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In the present work, we present an improved version of the direct-forcing immersed
boundary (IB) method proposed in Wang and Zhang (2011, “An Immersed Boundary
Method Based on Discrete Stream Function Formulation for Two- and Three-
Dimensional Incompressible Flows,” J. Comput. Phys., 230(9), pp. 3479–3499). In order
to obtain an accurate prediction of local surface force, measures have been taken to sup-
press the unphysical spatial oscillations in the Lagrangian forcing. A fluid-structure
interaction (FSI) solver has been developed by using the improved IB method for the fluid
and the finite difference method for the structure. Several flow problems are simulated to
validate our method. The testing cases include flows over a stationary cylinder and a sta-
tionary flat plate, two-dimensional flow past an inextensible flexible filament, and three-
dimensional flow past a flapping flag. The results obtained in the present work agree well
with those from the literature. [DOI: 10.1115/1.4026197]

1 Introduction

The phenomena of fluid-structure interaction are ubiquitous in
nature such as flapping flags interacting with ambient fluid and
swimming fish in water. The problems involving the coupled
response of structures and flows are also of interest in various en-
gineering areas such as aeronautical engineering, coastal engi-
neering, and biomedical engineering. In such systems, the
structures deform due to inertial, hydrodynamic, and internal
forces; at the same time, they also exert forces on the surrounding
fluid.

From a computational viewpoint, FSI simulations are challeng-
ing due to the following factors: (a) numerical issues (such as
numerical instability) in handling two-way coupling between fluid
and structure and (b) large mesh deformation when body-fitted
mesh is used. The IB method overcomes the latter difficulty by
using a nonbody-fitted mesh and adding a body force to the mo-
mentum equation to enforce the no-slip boundary condition [1].
The IB method can be further classified into two types:
continuous-forcing and direct-forcing [2]. In the continuous-
forcing approach, the forcing is incorporated into the continuous
equations before discretization whereas in the direct-forcing
approach, the forcing is introduced after the equations are discre-
tized. The continuous-forcing approach is often used for treating
elastic boundaries [1] whereas the direct-forcing approach is origi-
nally designed for rigid-boundary problems [3–5].

In this paper, we developed an FSI solver by coupling a direct-
forcing IB method based on discrete stream function formulation
[6] for the fluid and a finite different method for the structure. By
using the original method proposed in Ref. [6], although an accu-
rate prediction of total force and boundary condition can be
achieved, unphysical spatial oscillation is observed in the force
distribution. This oscillation is detrimental to the prediction of

structure response in FSI. In this work, several modifications are
made to improve this method. Firstly, the implicit forcing [6,7] is
replaced by an explicit forcing [8]. It is found that the use of
implicit forcing by solving a linear system can lead to severe os-
cillation in Lagrangian force, but explicit forcing would not. Sec-
ondly, a more consistent way for computing each component of
the forcing on a staggered mesh is proposed. In the original
method, the Eulerian force vector is defined at the cell center;
each velocity component (which is defined at the edge center) is
obtained by interpolation if needed. Now the Eulerian force vector
is not used, and we only need to define the Eulerian force compo-
nent at edge center. Thirdly, the Lagrangian grid width is set to be
twice that of the Eulerian grid; such a setting can result in
smoother Lagrangian force distribution. Fourthly, for a slender
body of zero thickness, the discrete d-function with a “negative-
tail” is adopted for the interpolations at the endpoints. Numerical
simulations (including FSI) are performed to test the efficacy of
these modifications. It is found that the measures taken can suc-
cessfully reduce the oscillations, and the results obtained agree
well with those from the literature.

The rest of the paper is arranged as follows. The numerical
method is briefly introduced in Sec. 2. The testing cases, including
flows over a stationary cylinder and a flat plate, flows past a flexi-
ble filament, and a flag are presented in Sec. 3. Finally, conclu-
sions are drawn in Sec. 4.

2 Numerical Methods

2.1 Governing Equations. The fluid motion is governed by
the incompressible Navier–Stokes (N–S) equations, which in
dimensionless form are written as

@u

@t
þr � ðuuÞ ¼ �rpþ 1

Re
r2uþ f (1)

r � u ¼ 0 (2)

where u is the velocity vector, p is the pressure, and Re is the
Reynolds number. f is the Eulerian body-force that is used to
mimic the effects of the immersed body on the flow. The Reyn-
olds number is defined as
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Re ¼ UL

�
(3)

where U, L, and � are the reference length, reference velocity, and
kinematic viscosity, respectively. In our simulations, U equals the
inflow velocity, and L is the diameter of the cylinder or the length
of a filament (flag).

In this paper, two FSI simulations are performed. The first case
is the interaction of an inextensible flexible filament with a two-
dimensional flow. The flexible filament can be regarded as a one-
dimensional flag. The governing equations for the motion of the
filament are

b
@2X

@t2
� @

@s
T
@X

@s

� �
þ @2

@s2
c
@2X

@s2

� �
¼ bFr

g

g
� F (4)

@X

@s
� @X

@s
¼ 1 (5)

where s is the Lagrangian coordinate along the arc length, X is the
displacement vector, and b, T, and c are the mass ratio, dimen-
sionless tension coefficient, and dimensionless bending rigidity,
respectively. F is the Lagrangian force, and g is the acceleration
of gravity and g ¼ gj j. Fr is the Froude number. Equation (4) is
equivalent to those used by Zhu and Peskin [9], Connell and Yue
[10], and Huang et al. [11] for flexible structures. Equation (5) is
the inextensible condition. Figure 1 shows the Lagrangian coordi-
nates used in the simulation of a flapping filament.

The boundary condition at the free end is

T ¼ 0;
@2X

@s2
¼ ð0; 0Þ; @3X

@s3
¼ ð0; 0Þ (6)

At the fixed end, the simply supported boundary condition is
applied.

X ¼ X0;
@2X

@s2
¼ ð0; 0Þ (7)

The second case of FSI is the interaction of a flag (flexible plate)
with a three-dimensional flow. The governing equations of the
motion of the flag are written as

b
@X

@t2
¼
X2

i;j¼1

@

@si
rij
@X

@sj

� �
� @2

@si@sj
cij

@2X

@si@sj

� �� �
þ bFr

g

g
� F

(8)

rij ¼ uij

@X

@si
� @X

@sj
� dij

� �
(9)

where uij (i; j ¼ 1 or 2) are the stretching and shearing coeffi-
cients, rij (i; j ¼ 1 or 2) are the stretching and shearing forces, and

cij (i; j ¼ 1 or 2) are the bending and twisting coefficients. dij is
the Kronecker symbol. When i ¼ j, dij ¼ 1, and when i 6¼ j,
dij ¼ 0. In this study, we consider an inextensible flag by making
the stretching coefficients u11 and u22 sufficiently large. Equa-
tions (8) and (9) are equivalent to those used by Huang and Sung
[12]. Figure 2 shows the Lagrangian coordinates used in the simu-
lation of a flapping flag.

At the fixed end, we consider the simply supported condition in
the simulation, i.e.,

X ¼ ð0; 0; s2Þ;
@2X

@s2
1

¼ 0 at s1 ¼ 0 (10)

At the free boundaries, the boundary conditions are

@2X

@s2
1

¼ 0;
@3X

@s3
1

¼ 0 at s1 ¼ L (11)

@2X

@s2
2

¼ 0;
@3X

@s3
2

¼ 0 at s1 ¼ 0 or H (12)

and

rij ¼ 0; cij ¼ 0 ði; j ¼ 1; 2Þ (13)

2.2 Direct-Forcing IB Method Based on Discrete Stream
Function Formulation. We use the discrete stream function
approach for solving the Navier–Stokes equations. For more
details of this approach, please refer to Ref. [6]. The discretized
form of Eqs. (1) and (2) can be expressed by a matrix form as

A G

D 0

" #
qnþ1

p

" #
¼

rn

0

" #
þ

bc1

bc2

" #
þ

f

0

" #
(14)

where q, p, and f are the discrete velocity flux, pressure, and body
force, respectively. q is related to the discrete velocity u by multi-
plying the cell face area. A, G, and D are the implicit operator,
gradient operator, and divergence operator, respectively. rn is the
explicit right-hand side term of the momentum equation. bc1 and
bc2 are the boundary condition vectors for the momentum and
continuity equations, respectively.

In the discrete stream function approach, a discrete stream-
function ~s is defined as

q ¼ C~s (15)

where C is the curl operator. This matrix is constructed in such a
way that D and C enjoy the following relation:

DC ¼ 0 (16)

The definition in Eq. (15), together with the relation in Eq. (16),
guarantees the discrete incompressibility. In the discrete stream
function approach, another type of curl operator, the rotational
operator R, is also defined such that matrix R and matrix C enjoy
the following relation:

R ¼ CT (17)

By premultiplying the momentum equation with R, the pressure
can be eliminated from the system. This can be easily seen in the
identity equation

RG ¼ �CTDT ¼ �ðDCÞT ¼ 0 (18)

Thus, the system of Eq. (14) is reduced to a single equation for ~s
at each time step

Fig. 1 Schematic representation of the Lagrangian coordinate
system s on the filament. The length of the filament is L.
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CTAC~snþ1 ¼ Rðrn � bc1Þ þ Rf ¼ Rr0n þ Rf (19)

The representations of these operators are given in Ref. [6]. As to
the time advancement, the diffusion term is implicit, the convec-
tion term is treated explicitly, and a three-step, second-order, low
storage, Runge–Kutta scheme is used [6].

The matrix CTAC is symmetric, positive-definite, and thus can
be solved using the conjugate gradient (CG) method. A brief
introduction of this iterative method, including the preconditioner
and convergence criterion, is given in Ref. [6]. After solving
Eq. (19), the velocity components can be recovered through
Eq. (15). Although pressure is eliminated in this approach, if it is
required, it can still be obtained through a postprocessing step,
which is independent of the solution procedure for the velocity
field.

The flow solver is based on the direct-forcing IB method in dis-
crete stream function formulation. The original IB method in
Ref. [6] can be summarized as follows:

RAC~s� ¼ Rr0n þ Rf n (20)

~u� ¼ C~s� (21)

~U�ðXkÞ ¼
X

x

~u�ðxÞdhðx� XkÞh3 (22)

XM

j¼1

X
x

dhðx� XkÞdhðx� XjÞDsh3

 !
~F0ðXjÞ

¼
~UdðXkÞ � ~U�ðXkÞ

Dt
(23)

Fnþ1 ¼ Fn þ F0 (24)

f nþ1ðxÞ ¼
XM

j¼1

Fnþ1ðXjÞdhðx� XjÞDs (25)

RAC~snþ1 ¼ Rr0n þ Rf nþ1 (26)

~u nþ1 ¼ C~snþ1 (27)

Here h and Ds are Eulerian and Lagrangian grid size, respectively.
By introducing the discrete stream-function in Eq. (20) and Eq.
(26), the pressure term is eliminated and the divergence-free con-
dition can be satisfied to machine precision [6]. The direct-forcing
procedure of the IB method is described as follows. First, a
“predicted” (tentative) velocity ~u� is computed by using the force
components of the previous time step n (Eqs. (20) and (21)). In
the next step (Eq. (22)), ~u� is interpolated to the boundary. The
Lagrangian force correction F0 is then determined by solving a
small linear system (Eq. (23)). Subsequently, Fnþ1 is updated by
Eq. (24) and then spread to the grid points near the boundary by
Eq. (25). Finally, the velocity ~unþ1 is computed with the updated
forcing term f nþ1 by Eqs. (26) and (27).

The regularized Delta function used in the present study is
defined as

dhðx� XÞ¼ 1

h3
/

x�X

h

� �
/

y�Y

h

� �
/

z�Z

h

� �
(28)

Here / is in the form of a four-point piecewise d function that is
proposed in [1]

/ðrÞ¼

1
8

3�2 rj jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 rj j�4r2

p� �
; rj j � 1

1
8

5�2 rj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ12 rj j�4r2

p� �
; 1� rj j � 2

0;2� rj j

8>>>><
>>>>:

(29)

Although an accurate prediction of total force can be achieved by
using this method, unphysical spatial oscillation is observed in the
Lagrangian force distribution on the surface of the immersed
body. This oscillation is due to the “implicit” treatment of Lagran-
gian force in Eq. (23) and error accumulation in every time step in
Eq. (24). Since the Lagrangian force oscillation is detrimental to
the prediction of structure response in FSI, several modifications
are made in the present work to improve this method.

Firstly, it is found that even if the right-hand side is smooth, os-
cillation still exists in the Lagrangian force distribution by using

Fig. 3 The distribution of Lagrangian force correction F 0x along
the cylinder’s surface by using Eq. (23) and setting the right
hand side of Eq. (23) to 2100 at each Lagrangian point. The
Lagrangian grid width and Eulerian grid width are both 0.02. h
denotes the angle between the radical direction and the hori-
zontal direction.

Fig. 2 Schematic representation of the Lagrangian coordinate
system s1 and s2 on the flag. The longitudinal coordinate s1

ranges from 0 to L, and the spanwise coordinate s2 ranges from
0 to H , where L and H denote the length and width of the flag,
respectively.
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Eq. (23) (see Fig. 3). Thus, the implicit forcing in Eq. (23) is
replaced by the explicit forcing proposed by Uhlmann [8]
(Eq. (30)). The explicit direct-forcing can be written as

~F0ðXjÞ
Ds

¼
~UdðXkÞ � ~U�ðXkÞ

Dt
(30)

Secondly, a more consistent way of computing the momentum
forcing on a staggered mesh is proposed (see Fig. 4). Instead of
obtaining the forcing vectors at cell centers and then averaging
them to edge centers to obtain individual components, the x- and
y-components of the forcing vectors are computed separately and
directly at edge centers. It is believed that the averaging opera-
tions on a nonsmooth function (such as velocity) tends to reduce
accuracy.

Thirdly, the ratio between the Lagrangian grid width Ds and
Eulerian grid width h is set at 2. Table 1 shows the influences of
Ds=h on drag coefficient of a circular cylinder using the four-point
d function at Re ¼ 40. No difference in drag coefficient is seen by
using various Ds=h. It is also seen that by increasing Ds=h to 2 or
even larger, no oscillation in Lagrangian force distribution is

observed. As shown in Fig. 5, ~U� exhibits spatial oscillation at
Ds=h ¼ 1 while no oscillation is observed at Ds=h ¼ 2. Thus, in
all the validation cases of this work, Ds=h is set to 2. It is believed
that this type of oscillation is due to the accumulation of velocity
errors in the temporal advancement.

Fourthly, for a slender body of zero-thickness, the discrete
d-function with a “negative-tail” is adopted for the interpolation at
endpoints. The mathematical form of this d function [13] is

/ rð Þ¼
1� 1=2ð Þjrj� jrj2þ 1=2ð Þjrj3; jrj � 1:0

1� 11=6ð Þjrjþ jrj2� 1=6ð Þjrj3; 1:0� jrj � 2:0

0; jrj � 2:0

8>><
>>: (31)

It is found that the strong (unphysical) backflow at the leading-
and trailing-edge of the zero-thickness plate is another source of

spatial oscillation. The use of this type of kernel function can
effectively eliminate the backflow at the endpoints. For the rest of
the Lagrangian points (other than the endpoints), the regular four-
point d function (Eq. (29)) is used.

2.3 Discretization of the Structural Equations for Flexible
Filament and Flag. The first case is a flexible filament. A finite
difference method on staggered grid [11] is used to discretize Eq.
(4) and Eq. (5). The displacement X is defined at grid nodes while
the tension T is defined at the centroids of grid cells. Let Ds

denote the central difference operator with respect to s, for an ar-
bitrary variable w, Dsw means

Dsw ¼ ðwðsþ Ds=2Þ � wðs� Ds=2ÞÞ=Ds (32)

Fb denotes the bending force (i.e., the second term on the right-
hand side of Eq. (4)). The solution procedure can be summarized
as follows:

X� ¼ 2Xn � Xn�1 (33)

ðDsðDsðTnþ1
2DsX

�ÞÞÞ
kþ1

2

� ðDsX
�Þ

kþ1
2

¼ b
1� 2ðDsX � DsXÞn þ ðDsX � DsXÞn�1

2Dt2
�

bðDsU � DsUÞn
kþ1

2

� ðDsX
�Þ

kþ1
2

� ðDsðFn
b � FnÞÞ

kþ1
2

(34)

b
Xnþ1

k � X�k
Dt2

¼ ðDsðTnþ1
2DsX

nþ1ÞÞk þ ðFbÞnk � Fn
k þ bFr

g

g
(35)

Fig. 4 Two ways of computing forcing component on a stag-
gered mesh: (a) original way used in Ref. [6] and (b) more con-
sistent way of computing forcing component. In (a), the
Eulerian forcing (vector) is defined at cell centers, and each
forcing component is interpolated (individually) to cell edges
via simple average. In (b), each Eulerian forcing component is
defined at cell edges, and no extra interpolation is needed.

Table 1 Influence of the ratio of Lagrangian grid width to
Eulerian grid width on drag coefficients and oscillation in ~U� by
using the four-point delta function in the simulation of flow
over a cylinder at Re 5 40. NL is the number of Lagrangian grid
points.

Ds=h NL Cd Oscillations in ~U�

2.5 63 1.56 No
2 79 1.56 No
1.5 105 1.56 Yes
1 157 1.56 Yes

Fig. 5 The distribution of Lagrangian intermediate velocity ~U�

along the cylinder’s surface. The Eulerian grid width is 0.02
while in case (a) Ds=h 5 1 and in case (b) Ds=h 5 2.
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Equation (34) is the discretized form of the Poisson equation,
which can be derived from Eq. (4) and the inextensibility condi-
tion Eq. (5) [11]. With the boundary condition in Eq. (6) and Eq.
(7), the filament’s motion can be solved directly by using the CG
method.

The second case is a flapping flag. A finite difference method is
used to discretize Eqs. (8) and (9). We use a uniform mesh with
mesh width Ds in both s1 and s2 directions. For an arbitrary vari-
able w, the first-order central differences of w along s1 and s2 are

ðD1wÞiþ1
2
;j
¼

wiþ1;j � wi;j

Ds
(36)

ðD2wÞi;jþ1
2

¼
wi;jþ1 � wi;j

Ds
(37)

The second-order central difference and cross difference are
expressed as

ðD11wÞi;j ¼
ðD1wÞiþ1

2
;j
� ðD1wÞi�1

2
;j

Ds
(38)

ðD22wÞi;j ¼
ðD2wÞi;jþ1

2

� ðD2wÞi;j�1
2

Ds
(39)

ðD12wÞiþ1
2
;jþ1

2

¼
ðD2wÞiþ1;jþ1

2

� ðD2wÞi;jþ1
2

Ds
(40)

ðD21wÞiþ1
2
;jþ1

2

¼
ðD1wÞiþ1

2
;jþ1
� ðD1wÞiþ1

2
;j

Ds
(41)

where D11 and D22 denote the second-order difference along the
s1 and s2 direction. D12 and D21 are cross differences.

Using the definitions above, the discretized form of the flag’s
equations (Eqs. (8) and (9)) can be written as

rij ¼ uijðDiX � DjX� dijÞ (42)

b
Xnþ1 � 2Xn þ Xn�1

Dt
¼
X2

i;j¼1

½DiðrijDjXÞ � DijðcijDijXÞ�nþ1 � Fn

(43)

Together with the boundary conditions (Eqs. (10)–(13)), the flag’s
motion can be solved by using the CG method.

For the coupling of the fluid and structure, we use a staggered
(or loosely-coupled) method, in which the flow solver and struc-
ture solver are alternatively advanced by one step in time. In the
framework of the direct-forcing IB method, the velocity of the fil-

ament obtained in the structural solver provides the boundary con-
dition for the fluid solver, i.e., Ud ¼ _X, while the Lagrangian
force F determined in the flow solver acts as the source term in
the structural equation.

3 Numerical Validations and Results

3.1 Flows Over a Cylinder. To validate the solver, first the
numerical study of flow over a stationary cylinder at
Re ¼ 40; 100; 200 is conducted. The simulation is performed in a
rectangular domain of 30D� 40D, where D is the diameter of the
cylinder. The cylinder is placed on the centerline with its center
being 10D away from the inlet. The grid size in the vicinity of the
cylinder (a region of 2D� 2D) is 0:02D. The grids are stretched
to the boundaries with an expansion factor of 1.05, and the maxi-
mum grid size is 0:2D. The Lagrangian points are evenly
distributed along the circumference of the circular cylinder and
Ds=h ¼ 2:0. The time step is chosen such that the Courant–
Friedrichs–Lewy (CFL) number never exceeds 0.5.

First, we compute lift and drag by the summation of the two
components of the Lagrangian forcing, respectively. As that listed
in Table 2, the lift and drag coefficients obtained in the present
study agree well with those from the references.

A refinement study is also performed employing the improved
IB method to assess its convergence behavior. We choose the flow
over a stationary cylinder at Re ¼ 40 as a benchmark problem.
We use uniform grids in this test and the computational domain is
the same as that aforementioned. Spatial and temporal step sizes
are reduced simultaneously by fixing the CFL number to 0.5 in
all cases. The Lagrangian points are evenly distributed along
the circumference of the circular cylinder and Ds=h ¼ 2:0. Since
there is no analytical solution for this problem, the numerical
results are compared to the reference solution obtained on a
very fine grid with the grid width of ð1=512ÞD (where D is the
diameter of the cylinder). Thus, the L1 -error and L2 -error can be
defined as

e1 ¼ maxfui;j � uref
i;j g (44)

e2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1

PNy

i¼1

ðui;j � uref
i;j Þ

2

NxNy

vuuuut
(45)

The order of convergence O is computed by using different errors
obtained on successively refined grids, i.e.,

O ¼ logðeð2hÞ=eðhÞÞ
log2

(46)

Table 3 shows that the convergence order of this method is
between 1 and 2 (around 1.55). This is consistent with the results
for many variants of IB methods, which use a second-order accu-
rate basic N–S solver.

Next, we compute the pressure and skin-friction for the case of
Re¼ 40 by projecting the Lagrangian forcing on the local normal
and tangential direction, respectively. The distributions of the

Table 2 Comparisons of lift and drag coefficients, Strouhal
numbers for flows over a cylinder at different Reynolds
numbers

Case Re Cd Cl St

Present 40 1.55 60:00 �
Linnick and Fasel [14] 40 1.54 60:00 �
Taira and Colonius [15] 40 1.54 60:00 �
Wang and Zhang [6] 40 1.54 60:00 �
Present 100 1.35 60:33 0.166
Linnick and Fasel [14] 100 1.38 60:33 0.169
Uhlmann [8] 100 1.45 60:34 0.169
Wang and Zhang [6] 100 1.33 60:32 0.166

Present 200 1.34 60:69 0.197
Linnick and Fasel [14] 200 1.34 60:69 0.197
Taira and Colonius [15] 200 1.35 60:68 0.196
Wang and Zhang [6] 200 1.32 60:69 0.197

Table 3 Grid refinement results and convergence order
obtained by using flow past a cylinder at Re 5 40

h=D eðhÞ1 eð2hÞ
1 =eðhÞ1 O1 eðhÞ2 eð2hÞ

2 =eðhÞ2 O2

1/16 1.04e-1 � � 7.24e-2 � �
1/32 3.50e-2 2.97 1.57 2.36e-2 3.07 1.62
1/64 1.21e-2 2.91 1.54 7.89e-3 2.99 1.58
1/128 4.19e-3 2.87 1.52 2.65e-3 2.95 1.56
1/256 1.28e-3 3.32 1.73 8.20e-4 3.25 1.70
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pressure coefficient Cp and skin-friction coefficient Cf obtained
by using the improved method are compared with the reference
solutions in Ref. [16] and the solution by using the original
method proposed in Ref. [6] (see Fig. 6). It is seen that a good
agreement between the present result and the reference solution in
Ref. [16] has been achieved. From this figure, it is also seen that
the result obtained by using the method in Ref. [6] exhibits large
spatial oscillations in both pressure and skin-friction.

3.2 Flows Over a Flat Plate. We then simulate the flow over
a flat plate at Re ¼ 200 and two angles of attack (0 deg and
10 deg). The purpose of this validation is to test the accuracy of
force distribution prediction for a slender body of zero-thickness.
In this simulation, we use a rectangular domain of 30L� 20L.
The flat-plate is placed on the centerline with its center being 10L
away from the inlet. The grid size in the vicinity of the plate (a
region of 2L� 2L) is 0:01L. The time step is chosen such that the
CFL number never exceeds 0.5. For reference purpose, we seek
the solution of this problem by using the commercial computa-
tional fluid dynamics software-FLUENT. A body-fitted unstructured
mesh with 140,000 cells is used in the computation by FLUENT.
The mesh resolution used in FLUENT is comparable to that in the
in-house flow solver (with the thickness of the plate represented
by three mesh points in FLUENT). Other numerical settings in
FLUENT are: second-order upwind scheme for convection, second-
order central scheme for diffusion, and first-order Euler scheme
for time advancing.

The distributions of pressure (difference) and skin-friction,
obtained by using the improved method, by using the improved
method but without the “negative-tailed” d function and by using

FLUENT, are plotted in Fig. 7. It is seen that the agreement between
the result obtained using the improved method and the one using
FLUENT is reasonably well. The result using the improved method
but without the “negative-tailed” d function exhibits some oscilla-
tions near the leading- and trailing-edge of the flat plate.

3.3 Flapping of Flexible Filament. Before performing any
FSI simulation, we first validate the stand-alone structure solver

Fig. 6 Distribution of (a) pressure coefficient Cp and (b) skin-
friction coefficient Cf on the surface of the cylinder for Re 5 40

Fig. 7 Distributions of pressure coefficient difference DCp and
skin-friction coefficient (Cf ) along the flat-plate surface at
Re 5 200 and two angles of attack: (a) Cf for a 5 0 deg, (b) DCp

for a 5 10 deg, and (c) Cf for a 5 10 deg
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by simulating a flexible filament moving under gravity in vacuum.
The simply supported (pinned) boundary condition is used at one
end, and the free-end boundary condition is used at the other (see
Fig. 1). The initial position condition of the filament is given by
Xðs; 0Þ ¼ X0 þ ðL� sÞðcos k; sin kÞ; @Xðs; 0Þ=@t ¼ ð0; 0Þ, where
k is a constant and X0 ¼ ð0; 0Þ. At t ¼ 0, the filament is released
and starts swinging due to the gravitational force.

We use b ¼ 1:0, L ¼ 1:0, Fr ¼ 10:0, c ¼ 0, and k ¼ 0:1p as
the control parameters. As shown in Fig. 8, the numerically pre-
dicted free-end position agrees well with the analytical solution in
Ref.[11].

We then simulate the interaction of a flexible filament with a
free stream at Re ¼ 200. We use a computational domain of
16L� 10L. The distance between the leading edge of the filament
and the inlet is 6L. The mesh size is 0.01L in the vicinity of the fil-
ament (a region of 6L� 2L). The number of the Lagrangian points
representing the immersed filament is 50. The parameters used
here are b ¼ 1:5, Fr ¼ 0:5, and L ¼ 1:0. To trigger the instability,
the filament is initially placed inclined at an angle of 0:1p with
respect to the flow direction. Figure 9 shows the vorticity distribu-
tion in the wake for c ¼ 0:0015. Figure 10 shows the time histor-
ies of the y-position of the trailing edge for two different bending
rigidities. It is seen that the present results agree well with those
from Ref. [11] for both cases. Some discrepancies in phase and
amplitude are due to the following two factors. First, although in
this work we use the same algorithm as that in Ref. [11] in solving
the structure equation, the basic solver for solving the N–S equa-
tion is different. Second, in Ref. [11] very small time steps are
used (CFL number is only around 0.11) due the stability restric-
tion. In the present method, the stability restriction on time step is
much looser, and we use larger time steps (CFL is around 0.5).

3.4 Three-Dimensional Simulation of a Flapping Flag. The
3D simulation of a flapping flag is also performed in this paper.

We use a simply supported condition at the fixed end and free
boundary condition at the free end (see Fig. 2 and Eqs. (10)–(13)).

In the simulation of the flapping flag, we use r12 ¼ r21 ¼ 10:0,
r11 ¼ r22 ¼ 1000:0, and c12 ¼ c21 ¼ c11 ¼ c22 ¼ 0:0001 as the

Fig. 8 Comparison of the predicted free-end position with the
analytical result

Fig. 9 Vorticity contours in wake of a flapping flexible filament

Fig. 10 Time history of y-position of the trailing edge: (a)
c ¼ 0:0015 and (b) c 5 0:0

Fig. 11 The instantaneous shape of a flapping flag in the
three-dimensional simulation
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control parameters, with a free stream of Re¼ 100. The computa-
tional domain is 8L� 8L� 4L, with the mesh size being 0.02L in
the vicinity of the flag (a domain of 2L� 2L� 2L). The total
number of cells is 2.2� 106. Other control parameters are
b ¼ 1:0, Fr ¼ 2:0, and L ¼ H ¼ 1:0. The flag is initially held at
an angle of k ¼ 0:1p from the XZ plane, as expressed by
Xðs1; s2Þjt¼0¼ ðs1 cos k; s1 sin k; s2 � H=2Þ.

Figure 11 shows the instantaneous shape of a flapping flag in
the three-dimensional simulation. The flag sags down slightly due
to the gravitational force. The rolling motion of the upper corner
is also seen. These observations are consistent with the report in
Ref. [12]. Figure 12 shows the time histories of the transverse dis-
placement of point A in Fig. 2 for Fr ¼ 0:0. Both the result of the
present study and that of Huang and Sung [12] are plotted in the
figure. An excellent agreement between the two results is clearly
seen.

4 Conclusions

In this study, an FSI solver is developed for the study of slender
structures interacting with fluid. The present solver couples a
direct-forcing IB method based on discrete stream function formu-
lation for fluid flow and a staggered-grid finite difference method
for the structural motion. Modifications to the original IB method
are made to suppress the unphysical spatial oscillations in the
force distribution on the surface of the structure. The solver is
validated by a series of problems, including flows over stationary
circular cylinder and flat plate. FSI simulations performed in this
paper include 2D flow over an inextensible filament and 3D flow
over a flapping flag. The results obtained in the present study
agree well with those in the literature.
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Nomenclature

A ¼ implicit operator in discretization
bc ¼ boundary condition vectors in discretization
C ¼ curl operator

Cd ¼ drag coefficient
Cf ¼ skin friction coefficient
Cl ¼ lift coefficient

Cp ¼ pressure coefficient
D ¼ divergence operator
D ¼ diameter of the circular cylinder
f ¼ Eulerian forcing in fluid momentum equation
f ¼ discrete Eulerian force component
F ¼ Lagrangian forcing in structure equation
~F ¼ discrete Lagrangian force vector
F ¼ discrete Lagrangian force component

Fr ¼ Froude number
g ¼ magnitude of gravitational acceleration
g ¼ gravitational acceleration

G ¼ gradient operator
H ¼ width of the flag
k ¼ initial inclined angle of the filament or flag
L ¼ length of the flat-plat, filament, or flag
O ¼ order of convergence
p ¼ fluid pressure
q ¼ discrete velocity flux
r ¼ explicit term in the discretization of the momentum

equation
R ¼ rotational operator

Re ¼ Reynolds number
s ¼ Lagrangian coordinate
~s ¼ discrete stream function
T ¼ tension coefficient of the filament
u ¼ fluid velocity
u ¼ discrete fluid velocity component
~U ¼ Lagrangian velocity at the boundary
U ¼ reference velocity
x ¼ Eulerian coordinate
X ¼ displacement of the structure
a ¼ angle of attack
b ¼ mass ratio
c ¼ bending coefficient of the filament or bending and twisting

coefficients of the flag
C ¼ boundary of the flexible body
d ¼ regularized d function
e ¼ error
h ¼ angle between radical direction and horizontal direction
� ¼ kinematic viscosity
r ¼ stretching and shearing coefficients of the flag
X ¼ fluid domain

Subscripts

i; j ¼ index in tensorial material coefficients of the structure or
index of node in finite different discretization

k ¼ index of node in finite different discretization
n ¼ index of time step
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