AI-Si 界面失效的分子动力动力学模拟

李美之 魏悦广

(中国科学院力学研究所非线性力学国家重点实验室 北京 100190)

摘要 应用分子动力学方法模拟了 Al-Si 双材料界面的失效。文中考察了平行于界面方向为(110),垂直于 界面方向取不同的晶向的一组界面,在表层原子施加位移荷载驱动界面分离。并得到应力应变曲线,文中 对 Al采用了嵌入原子(EAM)势,对 Si采用 Stillinger-Weber(SW)势,界面相互作用采用了 Morse 势。通过 对这组界面加载的过程的观察,发现界面失效强度与界面晶向有很大关系,以及与之对应的界面分离的三 种形式。

关键词:分子动力学模拟,双材料,界面失效,Al-Si

一、引言

研究双材料界面体系的脱粘和失效特性,对工程材料力学响应的建模有很重要的指导意义。 Gall[1]研究了 Al(100)/Si(100)界面的结构,以及应力集中引起的界面上的能量起伏,还研究了金属中的孔洞对分离强度的削弱作用。Kitamura[2]对薄膜边界附近应力集中引起的脱层进行了分子动力 学模拟,总结了脱层裂纹扩展的临界条件,并与有限元的结果进行了比较。本文将对多种取向的 Al/Si 界面进行研究,研究界面失效的模式。

二、模拟方法

本文考虑铝(Al)和硅(Si)组成的双材料体系。Al 采用嵌入原子势,嵌入原子势被广泛地应用到金属的分子动力学模拟中。Si 采用 SW 势,SW 势是对半导体 Si 原子进行分子动力学模拟常用的势。 界面附近两种原子之间的相互作用采用经典的 Morse 势来描述: $\mathcal{O}(r_{ij}) = D[e^{-2\alpha(r_{ij}-r_0)} - 2e^{-\alpha(r_{ij}-r_0)}],相互作用势能参数 D、<math>\alpha$ 、 r_0 与单质材料是不同的。为了在不同种材料中引入弱结合的界面,采用复合法则[2-3]由两种材料得到界面势参数

 $D_{1-2} = \sqrt{D_1 D_2} / 10 \quad \alpha_{1-2} = (\alpha_1 + \alpha_2) / 2 \quad r_{0(1-2)} = \sqrt{\lambda_1 \lambda_2} + \ln 2 / \alpha_{1-2}$

其中 $\lambda_i = r_{0(i)} - \ln 2 / \alpha_i$ 。

模型的几何结构为平板结构。为了模拟不同界面的情况,考虑了一组双材料界面,都有平行于 界面方向的(110)晶向(设为 z 方向)。在 z 方向上应用周期性边界条件,由于晶格常数不匹配(Al 为 4.05 Å, Si 为 5.43 Å),为了让晶格失配尽量小,模型在(110)方向的厚度为 11.45Å,此时的失配 应变是 0.55%。在平行于界面的 x 方向上也应用周期性边界条件,为了使 x 方向上的失配应变尽量 小,x 方向上的长度必须与界面晶向的取向有关。

初始构型由完美晶格建立,然后结构进行退火,15ps内温度升高到600K,持续10ps后再将温度下降到300K,得到用于加载的构型。加载沿y方向位移加载。加载过程中将底端固定,每次给其他原子沿y方向位移,使整个体系的应变增大。

系统的应力为 Virial 表达式[4],用完美晶体中原子的体积去除。整体的荷载为整个体系的体积 去除全部原子的 Virial 力之和。

三、分析结果

对 6 种不同的界面,我们分别计算出应力应变曲线(图 1)。曲线有相似的形态,应力达到峰值 以后突然降低,应力的峰值即是我们关心的分离强度。从各个应力应变曲线中读出的分离强度如表 1。可以看到界面分离强度与界面的结构密切相关,不同晶面取向会使界面的结合力发生很大变化。

54

Al	Si	分离
		强度(GPa)
(111)	(111)	6.4
(112)	(111)	4.6
(113)	(111)	7.9
(110)	(112)	5.3
(111)	(112)	4.6
(112)	(112)	5.6

图1 各个界面对应的应力应变曲线

表1 界面的分离强度

追踪界面失效的过程,失效可以分为三种形式: 1、金属 Al 内部位错产生孔洞,进一步生成裂 纹并发生扩展,界面失效过程就是金属失效过程,如图 2(a)。2、界面的缺陷发射位错并形成孔洞,空洞沿界面长大形成裂纹,最后裂纹地扩展使界面分离,少数金属 Al 残留在 Si 表面,如图 2(b)。3、界面附近异质原子突然分离,这个过程发生非常快,金属 Al 内部没有裂纹的萌生和扩展,最后界面 完全分离,金属没有残留原子在 Si 表面。这种情况的分离强度是最高的。

参考文献

- 1. Gall, K., et al., Atomistic simulations on the tensile debonding of an aluminum-silicon interface. Journal of the Mechanics and Physics of Solids, 2000. 48(10): p. 2183-2212
- 2. Kitamura, T., Y. Umeno, and R. Fushino, Instability criterion of inhomogeneous atomic system. Materials Science and Engineering, 2004. **379**(1-2): p. 229-233
- Lincoln, R. C., Koliwad, K. M. and P. B. Ghate, Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals, The Physical Review, 1967. 157(3): p. 463-466
- Zimmerman, J.A., et al., Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 2004. 12(4): p. S319-S332.