameters estimated from MD simula-
tions, the model predictions show good agreement with the
simulation results.

Due to the limitations of molecular dynamics, direct nu-
merical simulations are possible only for wires with very
small diameters that are subjected to high strain rates. These
conditions would be difficult to achieve in experiments. Con-
sequently, we use our analytical model to estimate the con-
ditions where the diffusional mode of deformation is likely
to occur in preference to viscous creep in larger wires
and lower strain rates. Our estimates suggest that, in
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 �Vitreloy 1� deformed at 400 K,
diffusional flow may play a role in nanowires up to 100 nm.

The remainder of this paper is organized as follows. In
Sec. II, we describe some details and principal results of our
MD simulations. In Sec. III, we present an analytical model
of deformation by coupled viscous flow and diffusion and
discuss briefly the behavior predicted by this model. The MD
simulations are compared to the analytical model in Sec. IV
and in Sec. V, we use the analytical calculations to estimate
conditions under which diffusion is likely to replace viscous
creep.

II. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics simulations were performed on
model nanowires of undercooled amorphous Cu50Zr50.
This material has been extensively studied both
experimentally14,15 and numerically.16–18 The system was
idealized using the mixed embedded atom method �EAM�
potential19 supplied in LAMMPS.20 The glass transition tem-
perature was estimated by computing the specific-heat capac-
ity of the solid as a function of temperature using a 12 nm
cubic unit cell consisting of 108 000 atoms with periodic
boundary conditions. These simulations were performed at
constant temperatures and null pressure. Figure 1 shows the
specific heat vs. temperature for the binary metallic glass
system. A rapid change of heat capacity—which is associated

with the glass transition—is observed at 710 K. The esti-
mates of glass transition temperature from our simulation
agree reasonably well with experimental results �650–730 K
�Ref. 15�� and with MD simulations using different atomic
interactions �e.g., 620 K �Ref. 18��.

Our simulation sample is prepared in following steps.
Starting from a randomly mixed sample of 850 000 Cu at-
oms and 850 000 Zr atoms at T=3000 K in a cuboid of 20
�20�70 nm3, we relax the system under periodic bound-
ary condition and null pressure for 1 ns. We then cool down
the cuboid to 300 K at a rate of −1000 K /ns. It is noted that
the cooling rate also affects the properties of an amorphous
sample in MD simulations.21 We note in passing that MD
simulations will never be completely realistic; even if we
anneal for the longest possible time, we will probably not
achieve the true material state. The purpose of simulations
shown here is to predict qualitative trends and to reveal the
underlying physics.

Amorphous Cu50Zr50 nanowires were generated from a
dog-bone-shaped cylindrical domain out of the cuboid, as
shown in Fig. 2�a�. A typical wire has diameter between 3
and 20 nm, length ranging from 17 to 70 nm, and contains
between 8491 and 1 055 423 atoms. The radius of the wire is
reduced slightly away from the two ends to minimize bound-
ary effects. The length of the region with uniform radius is 3
times the wire diameter in all simulations. The sample was
heated up to a designated temperature and then relaxed for
100 ps at null pressure and constant temperature. The sample
was deformed by fixing the atoms at one end and applying a
constant velocity v to the atoms at the other end of the speci-
men. The average of the virial stress component along the
wire axis in the region with uniform radius is taken as the
macroscopic stress of the wire during its deformation. At
finite strains, this stress measure differs from either engineer-
ing stress or true stress, but can be interpreted as true stress
for small deformations �while the wire deforms homoge-
neously�.

Figure 2�c� shows the deformation of the 15 nm nanowire
during straining at 300 K at a strain rate of 2�109 s−1.
During the initial stages, the wire deforms homogeneously. A
neck begins to form near the center of the specimen at a
nominal strain of order 10% and the specimen eventually
fails by necking. There is no evidence of shear band forma-
tion, which typically limits the ductility of bulk amorphous
materials deformed at room temperature. Figure 2�d� shows
the deformation at 1000 K and strain rate 2�109 s−1: under
these conditions, the wire deforms homogeneously up to
100% strain.

The corresponding stress-v-strain curves for the 15 nm
wire are illustrated in Fig. 3 for temperatures ranging from
300 to 1000 K and strain rates of 2�108 and 2�109 s−1.
The stress-strain behavior is clearly sensitive to both tem-
perature and strain rate. Even at room temperature, a strain
rate sensitivity of m�0.1 is seen, where the stress exponent
m=� ln � /� ln �̇ can be interpreted as the slope of a graph of
log��� as a function of log��̇�. At T=1000 K, m approaches
0.35. The increase in rate sensitivity at high temperatures
delays the development of a neck and at 1000 K, the speci-
men deforms homogeneously up to 100% strain �see Fig.
2�d��.
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FIG. 1. Specific heat vs temperature for the binary metallic glass
system Cu50Zr50 using a mixed EAM potential. A rapid increasing
of the heat capacity �in units of k, the Boltzmann constant� is ob-
served for temperatures between 700 and 1100 K and the onset of
glass transition temperature Tg is determined to be around 710 K.
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The influence of wire diameter on flow stress is illustrated
in Fig. 4, which shows stress-v-nominal strain curves for
nanowires with diameters between 3 and 20 nm, deformed at
700 K �just below the glass transition temperature for the
solid�, and at strain rates of 2�109 s−1 �Fig. 4, left� and 2
�108 s−1 �Fig. 4, right�. A size effect is predicted: wires
with 3 nm diameter show higher strength than 5 and 8 nm
wires and this behavior is consistent with recent simulations
of room-temperature straining of Ni50Zr50 reported by
Delogou,22 which showed an increase in strength as wire
radius was reduced from 6 to 1 nm. More interestingly, the
strength of wires becomes higher as wire radius change from
8 to 10, 15, and 20 nm.

We propose that this size effect during elevated tempera-
ture straining can be attributed to a change in the deforma-
tion mechanism as the wire diameter is reduced. Large nano-
wires deform predominantly by viscous flow �the
deformation mechanism in bulk amorphous materials near
the glass transition�. In contrast, smaller nanowires appear to
deform by a diffusional mechanism. In this process, free vol-
ume is continuously nucleated near the center of the wire and
subsequently diffuses to the wire surface. Nucleation of free

volume causes a dilatation of the amorphous network, which
is balanced by a flux of atoms from the surface. The dilata-
tion leads to a steady increase in the length of the wire, while
wire radius decreases as atoms at the surface rearrange to
accommodate the free-volume flux so that the overall vol-
ume of the specimen remains approximately constant.

Direct evidence for nucleation and diffusion of free vol-
ume can be seen in Fig. 5, which shows the arrangement of
atoms in a cross section of a nanowire with 15 nm diameter,
both �a� before deformation and �b� after 60% strain at 1000
K and at the strain rate of 2�109 s−1. A substantial increase
in free volume can be seen near the center of the wire. In
addition, atoms near the surface of the wire have clearly
migrated a significant distance toward the center of the wire.
Figure 6, which shows the radial mean-square distance vs.
time for atoms in the slice of the specimen shown in Fig. 2,
gives a more direct measure of the rate of diffusion in the
specimen. Quantitative measures of diffusivity will be given
in Sec. IV.

To demonstrate that hydrostatic stress can readily nucleate
free volume in amorphous solids and to quantify the rate of
free-volume nucleation as a function of hydrostatic stress, we
have conducted a series of simulations in which a cubic
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FIG. 3. �Color online� Uniaxial stress vs nominal strain curves
for a nanowire with diameter 15 nm and length 57 nm deformed at
strain rates 2�108 and 2�109 s−1 at 300, 700, and 1000 K. The
sample was only strained to 20% at the strain rate of 2�108 s−1.
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FIG. 4. �Color online� Uniaxial stress vs nominal strain curves
for nanowires with diameters from 3 to 20 nm at a temperature 700
K and at strain rates 2�109 s−1 �left� and 2�108 s−1 �right�.
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FIG. 2. �Color online� Typical glassy Cu50Zr50 nanowire studied in molecular dynamics simulations. Colored atoms at the two ends of the
specimen are subjected to prescribed velocities to simulate uniaxial tensile straining at constant strain rates. Colored atoms near the center
of the specimen are used to analyze deformation. �a� Layout of self-similar samples with diameter d. �b� Initial specimen. �c� Necking at 300
K and 2�109 s−1. �d� Homogeneous deformation at 1000 K and 2�109 s−1.
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specimen of amorphous Cu50Zr50 with side length 15 nm and
containing 187 731 atoms �cut from the cooled cuboid� was
subjected to constant tensile stress normal to its faces. Peri-
odic boundary conditions are applied to the cell. The sample
is first relaxed at a given temperature and null pressure for
200 ps and then loaded by hydrostatic tension with a loading
rate of 1 MPa/ps. The pressure is held fixed once it reaches
300 MPa. The volume of the simulation cell at constant pres-
sure is then computed as a function of time. The resulting
increasing volumetric strain in the cube at 300 MPa and 700
K is plotted in Fig. 7. We observe a transient increase in the
volume of the simulation cell as the free-volume concentra-
tion increases to a new equilibrium value. This behavior is
characterized using phenomenological constitutive equations
described in the next section.

III. ANALYTICAL MODEL OF DEFORMATION BY
COUPLED DIFFUSION AND VISCOUS FLOW

IN NANOWIRES

We show next that the qualitative trends observed in our
molecular dynamics simulations can be predicted by an ana-

lytical model that accounts for combined deformation by vis-
cous flow and nucleation of free volume. Our model is based
on a highly simplified, and at best incomplete, model of free-
volume nucleation and diffusion in amorphous metallic
nanowires, but it is nevertheless helpful to demonstrate the
phenomenon of interest.

We consider a cylindrical NW with radius R, which is
subjected to a prescribed macroscopic strain rate �̇zz parallel
to its axis. Motivated by the MD simulations described in the
preceding section, we describe the deformation and constitu-
tive behavior of the wire using the general framework of
Huang et al.23 We account for three mechanisms that may
cause the wire to change its shape: �i� viscous shearing, �ii�
nucleation of free volume, and �iii� free-volume diffusion �or,
equivalently, diffusion of atoms into the additional space that
results from free-volume nucleation�. The first two deforma-
tion mechanisms are described by a strain rate tensor, which
quantifies the relative velocities between atoms in a repre-
sentative volume element �RVE�. We regard the RVE to be a
region of material that is slightly greater than the short-range
dense-cluster packing24,25 so that atoms can pass through
channels between such clusters. Diffusion involves exchange
of free volume and atoms between adjacent RVEs. This ex-
change does not change the size or shape of the elements and
therefore does not directly give rise to a strain rate in the
RVE. The total strain rate therefore consists of a deviatoric
plastic part �̇ij

p �caused by viscous shearing�, together with a
dilatational part �caused by the generation of free volume�

�̇ij = �̇ij
p + �̇n�ij/3. �1�

Elastic strains have been neglected for simplicity.
The deviatoric plastic strain rate is related to stress by a

linear viscous constitutive equation

�̇ij
p = �̇0

3

2

Sij

�0
, �2�

where Sij =�ij −�kk�ij /3 is the deviatoric stress and �̇0 and �0
are material properties. We have neglected the influence of
free volume on the viscosity of the material and have as-
sumed linear viscous behavior to simplify calculations.

(b)(a)

FIG. 5. �Color online� Cross-section showing the arrangement
of atoms through the axis of a 15 nm nanowire. Atoms in the pe-
ripheral of the initial specimen are colored for Cu and red for Zr
and those inside are colored in blue and cyan for Cu and Zr. respec-
tively. �a� Initial configuration. �b� After deformation at 1000 K and
strain rate 2�109 s−1 to a nominal strain of 60%. Dashed line
indicates the original boundary of two groups.
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FIG. 6. �Color online� MSD vs time for atoms in the slice �Fig.
2� of the 15 nm wire at several temperatures during straining at 2
�108 s−1. To obtain the MSD, the effects of deformation were
subtracted but no distinction is made between Cu and Zr atoms or
between atoms inside the wire and those on the wire surface.
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FIG. 7. Variation of volumetric strain with time in a cubic speci-
men of Cu50Zr50 subjected to hydrostatic tension of 300 MPa at 700
K. The deformation while the pressure is ramped up to 300 MPa is
not shown. The increase in volume occurs at constant pressure.
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These are, of course, gross oversimplifications. It would be
possible to generalize our calculations, but the governing
equations would need to be solved numerically.

Free-volume nucleation in Eq. �1� is characterized using a
phenomenological constitutive equation. This approach is
frequently used in models of metallic glass, but existing
models differ widely in their details. In some cases, free-
volume nucleation is assumed to be driven by shear
stresses26 or to be generated as a consequence of the devia-
toric plastic strain,27 while other models account for the ef-
fects of hydrostatic stress.28,29 Motivated by the MD simula-
tion results shown in Fig. 7, we assume that nucleation is a
thermally activated process driven by the change in free en-
ergy per atom resulting from an increase in free volume

�� = kT log��/�e� − 	d�kk/3, �3�

where �e is the equilibrium free-volume concentration in a
large, stress-free specimen and a function of temperature, k is
the Boltzmann constant, T is temperature, and �= �	
−	d� /	d represents the excess free-volume concentration,
with 	 being the volume per atom and 	d the volume per
atom in a dense randomly packed solid. The first term rep-
resents an entropic contribution to the free-energy change,
while the second is the work done by the applied stress. The
rate of free-volume nucleation is approximated as

�̇n = −
Ẋ0

kT
�� , �4�

where Ẋ0 is a temperature-dependent rate constant. Note that
Eq. �3� predicts that the equilibrium free-volume concentra-
tion increases exponentially with hydrostatic stress. In addi-
tion, integrating Eqs. �3� and �4� predicts that a step increase
in hydrostatic stress results in a transient increase in volume
to a new equilibrium value, consistent with the MD simula-
tions shown in Fig. 7.

The diffusion of free volume is driven by a chemical po-
tential

� = �0 + kT log��/�e� , �5�

where �0 is a reference chemical potential. Note that the
driving force for diffusion is not directly dependent of stress,
since we assume that the externally applied stresses do no
work during free-volume diffusion �which does not induce a
strain�. In the limit of infinitely fast nucleation, the condition
��=0 yields �=�0+	d�kk /3, as used for diffusion in poly-
crystalline metals. In polycrystalline counterparts, we often
assume infinitely fast nucleation: the thermal equilibrium �
=�e exp�−	d�kk /3kT� is always satisfied. Hence, the driving
force for diffusion of vacancies is equivalent to pressure gra-
dient. In metallic glass, thermal equilibrium is not guaran-
teed and we adopted the original formulation of entropy-
driven diffusion, as shown in Eq. �5�. It is still pressure
dependent since � depends on pressure although there is no
simple relation between free-volume concentration and pres-
sure seen in the thermal equilibrium condition. The free-
volume flux is proportional to the gradient of chemical po-
tential

j = −
D

kT
� � , �6�

where D is a temperature-dependent diffusivity. Finally,
mass conservation requires that

��

�t
= − � · j + �̇n. �7�

This description of free-volume nucleation and diffusion has
the advantage that analytical expressions for the stress and
deformation in the NW can easily be calculated. The model
used here would not give an accurate description of the be-
havior of a macroscopic specimen of metallic glass and is
therefore at best incomplete.

The deformation induces an axially symmetric stress state
��rr ,�

 ,�zz�. The stresses satisfy the equilibrium equation
��ij /�xi=0.

The model is completed by boundary conditions for stress
and free-volume concentration at the surface of the wire. We
assume that the wire has isotropic surface stress �, which can
be visualized as an isotropic membrane tension acting in a
vanishingly thin layer at the surface of the specimen. The
stresses in the solid material immediately below this mem-
brane layer must satisfy

�ijnj = − ���1 + �2�ni �8�

for mechanical equilibrium, where ni are the components of
a unit vector normal to the surface, and �1 and �2 are the
principal curvatures of the surface, with the convention that a
convex surface has positive curvature. We regard the surface
as a perfect sink for free volume, so that the excess free-
volume concentration must remain at its equilibrium value at
the surface. This leads to a Gibbs-Thompson condition of the
form

� = �e exp�−
	d���1 + �2�

kT
� , �9�

where we have assumed that the solid’s surface stress and
surface energy are equal. Finally, mass conservation at the
surface yields the normal velocity of the surface relative to
the underlying material as

vn = − jini. �10�

It is straightforward to solve Eqs. �1�–�9�, together with the
equilibrium equation, to determine the steady-state stress,
strain rate, and velocity fields in the wire, as well as the
free-volume concentration. To express the solution in the
simplest form, it is convenient to introduce a characteristic
length scale

 =�4�0	dD

9�̇0kT
+

D

Ẋ0

.

This length scale controls the thickness of the layer at the
surface of the wire where diffusion dominates over viscous
shearing and free-volume nucleation. It appears in models
for both amorphous NWs �Appendix A� and thin plates or
membrane �Appendix B�. We then introduce dimensionless
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wire radius and position R̃=R /, r̃=r /. In terms of these
variables, the stresses are �see Appendix A for details�

p = −
�

R
+

3�̇zzR̃

2

1

�2 + ��I0�R̃�R̃ − 3I1�R̃�
	 kTI0�R̃�

Ẋ0	d

+
4�0

9�̇0

�I0�R̃� − I0�r̃��
 ,

�rr =
�̇zz�0R̃

�̇0

1

�2 + ��I0�R̃�R̃ − 3I1�R̃�
� I1�R̃�

R̃
−

I1�r̃�
r̃
� −

�

R
,

�

 = p +
�̇zz�0R̃

3�̇0

1

�2 + ��I0�R̃�R̃ − 3I1�R̃�
�3I1�r̃�

r̃
− I0�r̃��

−
�̇zz�0

3�̇0

,

�zz = p −
�̇zz�0R̃

3�̇0

I0�r̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
+

2�̇zz�0

3�̇0

,

�11�

where In is the modified Bessel function of the first kind of
order n and

� =
9�̇0kT

2�0Ẋ0	d

is a dimensionless parameter, which quantifies the rate of
viscous shearing compared to the free-volume nucleation
rate.

The flux of free volume is radial, with distribution

jr =
3�̇zzR̃

2

I1�r̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
. �12�

The strain rate distribution is

�̇rr =
3�̇zzR̃

2

1

�2 + ��I0�R̃�R̃ − 3I1�R̃�
�I0�r̃� −

I1�r̃�
r̃

� −
�̇zz

2
,

�̇

 =
3�̇zzR̃

2

1

�2 + ��I0�R̃�R̃ − 3I1�R̃�

I1�r̃�
r̃

−
�̇zz

2
,

�̇kk =
3�̇zzR̃

2

I0�r̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
.

The velocity field associated with this strain rate distribution
has the form

u̇r =
3�̇zzR̃

2

I1�r̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
−

�̇zzr̃

2
and u̇z = �̇zzz .

�13�

Note that material particles have a positive instantaneous ra-
dial velocity due to the dilatational strain associated with
free-volume nucleation. At the surface of the wire, the flux of
free volume causes material at the surface to be annihilated.
The velocity of the surface with respect to a fixed laboratory
frame follows as Vn= u̇r�R�− jr�R�=−�̇zzR /2, as expected
from volume conservation.

Finally, the net axial force on the wire follows as

F = 2�R� + �
0

R

�zz2�rdr , �14�

where the first term represents a contribution to the force
from the membrane tension resulting from surface stress.
The integral can be easily evaluated to yield

F

�R2 =
�

R
+

�̇zz�0

�̇0
�1 −

I1�R̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
� . �15�

As expected, the force is proportional to the strain rate. In the
absence of an external force, surface stress causes the wire to

contract. Note that I1�R̃�→0 for large R̃, so for thick wires,
we recover the expected viscous creep behavior. The nomi-
nal flow stress decreases as wire radius is reduced.

Important features of the solution are illustrated in Figs. 8
and 9. Figure 8 shows the distributions of deviatoric and
volumetric strain rates in wires with various normalized radii
R /, while Fig. 9 shows the corresponding distributions of
axial stress in the wire. In wires with a large R /, the volu-
metric strain rate is zero except in a thin layer near the sur-
face, while the deviatoric strain rate is essentially uniform.
Under these conditions, the wire deforms primarily by vis-
cous shearing and the axial stress is essentially constant, ex-
cept for a boundary layer near the wire surface. As the wire
radius is progressively reduced, the volumetric strain rate
increases, while the deviatoric strain rate decreases. This in-
dicates that diffusion provides an increasing contribution to
the strain rate in the wire. As a result, the stress �at fixed
applied strain rate� progressively decreases. The transition
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FIG. 8. Variation of steady-state strain rate along the radial di-
rection of a nanowire with varying ratios of wire radius R to char-
acteristic material length . �a� Shear �deviatoric� strain rate
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p /3� / �̇zz and �b� volumetric strain rate �̇kk / �̇zz. Results are
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from primarily viscous shearing to diffusional deformation
occurs for R /�1. In the limit R /→0, viscous creep can
be neglected and the expressions for stress, strain rate, and
flux of free volume reduce to simple forms �see Appendix A�

�̇rr = �̇

 = �̇zz,

�zz = −
�

R
+

3�̇zzkT

Ẋ0	d

+
9kT�̇zzR

2

4	dD
�1 −

r2

R2�, �rr = �

 = −
�

R
,

jr = 3�̇zzr/2 j
 = jz = 0. �16�

It is worth noting also that for the limiting values of

R /→0, �=0, and Ẋ0→�, the axial force-v-strain rate rela-
tion reduces to

�̇zz =
8D	d

9kTR2

F

�R2 . �17�

This result resembles the strain rate-v-stress relation for a
solid that deforms by Nabarro-Herring creep: the creep rate
by bulk diffusion in an amorphous wire of radius R is
equivalent to that in a polycrystal with an average grain size
of 3.35R.

To compare the predictions of the analytical model with
MD simulations, it is convenient to introduce a normalized
strain rate defined as

Ė =
�̇zz�0

�̇0�F/�R2�
=

1

B

R̃
+ �1 −

I1�R̃�

�2 + ��I0�R̃�R̃ − 3I1�R̃�
� ,

�18�

where B=��̇0 / ��0�̇zz� is a dimensionless surface energy.
Figure 10 shows the variation of normalized strain rate as a
function of wire radius for various values of the dimension-
less material parameters � and B.

To interpret these predictions, consider first the behavior
in the limit of vanishing surface tension �B=0, Fig. 10�a��. In
this case, we observe three general regimes of behavior. In
wires with large radius, deformation is dominated by viscous

flow and the normalized strain rate approaches Ė=1. As the
wire radius decreases, the normalized strain rate initially in-
creases �or equivalently, the flow stress decreases�. The rate
of increase is determined by the rate of viscous shearing
compared to free-volume nucleation �parameterized by ��. If
free volume is nucleated easily �small ��, we observe that

the normalized strain rate increases as R̃−2 �see Fig. 10�a��,
consistent with Eq. �17�. For larger values of �, the strain
rate initially increases and then approaches a constant as-
ymptote �see Fig. 10�a��. In the limit R→0, the strain rate is
controlled by the rate of free-volume nucleation.

For larger values of B �Fig. 10�d��, another regime of
behavior emerges in the limit of small wire radius. In this
regime, the normalized strain rate is dominated by the effects
of surface stress, which leads to a decreasing normalized
strain rate �or equivalently, an increasing flow stress� with
decreasing wire radius. In the limit of vanishing wire radius,

the normalized strain rate is proportional to R̃ in this regime.
Depending on the value of B �see Figs. 10�a�–10�d��, behav-
ior can be dominated either by surface stress effects �Fig.
10�d�� or by diffusion �Fig. 10�a��.

Our analytical calculations indicate that the minimum
flow stress �or maximum normalized strain rate� observed in
MD simulations can be explained qualitatively by the com-
peting effects of surface stress and free-volume nucleation
and diffusion in the NW. In the next section, we shall attempt
a more quantitative comparison of the analytical model with
MD simulation results.

IV. COMPARISON OF ANALYTICAL MODEL AND MD
SIMULATIONS

In this section, we use molecular dynamics simulations to
estimate material parameters for the analytical model de-
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FIG. 9. Variation of steady-state normalized axial stress
��zz�̇0 /�0�̇zz� along the radial direction of a nanowire with varying
ratios of wire radius R to characteristic material length. Results are
shown for �=�=0.
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scribed in the preceding section. It would, of course, be pos-
sible to fit material parameters directly to the results of our
MD simulations of deformation in nanowires. This is not a
critical test of the analytical model, however. Instead, we
calibrate the parameters by means of a series of MD simula-
tions in which periodic unit cells of the metallic glass are
subjected to prescribed loading. Naturally, in view of the
approximations made to simplify analytical calculations, a
perfect fit is impossible to achieve, but parameter values that
best approximate material behavior can be estimated.

The analytical calculations contain four material param-
eters: the viscosity �0 / �̇0, the diffusion coefficient D, the

free-volume nucleation rate Ẋ0, and the surface energy �.
The viscosity can be estimated by applying simple shearing
deformation to a periodic unit cell, while the diffusion coef-
ficient can be estimated from the mean-square displacement
of atoms. The free-volume nucleation rate can be estimated
by subjecting a periodic unit cell to prescribed hydrostatic
stress. The surface energy is difficult to compute directly and
we will simply assume a value of �=0.2 J /m2 when com-
paring MD simulations to the analytical model. The proce-
dure to compute relevant material parameters is described in
more detail in the following sections.

A. Viscosity �0 Õ ε̇0

Viscosities at different strain rates and temperatures for
Cu50Zr50 were estimated by subjecting a periodic cube of
side length 15 nm to prescribed shearing displacements. Rep-
resentative shear stress-v-shear strain curves are shown in
Fig. 11. The viscosity at each temperature and strain rate is
estimated as �0 / �̇0=� / �̇xz, where � is the steady-state shear

strength and �̇xz the applied shearing rate: the results are
listed in Table I. The linear viscous approximation improves
with increasing temperature and is an excellent approxima-
tion at 1000 K.

B. Diffusivity

The diffusivity at a given temperature in an amorphous
nanowire was estimated by tracking the mean-square dis-
placement �MSD� of atoms in a small slice in the middle of
the wire during their deformation at 2�108 /s. Diffusivities
at several temperatures listed in Table II are obtained from
the 15 nm wire. The effects of deformation are subtracted but
no distinction is made for atoms inside the wire and those on
the wire surface in calculating the MSD.

C. Free-volume nucleation parameter Ẋ0

We have estimated the parameter Ẋ0 �which characterizes
the rate of free-volume nucleation� by subjecting a periodic
unit cell of the amorphous solid to a constant prescribed
pressure and computing the volumetric strain rate of the cell.
Typical results of these calculations are shown in Fig. 7. The

nucleation rate �̇n at time t=0 is estimated from the slope of
the volume-v-time curves during the first 400 ns after the

pressure reaches its maximum value and Ẋ0 is then estimated

as Ẋ0�−�̇nkT / p	d, where p is the applied pressure and 	d
�1.81�10−29 m3 is the atomic volume of Cu50Zr50. Tables

III and IV listed the free-volume nucleation rate �̇n and the

corresponding value of Ẋ0 at several temperatures and pres-
sures.

D. Comparison of MD simulations and analytical model

Given values for the material parameters �0 / �̇0 �viscos-

ity�, Ẋ0, D, and �, we can proceed to calculate parameters
� ,B ,� in Eq. �18�. We use the nucleation rates at p
=300 MPa and the viscosities at the shearing strain rate of
2�108 /s and estimate the average atomic volume 	d for
Cu50Zr50 as 1.81�10−29 m3 from our MD simulations. The

TABLE I. Shear stress vs. shear strain at different strain rates
and temperatures.

Temperature
�K�

Rate �̇xz

�1/s�
Shear strength �

�MPa�
Viscosity

�Pa s�

700 2�108 620 3.1

2�109 870 0.44

1000 2�108 50 0.25

2�109 380 0.19

TABLE II. Estimated diffusivity values for the model amor-
phous metal at several temperatures.

Temperature �K� 700 1000

Diffusivity �m2 /s� 30�10−10 50�10−10
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FIG. 11. �Color online� Shear stress vs shear strain at different
strain rates and temperatures.

TABLE III. Free-volume nucleation rate at several temperatures
and pressures. The nucleation rates are obtained by linearizing cor-
responding volumetric strain vs. time curves �similar to that in Fig.
7� from 0 to 400 ps.

�̇n

p=100
�MPa�

p=300
�MPa�

p=400
�MPa�

p=500
�MPa�

T=700 K 2.5�106 6.8�106 8.2�106 1.4�107

T=1000 K 3.9�106 7.2�106 9.5�106 1.7�107
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resulting values of the characteristic radius  at several tem-
peratures are listed in Table V. The characteristic radius de-
creases with increasing temperature because the viscosity of
the solid varies more rapidly with temperature than the dif-
fusivity: this trend appears to be consistent with experimen-
tal data for metallic glasses, as discussed further in the next
section. The dimensionless parameter � is on the order of 10
and B is on the order of 0.1.

The quantity �̇zz / �F /�R2� computed from the MD simu-
lations is shown as a function of wire radius in Fig. 12. The
analytical results are also shown for B=0.1, =15 nm, and
�=0.3. The analytical model clearly predicts a trend that
agrees with the MD simulation data. However, the value of
� required to fit the MD simulations is more than 1 order of
magnitude smaller than the value estimated from the periodic
unit-cell calculations described in the preceding section. The
analytical model greatly oversimplifies the description of
free-volume nucleation in the metallic glass. The most likely
explanation for the discrepancy is that free-volume nucle-
ation is accelerated under combined shearing and hydrostatic
stress. Since the model was calibrated under purely hydro-
static loading, � is underestimated.

V. APPLICATION TO Zr41.2Ti13.8Cu12.5Ni10.0Be22.5

Due to the limitations of molecular dynamics, direct nu-
merical simulations are possible only for wires with very
small diameters subjected to high strain rates. These condi-
tions would be difficult to achieve in experiments. To exam-
ine the implications of our results for more realistic condi-
tions, we have estimated approximate values for the
characteristic material length scale  at different tempera-
tures for Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 �Vitreloy 1� for the lim-

iting case Ẋ0→�. To this end, we have assumed that the
viscosity �=�0 / �̇0 of Vitreloy 1 can be determined by the
Vogel-Fulcher-Tammann �VFT� relation

��T� = �0 exp� D�T0

T − T0
� , �19�

where �0=4�10−5 Pa s �Ref. 30� and D� and T0 are the
fragility parameter and the VFT temperature, respectively.31

We take D�=18.5 and T0=412.5 K for Vitreloy 1.32 The
VFT relation between temperature and viscosity is in good
agreement with experimental data.33 The diffusivity is esti-
mated using

D = D0 exp�−
Q

kT
� , �20�

with D0=1.82�10−11 m2 /s and Q=1.05 eV.8 These values
correspond to the measured diffusivity of Be atoms in the
glass state of Vitreloy 1.8 Diffusion of free volume in metal-
lic glass may involve both individual and collective hoppings
of atoms and is likely to be faster. The atomic volume 	d
was estimated as 	d=1.67�10−29 m3.34 The resulting varia-
tion of  with temperature is plotted in Fig. 13. We have also
estimated the approximate limits of validity of this expres-
sion: at low temperatures, viscous creep ceases to be New-
tonian and coupling effects between creep and free-volume
nucleation will lead to the formation of shear bands. The
predicted values are on the order of 100 nm at temperatures
around 575 K. The radius decreases as temperature is re-
duced because the viscosity of metallic glasses appears to be
more sensitive to temperature than the diffusivity. We predict
values of  up to 1000 nm at 550 K but at these tempera-
tures, the Newtonian viscous approximation ceases to be ac-
curate. These estimates suggest that diffusion may play an
important role in NWs with radii of order 20–100 nm. Natu-
rally, in view of the approximate nature of our model, the

TABLE IV. Free-volume nucleation parameter Ẋ0 at several
temperatures and pressures.

Ẋ0

P=100
�MPa�

P=300
�MPa�

P=400
�MPa�

P=500
�MPa�

T=700 K 1.2�107 1.1�107 9.9�106 1.4�107

T=1000 K 2.7�107 1.7�107 1.6�107 2.3�107

TABLE V. Critical radius at several temperatures based on the

viscosity, diffusivity, and free-volume nucleation parameter Ẋ0 ob-
tained in our MD simulations.

Temperature �K� 700 1000
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details of the temperature dependence of  are unlikely to be
accurate.

VI. CONCLUSIONS

We have used molecular dynamics simulations to com-
pute the flow stress in amorphous Cu50Zr50 nanowires during
axial straining at temperatures near the glass transition. The
simulations show a strong sensitivity of flow stress to the
diameter of the wire and predict a critical radius that mini-
mizes the flow stress.

A detailed examination of the cross section of the wires
shows evidence of significant free-volume nucleation and
diffusion within the wire. We suggest that the size effect
observed in our MD simulations is a consequence of a tran-
sition in deformation mechanism from viscous flow �in large
wires� to a combination of viscous flow and diffusion �in
small wires�. In the diffusional mechanism, free volume is
continuously nucleated in the interior of the wire and subse-
quently diffuses to the free surface.

An approximate analytical model of this process was
found to predict a variation of flow stress with wire radius in
qualitative agreement with the MD simulations. Quantitative
agreement between the analytical model and the MD simu-
lations could only be achieved when the rate of free-volume
nucleation in the model was about 10 times greater than that
predicted by direct MD simulations, however. A possible ex-
planation for the discrepancy is that the model oversimplifies
the mechanism of free-volume nucleation by assuming that
free volume is nucleated only by hydrostatic stress and is
independent of shearing.

Due to the limitations of MD simulations, direct numeri-
cal simulations are possible only for wires with small diam-
eters subjected to large strain rates. Consequently, the ana-
lytical calculations were used to estimate the conditions
where diffusion is likely to dominate over viscous flow in
larger nanowires subjected to lower strain rates. The results
suggest that nucleation and diffusion of free volume may
provide a mechanism of deformation in metallic glass NWs
with radii of order 20–100 nm at high temperatures �
�0.6Tg�. The model predicts several features that should be
verifiable experimentally:

�1� We anticipate an approximately linear relationship be-
tween flow strength and strain rate in the diffusional regime.

�2� Diffusion becomes increasingly dominant as wire ra-
dius is reduced. In the diffusional regime, the flow strength
of the wire at fixed strain rate varies in proportion to the
inverse square of the wire radius.

�3� A critical wire radius exists that minimizes flow stress.
�4� For sufficiently large wire radii, the deformation

mechanism will transition to predominantly viscous creep. In
this regime, the flow stress is independent of wire radius.

�5� The wire radius where deformation transitions be-
tween viscous creep and diffusion should decrease with tem-
perature.

Several further developments of the preliminary calcula-
tions described here would also be of interest. In particular, it
would be instructive to repeat the calculations with more
sophisticated constitutive laws governing the nucleation of

free volume, e.g., taking into account the free-volume gen-
eration by shearing,24 also, non-Newtonian flow should be
considered for wider temperature regions, lastly, the effects
of free-volume concentration on the shearing response of the
glass is of interest and deserves further investigation.
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APPENDIX A

In this appendix, we give a more detailed derivation of the
analytical model of deformation in nanowires by coupled
diffusion and viscous flow. We begin by clarifying our de-
scription of free-volume nucleation and diffusion. Figure
14�a� illustrates a RVE in an amorphous solid. We take a
volume element to consist of a set of randomly ordered at-
oms. The size of a representative element is larger than the
short-range dense-cluster packing: the channels between the
dense clusters act as sites for nucleation and diffusion of free
volume. Free-volume nucleation causes the RVE to increase
its size, with a fixed number of atoms in the RVE, as shown
in Fig. 14�b�. Since the boundaries of the volume element are
displaced during this process, it is described as a strain of the
underlying material. In contrast, diffusion involves an ex-
change of free volume �or atoms� between neighboring
RVEs, as illustrated in Fig. 14�c�: the blue atom added to the
RVE comes from the neighboring RVE �bound by dashed
lines�. This process changes the number of atoms in a vol-
ume element without changing its size or shape. Conse-
quently, this process does not induce a strain in the RVE.

RVEs may also experience a change in shape, at constant
volume, due to viscous shearing. The shape changes due to
free-volume nucleation and viscous shearing are quantified
by a strain rate tensor as defined in Eq. �1�. We also define a
velocity field associated with this strain field, which is re-

(b)(a) (c)

FIG. 14. �Color online� Schematic illustrating the process of
free-volume nucleation and diffusion in an amorphous solid: �a� an
initial RVE; �b� expansion of the volume element due to free-
volume nucleation; �c� densification due to free-volume diffusion
out of the volume element �or, equivalently, diffusion of an atom
into the volume element�. A neighboring RVE �bound by dashed
lines� is also included to show the origin of the blue atom diffusing
in the RVE in �b�.
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lated to the strain rate components �in cylindrical-polar co-
ordinates� by

�̇rr =
� u̇r

�r
, �̇

 =

u̇r

r
, �̇zz =

� u̇z

�z
, �A1�

where u̇r is the time derivative of radial displacement mea-
sured relative to the current configuration of the solid. Here,
the velocity field should be regarded as quantifying the
change in shape of the current configuration of the solid,
which is taken as the reference configuration for defining the
strain rate. The reference configuration evolves due to diffu-
sion.

We now proceed to outline briefly the details of the deri-
vations of Eqs. �11� and �16� in the text.

Derivation of Eq. (11). With Eqs. �1� and �2� and defining
p=�kk /3, we rewrite Eq. �1� as

�̇rr =
3�̇0

2�0
��rr − p� +

�̇n

3
, �A2a�

�̇

 =
3�̇0

2�0
��

 − p� +

�̇n

3
, �A2b�

�̇zz =
3�̇0

2�0
��zz − p� +

�̇n

3
. �A2c�

It is convenient to express �̇n in terms of u̇r and �̇zz by sum-
ming equations in Eqs. �A2�

�̇n = �̇rr + �̇

 + �̇zz.

With Eq. �A1�, we obtain

�̇n =
� u̇r

�r
+

u̇r

r
+ �̇zz. �A3�

Free-volume nucleation rate �̇n is controlled by Eq. �4�. Sub-
stituting Eqs. �3� and �5� in Eq. �4�, we arrive at

�̇n = − Ẋ0��v/kT = Ẋ0�	dp − �v�/kT . �A4�

Now the chemical potential of free volume 	d is given as

�v = 	dp −
kT

Ẋ0

�̇n. �A5�

Using Eqs. �6� and �7� and noting that at steady state,
�� /�t=0, we see that

D	d

kT

1

r

�

�r
�r

�p

�r
� −

D

Ẋ0

1

r

�

�r
�r

�

�r
� � u̇r

�r
+

u̇r

r
+ �̇zz��

+ � � u̇r

�r
+

u̇r

r
+ �̇zz� = 0. �A6�

With Eqs. �A1� and �A3�, we can also rewrite Eq. �A2a� as

� u̇r

�r
=

3�̇0

2�0
��rr − p� +

1

3
� � u̇r

�r
+

u̇r

r
+ �̇zz� . �A7�

Recall that the radial component of the equation of equilib-
rium can be expressed in cylindrical-polar coordinates as

��rr

�r
+

�rr − �



r
= 0. �A8�

Subtracting Eq. �A2b� from Eq. �A2a� and then using Eq.
�A1�, we have

r
�

�r
� u̇r

r
� =

3�̇0

2�0
�− r

��rr

�r
� . �A9�

There are three unknowns �u̇r ,�rr , p in Eqs. �A6�, �A7�, and
�A9�, so we can solve these equations together with bound-
ary conditions listed in Eqs. �9� and �10�. First, we solve for
u̇r,

u̇r = c1I1�r/� −
�̇zz

2
r, with 2 =

4D	d�0

9kT�̇0

+
D

Ẋ0

,

�A10�

where In is a modified Bessel function of the first kind of
order n and c1 is a constant to be determined. We can now

derive �p ,�rr , �̇n as

p = −
�

R
+

c1kT

Ẋ0	d

I0�R/�


+ c1
4�0

9�̇0
�I0�R/� − I0�r/�� ,

�A11�

�rr = c1
2�0

3�̇0
� I1�R/�

R
−

I1�r/�
r

� −
�

R
, �A12�

�̇n =
c1I0�r/�


. �A13�

Subtracting Eq. �A11� from Eq. �A12� and setting r=R, we
get

�rr − p =
kT

Ẋ0	d

c1I0�R/�


at r = R . �A14�

Substituting Eqs. �A10�, �A13�, and �A14� in Eq. �A2a�, we
find the solution for c1,

c1 =
3�̇zzR

2

1

�2 + ��I0�R/�R/ − 3I1�R/�
,

with � =
9�̇0kT

2�0	dẊ0

. �A15�

Equation �11� and the rest follow by substituting c1 into Eqs.
�A10�–�A13�. The other stress components can be obtained
by inverting Eqs. �A2b� and �A2c� and using the solutions
from Eqs. �A10�–�A13�.

Derivation of Eq. (16). In the limit R /→0, viscous creep
can be neglected. At steady state, Eq. �1� gives
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�̇rr = �̇

 = �̇zz =
�̇n

3
.

Now the chemical-potential function Eq. �5� can be written
as

� = 	dp − 3
kT

Ẋ0

�̇zz.

From Eq. �7�, at steady state, �� /�t=0, which leads to

1

r

�

�r
�r

D

kT

��v

�r
� + �̇n = 0.

Using the mechanical equilibrium conditions, the boundary
conditions, together with the above equation, we obtain Eq.
�16�.

APPENDIX B

In this appendix, we give a derivation of the analytical
model of deformation in a thin plate or membrane by
coupled diffusion and viscous flow, as shown in Fig. 15.

With Eqs. �1� and �2�, we have

�̇xx =
3�̇0

2�0
��xx − p� +

�̇n

3
, �B1a�

�̇yy =
3�̇0

2�0
��yy − p� +

�̇n

3
, �B1b�

�̇zz =
3�̇0

2�0
��zz − p� +

�̇n

3
. �B1c�

Using the plane strain condition along the z axis, we have
�̇zz=0, which gives

p =
�xx + �yy

2
−

�0

9�̇0

�̇n. �B2�

Since the plate is subjected to uniaxial tension, �xy =0 and
we have �xz=�yz=0. The equations of equilibrium

��xx

�x
+

��xy

�y
+

��xz

�z
= 0,

��xy

�x
+

��yy

�y
+

��xz

�z
= 0, �B3�

will be simplified to

��xx

�x
= 0,

��yy

�y
= 0. �B4�

The solution of the stresses can be given as

�xx = g�y�, �yy = f�x� = 0. �B5�

To obtain the second term in Eq. �B5�, we have used the
stress boundary condition on the sample surface. Combining
Eqs. �B1a�, �B2�, and �B5�, the pressure can be rewritten as

p =
2�0

3�̇0
��̇xx −

2

3
�̇n� . �B6�

Substituting Eq. �B6� into the chemical potential Eq. �A5�
and at steady state, we have

D	d

kT

�2

�y2�2�0

3�̇0
��̇xx −

2

3
�̇n� −

kT

Ẋ0

�̇n� + �̇n = 0. �B7�

Using the definition for  �Sec. III�, the above equation has a
general solution of

�̇n = Aey/ + Be−y/. �B8�

It is noted that by symmetry, the free-volume flux vanishes

�j=0� at y=0, leading to A=B and �̇n=2A cosh�y /�. The
pressure is now given as

p =
2�0�̇xx

3�̇0

−
8�0

9�̇0

A cosh�y/� .

Again, we regard the surface as a perfect sink for free vol-
ume, so that the excess free-volume concentration at a given
temperature must remain at its equilibrium value �se at the
surface. With Eq. �3�, we have

kT ln��se/�e� = 	d�2�0�̇xx

3�̇0

−
8�0

9�̇0

A cosh�h/�� . �B9�

To ensure Gibbs-Thompson condition at the surface, Eq. �9�
gives �se=�e since the curvature of a flat surface is infinite.
Hence we obtain

A =
1

cosh�h/�
3�̇xx

4
,

�̇n =
3�̇xx

2

cosh�y/�
cosh�h/�

,

and

�xx =
�0�̇xx

�̇0
	4

3
−

cosh�y/�
cosh�h/�
 . �B10�

y

xh

h z

.
xx

FIG. 15. The coordinate used for the deformation of a thin sheet
�thickness 2h� under uniaxial tension.
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