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The present study is a numerical investigation of the hydrodynamic effects of passive flexibility on a self-
propelled plunging foil. In the model problem, the flow is two-dimensional, incompressible and laminar,
while the flexible foil is treated as an inextensible filament. The leading-edge of the foil undergoes a pre-
scribed harmonic oscillation in the vertical direction. In the horizontal direction, the foil is free to move
and no constraint is imposed. The simulations are performed by using a solver which couples the
immersed boundary method for the flow and the finite difference method for the structure. A systematic
parametric study has been conducted to investigate the effects of flexibility on important physical quan-
tities such as the cruising speed, swimming power and propulsive efficiency. It is found that optimal
cruising speed is always achieved in foils with some passive flexibility and not the rigid ones. Another
important finding is that optimum performance is always achieved at a forcing frequency much lower
than the resonance point. Based on the simulation results, three dynamical states of a self-propelled foil
have been identified with the increase of bending rigidity, i.e., non-periodic movement, periodic back-
ward-movement and periodic forward-movement. For a flexible foil in forward movement, depending
on the range of bending rigidity, either a deflected or a symmetric vortex street arises as the characteristic
wake structure. It is found that moderate flexibility is beneficial to symmetry preservation in the wake,
while excessive flexibility can trigger symmetry-breaking. The results obtained in the current work shed
some light on the role of flexibility in flapping-based biolocomotion.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Flapping motions of wings/fins are used by animals (such as
birds, insects, bats and fishes) to generate lift or thrust to keep
them aloft or propel themselves in the surrounding fluid.
Researches in this area are not only motivated by the fundamental
interest of understanding the mechanism of animal flight and
swimming, but also the development of micro air vehicles (MAVs)
and autonomous underwater vehicles (AUVs) based on biomimet-
ics. A foil in steady forward motion and a combination of harmonic
plunging and pitching has served as a simplified model for the
study of efficient locomotion in animals. Till now extensive
researches on flapping foils have been conducted, both experimen-
tally and computationally.

Although (passive) flexibility of wing/fin has long been recog-
nized as an important factor in the aerodynamic (hydrodynamic)
performance of insect flight or fish swimming, it has received little
attention until recently (see [1,2] for a comprehensive review).
By using a combination of computational and analytic methods,
Daniel and Combes [3] have shown that the deformation in flap-
ping wings was dominated less by aerodynamic loading than by
inertial and elastic forces. In a series of experimental studies,
chordwise and spanwise flexibility have been shown to increase
propulsive efficiency in flapping-based propulsion [4–6]. In the
works by Ishihara et al. [7] and Zhao et al. [8], a dynamically scaled
mechanical model of flapping flight was used to measure the aero-
dynamic forces on flapping wings of variable flexural stiffness. Due
to the complexity of fluid–structure interaction (FSI) problems, in
computational simulations simplifications are usually made, either
in the model for the fluid or for the structure. For example, Katz
and Weihs [9] and Michelin and Llewellyn Smith [10] have used
the potential flow theory to describe the interaction between an
inviscid flow and a flexible flapping wing; whereas a reduced-order
model has been used for the structures in other works [11–13].
With the availability of better computing power and more sophis-
ticated numerical methods, simulations which include the interac-
tion of viscous fluid and solid continuum were performed in some
more recent studies [14–22].
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Fig. 1. Schematic depiction of the model problem: a self-propelled flexible foil of
length L driven by a harmonic plunging motion at the leading-edge.
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One point has to be underlined here: in most studies concerning
flapping foils, the interaction between a flapping body held static
and an oncoming flow driven independently is considered. How-
ever, the decoupling of the flapping dynamics and the forward
speed makes those systems very dissimilar to free-flying (or free-
swimming) animals. Thus the utilization of ‘self-propelled’ device
is preferable in the study of biolocomotion [23]. Till now, only lim-
ited studies have been conducted to understand the behaviors of
‘self-propelled’ flapping-foil systems. For rigid flapping foils, exper-
imental studies on a model mounted on a ‘merry go round’ can be
found in Vandenberghe et al. [24] and Vandenberghe et al. [25];
numerical simulations of simplified models can be found in Alben
and Shelley [26], Lu and Liao [27], and Zhang et al. [28]. For flexible
flapping foils, Spagnolie et al. [29] and Zhang et al. [30] used the
‘lumped-torsional’ model to mimic the flexibility of the structure
(i.e., a plunging rigid plate with a torsion spring acting about the pi-
vot at the leading edge to produce passive pitching). Eldredge and
Pisani [31] and Wilson and Eldredge [32] have also performed sim-
ulations of a self-propelled flexible swimmers represented by an
articulated system of linked rigid bodies. Recently, self-propelled
flapping devices with realistic flexible wings were built to investi-
gate the role of resonance in optimizing the performance [33, 34]
and the scaling of cruising speed with foil length and bending rigid-
ity [35]. A numerical study of such system was also performed in
[35], where the foil is treated as an elastica and a ‘body-vortex-
sheet’ model is used for the fluid. This fluid model is still based on
the potential (inviscid) flow theory, although some empirical mod-
els were used to include the effect of viscous drag. Despite of the
encouraging agreements between the experiments and the inviscid
predictions, the range of validity of the inviscid assumption is still
limited by the onset of dynamic stall. This is particularly true at
low Reynolds numbers typically required in the flights of MAVs.
Moreover, although some physical insights have been gained by
using reduced-order models for the structures, the behavior of a
dynamical system consisting of torsional springs and rigid compo-
nents is still very different from that of an elastica. Thus we believe
FSI simulations that use the Navier–Stokes equations for the fluid
and the equation of solid continuum for the flexible foil are essential
for elucidating the effect of flexibility on the performance of a self-
propelled flapping system. We also noticed a most recent work by
Lee and Lee [36], where numerical simulations of such system have
been conducted by using the lattice Boltzmann method. Their work
only focused on the effect of flexibility on propulsive velocity. To the
best of our knowledge, a thorough and systematic study regarding
the role of flexibility in such system still lacks in the literature.

In this paper, we proposed to model such system by considering
the interaction of a self-propelled inextensible filament with a
two-dimensional viscous flow. We developed a solver by coupling
the Navier–Stokes equations for the fluid and a geometrically non-
linear equation for the structure. The model problem is then sys-
tematically investigated by means of numerical simulations. The
purposes of the current work are twofold. First, by using the data
from the numerical simulations, we would like to clarify the spec-
ulation regarding the connection between performance optimum
and occurrence of resonance. Second, we would like to uncover
some information which are lacking in inviscid simulations or sim-
ulations using the ‘lumped-torsional’ model, e.g., the mode shape
of the flexible foil during flapping and the true wake structure be-
hind the foil in forward movement. Such information are crucial for
understanding the role of flexibility in propulsive performance of a
flapping-foil system.

The rest of the paper is arranged as follows. In Section 2, the
model problem and governing equations are presented. In
Section 3, the numerical methods and simulation set-up are
described. Section 4 presents the results and discussions. Finally,
some conclusions are drawn in Section 5.
2. Model problem and governing equations

We consider the model problem of a self-propelled flexible foil
driven by the plunging motion (see Fig. 1). The foil is clamped at
the leading-edge which undergoes a harmonic oscillation in the
vertical direction, but is free to move horizontally.

The fluid flow is assumed to be laminar and incompressible. The
governing equations are written in the dimensionless form as

@u
@t
þr � ðuuÞ ¼ �rpþ 1

Ref
r2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

where u is the fluid velocity, p the pressure. Ref is the flapping Rey-
nolds number which is defined as Ref ¼ qf Uref L=l , with qf , Uref,
L and l being the density of fluid, reference velocity, chord length
of the foil and dynamic viscosity of the fluid, respectively. f is the
(dimensionless) Eulerian forcing that is used to mimic the effect
of the immersed object on the fluid flow. The reference velocity
used in this work is Uref ¼ 2pAf , where f is the frequency of the
plunging motion and A is the oscillation amplitude of the leading
edge. Thus the reference velocity is equivalent to the maximum
flapping velocity.

In this study, we consider a two-dimensional flow interacting
with a flexible foil. Due to its small thickness–length-ratio, the
flexible foil is treated as an inextensible filament. The governing
equations for the motion of the filament can be written in a dimen-
sionless form as

b
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where s is the Lagrangian coordinate along the arc length; X is the
displacement vector; b; f and c are the mass ratio, dimensionless
tension coefficient and dimensionless bending rigidity respectively.
F is the (dimensionless) Lagrangian forcing term due to the interac-
tion with the fluid; g is the acceleration of gravity and g ¼ gj j. Fr is
the Froude number defined as gL=U2

ref . The gravitational term in Eq.
(3) is zero for all simulations performed in this paper except one
validation case for the structural solver (see Section 3.2 for the
details).

The dimensionless parameters, b; f and c, are defined as

b ¼ qs

qf L
;

f ¼ T

qf U
2
ref L

;

c ¼ B

qf U
2
ref L3 ;

ð5Þ

where qs is the linear density of the filament; T and B are the
dimensional tension and bending rigidity respectively. Eq. (3) is
equivalent to those used by Zhu and Peskin [37], Connell and Yue
[38] and Huang et al. [39] for flexible structures. Eq. (4) is the
inextensibility condition which acts as a constraint on the
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displacements of the structure. A Poisson equation for the tension
coefficient fðs; tÞ can be derived from Eqs. (3) and (4) as
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where Fb ¼ � @2

@s2 c @2X
@s2

� �
is the bending force. The first term on the

right hand side of Eq. (6) is zero theoretically. However, this term
is kept to correct the numerical inextensibility errors introduced
in the computation.

In the current study, there are some complications in the
boundary conditions for Eqs. (3) and (6). For the leading-edge of
a self-propelled flapping foil, its vertical (plunging) motion is pre-
scribed as a harmonic function of time. By using L=Uref as the ref-
erence parameter for time, the dimensionless form of this
function becomes

yðtÞ ¼ A cos
1
A

t
� �

; ð7Þ

where A ¼ A=L is the dimensionless oscillation amplitude. The
horizontal motion of the leading-edge is not constrained and the
trailing-edge of the flapping foil is a free-end. The numerical issues
including the implementation of boundary conditions for Eqs. (3)
and (6) will be discussed in detail in Section 3.2.

3. Numerical methodology and simulation set up

3.1. Immersed-boundary flow solver

In this paper, the governing equation for fluid is numerically
solved by using the immersed boundary technique, in which a
body force is added to the momentum equation to mimic the effect
of immersed objects on the flow. More specifically, we use a vari-
ant of the direct-forcing immersed boundary methods which is
based on the discrete stream function formulation for incompress-
ible Navier–Stokes equations [40].

The flexible foil placed in the flow is represented by a series of
Lagrangian points (markers). The non-slip boundary condition to
be imposed at the Lagrangian points isZ

V
uðx; tÞdðx� XÞdx ¼ UbðX; tÞ; ð8Þ

where d is the regularized delta function (in this work, a 3-point
regularized delta function is used [40]); Ub is the desired velocity
at the Lagrangian points. If the motion of the immersed body is
prescribed, Ub is known beforehand; while for FSI problems, Ub is
a priori unknown and must be obtained by solving the structural
equation. The coupling between the flow solver and structural sol-
ver will be further discussed in Section 3.3.

To impose the boundary condition Eq. (8), a forcing term FðX; tÞ
is applied at the Lagrangian points. The forcing term fðx; tÞ in Eq.
(1) (which is applied at the computational grids or Eulerian points)
is related to FðX; tÞ by

fðx; tÞ ¼
Z

s
F X sð Þ; tð Þd x� X sð Þð Þds: ð9Þ

To solve the Navier–Stokes equations, a transport equation for
the discrete stream function is first derived from Eqs. (1) and (2).
At every time step, the governing equation for the discrete stream
function is then discretized and solved numerically. Comparing
with the conventional projection method, this method is computa-
tionally more efficient. For the details of the numerical method,
including the determination of forcing term FðX; tÞ, spatial discret-
ization and time advancing scheme, please refer to [40]. Systematic
validations of the flow solver on flows over stationary and moving
obstacles can also be found in [40], e.g., flows past a circular cylin-
der (at Re = 40, 100, 200), an in-line oscillating cylinder in fluid at
rest, and flow past a three-dimensional low-aspect-ratio flat-plate
of zero-thickness (at Re = 100). The predictions of lift, drag or
velocity profiles were in excellent agreement with those from
other literature.

3.2. Structural solver

A finite difference method on a staggered grid is used to solve
the structural equations (Eqs. (3) and (6)). We largely follow the
discretization and solution procedure proposed by Huang et al.
[39], but make some modifications to the boundary conditions to
allow free movement of the self-propelled foil in the horizontal
direction.

The boundary conditions for Eqs. (3) and (6) are described as
follows. At the trailing edge of the flapping foil, we use the free
end condition:

@2X
@s2

 !
s¼1

¼ 0;0ð Þ;

@3X
@s3

 !
s¼1

¼ 0;0ð Þ;

fs¼1 ¼ 0:

ð10Þ

At the leading edge of the self-propelled foil, the vertical motion
is prescribed and its orientation is strictly horizontal. The boundary
conditions are then

Yð Þs¼0 ¼ y tð Þ;
@X
@s

� �
s¼0
¼ ð1;0Þ;

@3X
@s3

 !
s¼0

¼ 0;

fs¼0 ¼ 0;

ð11Þ

where X and Y are the horizontal and vertical components of the
displacement vector X respectively (for force F, Fð1Þ and Fð2Þ will
be used hereafter to denote the horizontal and vertical components
respectively). Eq. (11) can be regarded as a ‘mixed-type’ boundary
condition which blends the vertically forced oscillation, the
clamped (build-in supported) condition and the horizontally uncon-
strained condition.

Eqs. (10) and (11) are the boundary conditions used in the FSI
simulation of self-propelled flapping foils. In one validation case
of this section, a simply supported (pinned) condition is also used,
i.e.,

Xð Þs¼0 ¼ XO;

@2X
@s2

 !
s¼0

¼ 0;0ð Þ:
ð12Þ

The details of the discretization procedure (including the dis-
cretization near the boundaries) are summarized in Appendix B.

To validate the structure solver, we first simulate a flexible fil-
ament moving under gravity in vacuum. The simply supported
(pinned) boundary condition (Eq. (12)) is used at one end and
the free-end boundary condition (Eq. (10)) is used at the other.
The initial position of the filament is given by

Xðs;0Þ ¼ XO þ ðs cos k; s sin kÞ;
@Xðs;0Þ=@t ¼ ð0;0Þ;

ð13Þ

where k is a constant and XO ¼ ð0;0Þ. At t = 0, the filament is re-
leased and starts swinging due to the gravitational force. We use



4 X. Zhu et al. / Computers & Fluids 97 (2014) 1–20
b ¼ 1:0; L ¼ 1:0; Fr ¼ 10:0; g=g ¼ ð1; 0Þ , c ¼ 0 and k ¼ 0:01p as the
control parameters. For the case where the swing amplitude is
small and the bending force is neglected, an analytical solution in
series form can be derived by using the perturbation method [39].
The numerically predicted free-end vertical position YðL; tÞ is com-
pared with the analytical result in Fig. 2. From this figure, a good
agreement between the two is clearly seen.

To further test the validity of the boundary condition Eq. (11) in
a self-propelled system, we then simulate the forced oscillation of
a flexible foil in vacuum. At the leading-edge, the boundary condi-
tion of Eq. (11) is imposed together with a vertically sinusoidal mo-
tion prescribed as yðtÞ ¼ 0:001 cosðxntÞ, where xn with n ¼ 1;2;3
denotes the first three natural angular frequencies in a cantilever
beam. At the trailing-edge, the free end boundary condition Eq.
Fig. 2. The vertical free-end position of a hanging filament without ambient fluid
under a gravitational force. The solid line denotes the result of the current study
while the square denotes the analytical solution in Huang et al. [39].

Fig. 3. The shapes of a self-propelled filament in the forced oscillation with a vertical mot

nth natural angular frequency of the Euler–Bernoulli cantilever beam. (a) n = 1, x1 ¼ 3
moving with the leading-edge and plotted every Dt ¼ T=30, for one forcing period from t =
frequencies, we set L ¼ 1;B ¼ 1;qs ¼ 1. In the simulations, we use the dimensional form

Fig. 4. The trajectories of the leading- and trailing-edge and the time history of centroid
oscillation of the first mode: (a) leading-edge trajectory; (b) trailing-edge trajectory; and
trajectories are in the laboratory frame and plotted every Dt ¼ T=30, for one forcing per
(10) is used. For the cases of small forcing amplitudes, the solution
of Eq. (3) is very close to that of an Euler–Bernoulli beam. The
mode shapes of the foil are plotted in Fig. 3. It is seen that the first,
second and third mode shape spontaneously emerges due to the
application of forcing with the corresponding frequency. Unlike a
conventional Euler–Bernoulli beam, however, in this case the hor-
izontal displacements (including that of the leading-edge) are still
permitted. Due to the inextensible constraint, the trajectories of
both ends are of figure-eight type (see Fig. 4(a) and (b)). It is also
seen from the figure that the vertical displacement of the lead-
ing-edge is much smaller than that of the trailing-edge. The time
history of the streamwise displacement of the centroid is plotted
in Fig. 4(c). Since the resultant horizontal force is zero, the stream-
wise displacement of the centroid should be identically zero. Our
numerical result for the displacement of the centroid matches
the exact solution to machine precision.

For reference purpose, the simulation of a rigid self-propelled
flapping foil ðc ¼ 1Þ is also performed in this work. For this type
of simulation, Eq. (3) can still be used by setting the bending rigid-
ity c to a very large value. However, a large bending force could re-
sult in severe numerical problems in the structure solver. Instead,
we use the Newton’s second law as the governing equation for the
motion of a rigid foil in the horizontal direction:

b
d2Xc

dt2 ¼ �
XN

j¼1

Fð1ÞðXj; tÞDs; ð14Þ
ion of the leading-edge prescribed as y ¼ 0:001 cosðxntÞ, where xn ¼ kn
L

� �2
ffiffiffiffi
B
qs

q
is the

:52; (b) n = 2, x2 ¼ 22:0; (c) n = 3, x3 ¼ 61:7. Positions of the foil are in the frame
6T to t = 7T, where T is the period of the forced oscillation. In computing the natural
of Eq. (3) and also set L ¼ 1;B ¼ 1;qs ¼ 1.

streamwise displacement of a self-propelled filament in vacuum under the forced
(c) time history of the streamwise displacement of the centroid. All positions in the
iod from t = 6T to t = 7T, where T is the period of the forced oscillation.



Fig. 6. Computational domain and locally-refined mesh with hanging-nodes for the
study of a flexible self-propelled plunging foil. Three sub-domains with different
mesh resolutions are shown. The enlarged view of a region where meshes with
hanging-nodes are deployed is also shown.
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Fig. 7. Results of the mesh-independent test: leading-edge horizontal velocity as a
function of time obtained by using three different meshes. T ¼ 2pA is the
dimensionless period of the plunging motion. The dash-dotted line, dashed line
and solid line denote the result for the grid size of 0:04L;0:02L and 0:01L,
respectively.
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where Xc is the horizontal position of the center of mass. An explicit
scheme very similar to that for solving Eq. (3) is used for the
temporal advancement of Eq. (14).

3.3. Fluid–structure coupling

We use a staggered or loosely-coupled method for the FSI prob-
lem, in which the flow solver and structure solver are alternatively
advanced by one step in time. In the framework of the direct-
forcing immersed boundary method, the velocity of the filament
obtained in the structural solver provides one boundary condition
for the fluid solver, i.e., Ub ¼ _X; while the Lagrangian force F
determined in the flow solver acts as the source term in the struc-
tural equation (Eq. (3)).

To validate the coupled solver, we simulate the interaction of a
flexible filament with a free stream at Re = 200. Other parameters
used here are b ¼ 1:5; Fr ¼ 0:5;g=g ¼ ð1;0Þ and L ¼ 1:0. We use a
computational domain of 16L� 10L. The distance between the
leading-edge of the filament and the inlet is 6L. The number of
the Lagrangian points representing the filament is 50 and the mesh
size in the vicinity of the filament (a region of 6L� 2L) is uniformly
0.02L.

A uniform velocity is prescribed at the inlet; non-slip boundary
conditions are imposed on the two lateral walls; a boundary con-
dition which is equivalent to the constant-pressure condition is
prescribed at the outlet. The boundary condition for the filament
is the same as that of the first case (filament moving under gravity
in vacuum) in Section 3.2. The initial condition for the entire fluid
filed is a uniform flow (moving at the inlet velocity). To trigger the
instability, the filament is initially placed inclined at an angle of
0:1p with respect to the flow direction.

Fig. 5 shows the time histories of the vertical positions of the
trailing-edge for two different bending rigidities. It is seen that
the present results agree well with those from Huang et al. [39]
for both cases.

3.4. Simulation set-up and mesh-independent test

For the study of a self-propelled foil driven by vertical oscilla-
tion at the leading-edge, simulations were performed on a rectan-
gular box of sizes [�29L, 29L] [�6L, 6L], in the streamwise and
transverse direction respectively. The leading-edge of the foil is
located at (0,0) initially (see Fig. 6). A locally-refined quadrilateral
mesh with hanging-nodes is generated for the simulation. Within
each sub-domain (I, II or III) shown in Fig. 6, the computational
cells are uniform. The mesh sizes are 0.02L, 0.04L and 0.08L, in I,
II and III, respectively and the resulting total cell number is
688,000. The number of the Lagrangian points representing the
filament is 50.

Non-slip boundary conditions are imposed on the four sides of
the computational domain for the fluid. The initial condition for
the entire flow filed is zero-velocity condition. The foil initially
aligns itself in the horizontal direction and is placed at the position
of maximum vertical displacement, i.e., Xðs;0Þ ¼ ðs;AÞ. The time
Fig. 5. Time history of the vertical position of the trailing-edge in the FSI of a flexible
b ¼ 1:5; c ¼ 0:0; Fr ¼ 0:5. The solid line denotes the result of the current study while the
steps for the simulations are chosen such that the maximum CFL
number (defined by the fluid velocity, time step and grid width)
is 0.5.

Grid convergence tests have been conducted to ensure that the
results obtained are independent of the mesh resolution. Fig. 7
shows the horizontal velocity of the leading-edge as a function of
time for three different grid widths, 0:01L;0:02L and 0:04L (this
is the mesh resolution in domain I, the grid widths are doubled
and quadrupled in II and III, respectively). Other control parame-
ters in this test are: Ref ¼ 200; A ¼ 1:0; b ¼ 0:2; c ¼ 4:0. It is seen
that comparing with the result for the grid width of 0:02L, some
deviation can be found if the grid width is double. However,
(almost) identical result is obtained if the grid width is reduced
to 0:01L.

From Fig. 7, it is also seen that during the first half flapping per-
iod after starting, the forward speed undergoes a rapid increase
from zero. Then a gradual increase in speed will last for about
3.5 flapping periods. A periodically steady state is achieved after
four flapping periods.
4. Results and discussion

To investigate the role of flexibility on the hydrodynamics of a
self-propelled flapping foil, we perform series of simulations by
filament with a free stream at Re = 200: (a) b ¼ 1:5; c ¼ 0:0015; Fr ¼ 0:5 and (b)
square denotes the result in Huang et al. [39].



6 X. Zhu et al. / Computers & Fluids 97 (2014) 1–20
varying the dimensionless bending rigidity while keeping other
parameters fixed. In four cases A, B, C and D, four different combi-
nations of mass ratio and oscillation amplitude are considered. The
parameters used in the simulations are summarized in Table 1.
Cases A and B are of b ¼ 0:2, with the dimensionless driving ampli-
tudes being 0.2 and 0.5 for case A and case B, respectively. Cases C
and D are of b ¼ 2:0, with the dimensionless driving amplitudes
also being 0.2 and 0.5 for case C and case D, respectively. A rela-
tively wide range of bending rigidity is chosen and 20–27 different
bending rigidities are studied in each case. Moreover, for the high-
est bending rigidity studied, the important physical quantities
(such as cruising speed and swimming power) obtained are indis-
tinguishable with the reference values obtained on a rigid foil (see
Section 3.2). In addition to the cases listed in Table 1, simulations
are also performed at b ¼ 1:0;4:0;6:0;8:0;10:0 for A ¼ 0:2 to deter-
mine the borders among different flow regimes (see Section 4.3 for
the details). For each of the five different mass ratios above, six
bending rigidities are considered.
4.1. Effects of flexibility on propulsive performance

First, the key physical parameters for quantifying the propulsive
performance are defined as follows.

The cruising speed Uc is defined as the average horizontal veloc-
ity reached by the leading-edge of the foil at a (periodically) steady
state, i.e.,

Uc ¼ �
1
Tf

Z Tf

0

@X
@t

				
s¼0

� �
dt; ð15Þ

where Tf ¼ 2pA is the dimensionless flapping period. It should be
noted that the cruising speed is not well-defined if the flow enters
the non-periodic regime (to be discussed later).

The swimming power, which is the average input power
required to produce the oscillation of the foil, can be defined as

Ps ¼
1
Tf

Z Tf

0

Z 1

0
F � @X

@t

� �
ds

� �
dt: ð16Þ

Similarly, Ps is not well-defined if the periodic state is not reachable.
To quantify the propulsive efficiency of the self-propelled loco-

motion, in some recent works, an ‘efficiency factor’ defined as the
ratio of thrust power to (input) swimming power has been used.
However, the definition of efficiency factor is still controversial
due to the ambiguities in calculating the ‘thrust power’ when the
(average) resultant force in the horizontal direction equals zero.
In Thiria and Godoy-Diana [33] and Ramananarivo et al. [34], the
‘thrust force’ was measured by holding the flapping foil in a fixed
position. The force thus obtained was then used to calculate the
thrust power. In Borazjani and Sotiropoulos [41], an arbitrary
decomposition was used to separate the thrust and drag forces.
In the current work, we follow the idea proposed by Kern and
Koumoutsakos [42] and use a propulsive parameter defined as the
ratio of the kinetic energy in the forward motion of the foil and
the work done to the fluid by the foil over one forcing period.
The amount of the work is computed as the time integral of the
Table 1
The control parameters in the simulations of the current study.

Ref A b c

A 200 0.2 0.2 10�3—104

B 200 0.5 0.2 10�3—104

C 200 0.2 2.0 10�1—104

D 200 0.5 2.0 10�1—104
swimming power [30]. In the mathematical formulation, the pro-
pulsive parameter is defined as

g ¼
1
2 bU2

c

Tf Ps
: ð17Þ

For reference purpose, the cruising speed, swimming power and
propulsive parameter achieved in rigid foils are first computed and
the results for the four cases are summarized in Table 2. When
comparing the two cases with the same mass ratio (such as A
and B or C and D), it is seen that higher forcing amplitude results
in lower cruising velocity. This is very counter-intuitive at the first
glance, however, it can be easily understood if one notice that
higher amplitude is always accompanied by lower frequency, since
the flapping Reynolds number is the same for all cases.

The evolution of normalized cruising speed, swimming power
and propulsive parameter with increasing bending rigidity is
shown in Fig. 8. The parameters listed in Table 2 are used as the
reference quantities for the normalization. The overall trend shown
in Fig. 8 is that the global maxima are not achieved in a rigid foil
but a foil with some passive flexibility. A similar trend in cruising
speed was also reported in [36]. In Fig. 8, besides the global max-
ima, local maxima are also found in some quantities, such as the
cruising speeds for case A and case B. The bending rigidities for
achieving the global maxima in normalized cruising speed, swim-
ming power and propulsive parameter are summarized in Table 3.
It is seen that for all cases studied, the locations of global maxima
in cruising speed and propulsive parameter are very close to each
other. The performance enhancement due to the adding of flexibil-
ity (in terms of propulsive parameter increase) is found to be more
significant in the two cases of lower mass ratio (A and B). For the
two cases of higher mass ratio (C and D), although the increase
in cruising speed due to flexibility is also noticeable, lesser perfor-
mance gain is mainly caused by the drastic increase in swimming
power.

It is interesting to note that a similar trend has also been re-
ported in some studies of the flexibility effect on hovering perfor-
mance of flapping foils or wings [19,52]. In these works, the
maximum lift production was achieved at a moderate flexibility.
Moreover, the hovering performance (lift-to-power ratio) was
found to deteriorate in foils/wings with higher mass ratios.

4.2. Resonance and performance optimum

In this section, we will explore the role of resonance (between
the forcing and the natural frequency) in optimizing performance.

First, we define the reduced forcing frequency as �x ¼ xf =x1,
where x1 is the first natural angular frequency of the system. For
cases of large mass ratios (where the influence of outside fluid
can be neglected), the natural frequencies of the system are
approximated by those of a clamped-free elastic sheet in vacuum.
Thus for the cases of b ¼ 2:0 (C and D), x1 is calculated analytically
as

x1 ¼
k1

L

� �2
ffiffiffiffiffi
B
qs

s
; with k1 ¼ 1:875: ð18Þ
Table 2
The cruising speed, swimming power and propulsive parameter achieved in the rigid
foils.

U1c P1s g1

A 1.16 1.70 0.063
B 0.83 1.06 0.021
C 1.17 1.65 0.660
D 0.82 1.02 0.212
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Fig. 8. Normalized cruising speed, swimming power and propulsive parameter as a function of c: (a) case A; (b) case B; (c) case C; and (d) case D. The solid lines with squares
denote the cruising speed; the solid lines with circles denote the swimming power; the solid lines with triangles denote the propulsive parameter. All quantities have been
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Table 3
The global maxima in normalized cruising speed, swimming power and propulsive
parameter and the dimensionless bending rigidities corresponding to these maxima.

cumax Umax
c

U1c
cpmax pmax

s
p1s

cgmax gmax

g1

A 3.8 1.75 5.0 1.56 3.0 2.08
B 0.8 2.06 1.0 1.22 0.7 4.26
C 12.0 1.89 6.0 4.35 20.0 1.36
D 2.4 1.52 0.8 2.22 2.8 1.28

X. Zhu et al. / Computers & Fluids 97 (2014) 1–20 7
The reduced frequency then becomes

�x ¼ xf

x1
¼ 2pf

x1
¼ 1

A

1

k2
1

ffiffiffi
b
c

s
: ð19Þ

However, for the cases of small mass ratios, the natural frequen-
cies of the system can be significantly modified due to the presence
of outside flow [10]. In this work, we use the first natural frequency
of a passive elastic sheet in axial flow as a better approximation to
that of the current system. For cases of b ¼ 0:2 (A and B), the linear
stability analysis and an inviscid ‘vortex sheet’ representation of
the wake are used to compute the first natural frequency (see
the Appendix of [10]).

The evolution of the normalized cruising speed, swimming
power and propulsive parameter with increasing reduced forcing
frequency are shown in Fig. 9. It is seen that for all cases, the
optimized cruising speed is obtained around �x ¼ 0:55—0:65,
which is quite close to the experimental result (on flappers with
high mass ratios) in Ramananarivo et al. [34]. For case A and B,
the positions of the maxima in the swimming power and cruising
speed are almost coincident. For case C and D, the positions of
maximum swimming power are shifted towards higher frequen-
cies (around �x ¼ 0:8—0:9). Note that the trend of swimming
power obtained in this work seems to be quite different from that
in [34], where the power was found to increase monotonically with
increasing reduced forcing frequency. We remark that this seeming
contradiction is caused by the different reference values used in
the non-dimensionalization procedure. More specifically, qf U3

ref L
2

is used in our work to non-dimensionalize the power, while
BUref =L (or cqf U3

ref L
2) was used in theirs. As to the propulsive

parameter, it is seen that the maximum is achieved at �x ¼ 0:7
and �x ¼ 0:75, for case A and B, respectively. For case C and D,
the maxima for the propulsive parameter are achieved around
�x ¼ 0:5. All the results indicate that for optimizing cruising speed
and propulsive efficiency, the flapping foil may stay much below
the resonance point. This observation is consistent with the finding
in [34]. We also noted that in a recent study [52] on the role of flex-
ibility in the hovering performance of a rectangular flapping wing,
the maximum lift and efficiency (lift-to-power ratio) were also
achieved at a forcing frequency much lower than the resonance
point (around �x ¼ 0:25—0:35).

Due to the lack of a large bank of comparative resonant frequen-
cies and wing/tail beats of animals, it is still not possible to estab-
lish a firm connect between our observation and flapping-based
animal locomotion. However, evidences have been found that
some insects are indeed operating at the reduced frequency around
�x ¼ 0:5. Two such examples are the hoverfly and the dragonfly.
Based on the measured chordwise flexural stiffness, the natural
frequencies of the wing are 324 Hz and 90 Hz, respectively for
hoverfly [43] and dragonfly [44]; while theirs wing-beat frequen-
cies are 160–180 Hz and 35–45 Hz, respectively.
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4.3. Influence of flexibility on flapping amplitude and mode shape

First we examine the absolute and relative trailing-edge ampli-
tudes, which are two important quantities for describing the shape
of a flexible foil. The absolute trailing-edge amplitude AT is defined
as the amplitude in the laboratory frame, while the relative trail-
ing-edge amplitude Ar

T is defined as that in the frame moving with
the leading-edge. Note that both amplitudes defined here are
dimensionless quantities (which are normalized by the filament
length L).

The evolution of absolute and relative trailing-edge amplitudes
with increasing bending rigidity for the four cases is shown in
Fig. 10. In the plots of absolute amplitudes, two maxima are found
in case A, while three are found in case B. The two peaks in A from
right to left correspond to the resonance at the first and second
natural frequencies, respectively. The three peaks in B from right
to left correspond to the resonance at one third of the first natural
frequency, the first and second natural frequencies, respectively.
For the relative amplitudes of case A and case B, some peaks of
are distorted (flattened). This phenomenon has also been observed
before in [10]. For case C and case D, one global peak is clearly seen
in both the absolute and the relative amplitudes (see Fig. 10(c) and
(d)). The peaks of the relative amplitudes are almost coincident
with those of the absolute amplitudes, although a small shift
towards the left can be seen. These peaks correspond to the reso-
nance at the first natural frequency. For cases D, another tiny peak
in the absolute amplitude is also seen. This tiny peak corresponds
to the resonance at one third of the first natural frequency.

To further elucidate the relationship between peak absolute
amplitudes and the occurrence of resonance, the absolute ampli-
tude (normalized by the value obtained in rigid foil) is also plotted
as a function of reduced forcing frequency in Fig. 11. For cases
C and D, the global maxima are always achieved at �x ¼ 1:0, indi-
cating regular resonant behavior. For cases A and B, however, the
distortion of the resonance curve is quite obvious. First, the values
of resonance peaks are smoothed. Second, the resonance peaks are
shifted towards higher frequencies. Comparing with that in case A,
the distortion of the resonance curve in case B (which has a larger
flapping amplitude) is more noticeable. The distortion of resonance
curve can be attributed to the nonlinear damping effect of the fluid
drag [34]. In cases of small mass ratios, the fluid drag is relatively
important if compared with the inertial force of the foil, thus sig-
nificant distortion is observed in the resonance curves. Further-
more, the distortion intensifies with the increase of flapping
amplitude. In cases of large mass ratios (such as C and D), the fluid
drag becomes less important. Thus the distortion of the resonance
curve is not clearly seen. In Fig. 11, tiny peaks are also observed in
the nearness of one third of the first natural frequency in cases B
and D (although it is hard to identify in case D). The occurrence
of superharmonic resonance at x1=3 for large flapping amplitudes
has also been reported in [34].

Next we will look at the mode shapes at various bending rigid-
ities for case A and case D. The mode shapes for case B and case C
are very similar to those for case A and D, respectively. Thus the
mode shapes of these two cases are not shown here for brevity.
The mode shapes for case A are shown in Fig. 12. The phase plots
of the free-end (vertical velocity vs. vertical displacement) and
the normalized power spectra of the free-end vertical displace-
ment are also presented. The flapping of mode-1 type is clearly
seen at c ¼ 3:8 (corresponding to the maximum cruising speed),
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c ¼ 1:0 (corresponding to the rightmost peak of the absolute trail-
ing-edge amplitude) and c ¼ 0:2 (corresponding to the trough be-
tween the two successive peaks of the absolute trailing-edge
amplitude). It is also observed that the envelope of mode shape
at c ¼ 0:2 is even wider than that at c ¼ 1:0. This seeming contra-
diction is caused by the change of frame, since the relative ampli-
tude at c ¼ 0:2 is indeed higher than that at c ¼ 1:0. The phase
plots at these three bending rigidities resemble that of a period-
one limit-cycle (with frequency f) in appearance, although a small
peak at 3f does exist in the power spectra. At c ¼ 0:035 (corre-
sponding to the leftmost peak of the absolute trailing-edge ampli-
tude), the flapping is of mode-2 type. It is interesting to see that the
up-down symmetry of the flapping is lost in this case. As that will
be shown later, this asymmetric flapping is associated with the net
lift caused by the symmetry breaking of the wake. At c ¼ 0:025, the
flapping is also of mode-2 type but the up-down symmetry is al-
most recovered. At c ¼ 0:004 (corresponding to periodic back-
ward-movement), the mode shape looks like the one formed by a
beating cilium (but with a much larger Re number) and the up-
down symmetry is fully recovered. The backward motion in a
self-propelled flapping system has also been reported previously
in Spagnolie et al. [29] and Zhang et al. [30], in the study of a
self-propelled flexible foil based on the ‘lumped-torsional’ model.
This backward-swimming mode is rather counter-intuitive and
more discussions will be presented later in this subsection to bet-
ter understand its origin. At these three bending rigidities
(c ¼ 0:035; c ¼ 0:025 and c ¼ 0:004), the phase plots are character-
ized by the multiperiodic limit-cycle (with f, 3f and 5f as the dom-
inating frequencies). At c ¼ 0:001, the flapping exhibits sustained
non-periodic behavior, which can be characterized by the irregular
trajectories in the phase plot and the multiple peak frequencies in
the power spectrum.

The mode shapes for case D are shown in Fig. 13, together with
the free-end phase plots (vertical velocity vs. vertical displace-
ment) and the normalized power spectra of the free-end vertical
displacement. It is seen that the flapping is of mode-1 type for all
bending rigidities studied here. At c ¼ 2:4 (corresponding to the
maximum cruising speed), the envelope of the mode shape is very
narrow due to the low relative amplitude of the trailing-edge. At
c ¼ 0:8 (corresponding to the maximum absolute amplitude), the
envelope becomes much wider than that at c ¼ 2:4. After a careful
examination of the envelope, it is found that the up-down symme-
try of the flapping is lost at this bending rigidity. The excursion of



Fig. 12. Mode shape, phase plot of free-end (vertical velocity vs. vertical displacement) and normalized power spectrum of free-end vertical displacement, plotted for case A
at various bending rigidities. Absolute and relative amplitude as a function of bending rigidity is also plotted in (a) for reference purpose; (b) c ¼ 3:8 (maximum cruising
speed); (c) c ¼ 1:0 (rightmost peak in absolute amplitude); (d) c ¼ 0:2 (though between two successive peaks in absolute amplitude); (e) c ¼ 0:035 (leftmost peak in absolute
amplitude); (f) c ¼ 0:025; (g) c ¼ 0:004 (backward-movement); and (h) c ¼ 0:001 (non-periodic flapping). The positions in the mode shape are plotted very 1/30 of the
forcing period and are in the frame moving with the leading-edge. The displacement and velocity in the phase plot are in the laboratory frame. The frequency in the power
spectrum has been normalized by f.
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the trailing-edge is slightly tilted downwards. As it will be shown
later, this asymmetric flapping is again associated with the sym-
metry breaking of the wake. The phase plots at these two bending
rigidities resemble that of a period-one limit-cycle (with frequency
f) in appearance, however a small peak at 3f can still been found in
the power spectra. At c ¼ 0:4 (corresponding to periodic



Fig. 12 (continued)
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backward-movement), the up-down symmetry is recovered and
the mode shape resembles that of a beating cilium (but with a
much larger Re number). The phase plot is now characterized by
the multiperiodic limit-cycle. In the power spectrum, six dominat-
ing frequencies (1f, 2f, 3f, 5f, 6f and 7f) arise. At c ¼ 0:12 (corre-
sponding to non-periodic state), the flapping is characterized by
the irregular trajectories in the phase plot and the multiple peak
frequencies in the power spectrum. In all the power spectra shown
in Figs. 12 and 13, 3f always arises as one of the dominating fre-
quencies (except those associated with non-periodic state). This
is consistent with the fact that superharmonic resonance can occur
at one third of the first natural frequency.



Fig. 13. Mode shape, phase plot of free-end (vertical velocity vs. vertical displacement), and normalized power spectrum of free-end vertical displacement, plotted for case D
at various bending rigidities. Absolute and relative amplitude as a function of bending rigidity is also plotted in (a) for reference purpose; (b) c ¼ 2:4 (maximum cruising
speed); (c) c ¼ 0:8 (maximum absolute amplitude); (d) c ¼ 0:4 (backward-movement); and (e) c ¼ 0:12 (non-periodic flapping). The positions in the mode shape are plotted
very 1/30 of the forcing period and are in the frame moving with the leading-edge. The displacement and velocity in the phase plot are in the laboratory frame. The frequency
in the power spectrum has been normalized by f.
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If we compare the result for case A (or case B) with that in [10]
(where an inviscid model was used to study the thrust perfor-
mance of a flexible heaving foil), the evolution of mode shape with
increasing flexibility is very similar. A different trend of evolution
for the mode shape was reported in the work by Dai et al. [53],
where the thrust performance of a flexible low-aspect-ratio pitch-
ing plate was investigated. They found that the mode-2 deforma-
tion can appear not only when the rigidity is very low but also
when the pitching amplitude becomes very high. If we compare
the propulsive efficiency for different modes in the present study,
it is seen that the mode-1 deformation has much higher efficiency
than the other modes. Similar findings were also reported in
[10,53].

Based on the flapping modes observed, the dynamical states of
the self-propelled foil can be classified into three types: non-peri-
odic, periodic backward and periodic forward. For cases A, C and D,
with the increase of bending rigidity, the dynamical state may
transit from non-periodic to periodic backward and then to peri-
odic forward. However, for case B, with the increase of bending
rigidity, the dynamical state transits directly from non-periodic
to periodic forward. Such transition is also confirmed in the evolu-
tion of wake structure with bending rigidity (see the relevant dis-
cussions in Section 4.4). Further study indicates that the transition
borders among the three dynamical states can be significantly
affected by the mass ratio b. To investigate this issue, additional
simulations (besides those in cases A and C) are performed at
b ¼ 1:0;4:0;6:0;8:0;10:0 for A ¼ 0:2 and different dynamical states
are labeled in the ðb;1= �xÞ phase diagram (see Fig. 14(a)). The two
borders separating the three regimes are determined
ω1 /ωf
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Fig. 14. Regimes of different dynamical states of the foil in the parametric space ðb;1=x
diagram). I: periodic forward-movement; II: periodic backward-movement; and III: non-
between regime I and II, representing the periodic forward-movement and periodic bac
near the boundary between regime II and III, representing the periodic backward-move
where maximum absolute amplitude is reached; the dashed line denotes the place whe
approximately using a series of simulations and illustrated as the
two solid curves. It is seen that at the limit of b!1, the transition
from forward-movement to backward movement occurs at
�x ¼ 1:62; while the transition from backward-movement to non-
periodic state occurs at �x ¼ 3:57. Moreover, we also find that at
the limit of b!1, the maximum cruising speed is achieved at
�x ¼ 0:55. Again, it is confirmed that for the entire range of mass
ratio (0.2–10.0) studied here, flappers cannot optimize their per-
formance by operating near the resonance point. The missing of
the periodic backward state in case B can be explained using the
schematic display shown in Fig. 14b). From this figure, it is seen
that for the mass ratio below a critical value b�, the direct transi-
tion from non-periodic state to periodic forward state is possible.
Such transition is not observed in case A, C and D since the mass
ratios are above the critical value.

The phase difference a between the trailing- and the leading-
edge is another important quantity for describing the shape of
the flexible flapping foil. This quantity is found to be closely related
to performance optimization. The phase difference at the maximal
cruising velocities for the four cases are listed in Table 4. Here
positive sign symbolizes a phase lead while negative sign symbol-
izes a phase lag in the trailing-edge. From Table 4, it is seen that the
phase difference corresponding to the maximum velocity is close
to �p=4, although some discrepancies do exist. For better under-
standing of the relationship between performance optimum and
phase difference, the schematic representation of different shapes
of the flexible foil (at the moment when the leading-edge passes
the equilibrium position with a downward velocity) corresponding
to various phase difference is shown in Fig. 15. For a ¼ 0, the trail-
� Þ for A ¼ 0:2. (a) the whole picture and (b) a close-up view near b ¼ 0 (schematic
periodic state. Symbols O and M correspond to some typical cases near the boundary
kward-movement, respectively. Symbols � and � correspond to some typical cases
ment and non-periodic state, respectively. The dash-dotted line denotes the place
re maxim cruising speed is reached.



Table 4
The phase difference a between the trailing- and leading-edge and the ratio of angle
of attack to trailing-edge deflection angle h=/ (averaged over half plunging cycle) at
the optimized cruising velocities for the four cases.

amax uc �p=4� amax ucj j=ðp=4Þ (%) ðh=/Þmax uc ðh=/Þmax uc � 1:0
		 		=1:0
(%)

A �0.76 3 0.91 9
B �0.88 12 0.93 7
C �0.87 11 1.03 3
D �0.79 1 1.01 1

Fig. 15. A schematic representation of various shapes of the flexible foil for
different phase angles at the moment when the leading-edge passes the equilib-
rium point with a downward velocity.
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ing-edge moves in phase with the leading-edge, this scenario is
only observed in a rigid foil. For a ¼ � p

2, the trailing-edge is about
to reverse its direction when the leading-edge passes the equilib-
rium position thus very large relative amplitude can be achieved.
This scenario is observed if the flexible foil operates near the reso-
nance point. The shape for a ¼ � p

4 lies in between that for a ¼ 0
and that for a ¼ � p

2. The performance optimum achieved around
a ¼ � p

4 can be explained by the ‘streamlined’ shape formed in
the flexible foil. Here we examine two characteristic angles which
are defined as follows (see Fig. 16). The first one is the effective an-
gle of attack / ¼ arctanðUflap=UcÞ, where Uflap ¼ _yj j is the flapping
velocity due to the plunging motion. The other one is the deflection
angle h of the trailing-edge. In [34], it was speculated that perfor-
mance can be optimized if the trailing-edge aligns with the flow,
i.e., h ¼ /, when the leading-edge passes the equilibrium position
(Uflap ¼ Uref ). To further explore this issue, we compute the values
of h=/ when the leading-edge passes the equilibrium position for
the scenarios in which the optimal cruising speeds are achieved
and found that h=/ is only around 0.5–0.6. We then compute the
average values of h=/ over half-cycle of plunging (either upstroke
or downstroke). It is found that when the optimal cruising speed
is reached, the averaged values of h=/ are very close to unity in
all cases studied (see Table 4). Based on this observation, we be-
lieve that in an average sense, h � / is valid for performance opti-
mum in a self-propelled flexible foil. The performance for a ¼ 0
(rigid foil) and a ¼ � p

2 (flexible foil operating near resonance point)
Fig. 16. The definitions of effective angle of attack and trailing-edge deflection
angle.
are far from optimum due to the non-streamlined shapes formed.
The relationship between streamlined shape and performance
optimum can be further explained in the context of the forming
of leading-edge and trailing-edge vortices. On one hand, the
streamlined shape reduces the intensity of leading-edge vortices
by reducing the scale of flow separation. On the other hand, for a
foil with streamlined shape, sufficiently strong trailing-edge vorti-
ces are still produced. We believe that the two aspects above lead
to the high propulsive performance of the system.

Another scenario which deserves more analysis is the shape for
a < �p, which corresponds to the backward-swimming mode. In
Fig. 17(a) and (b), we compare the shapes of the flexible foil during
upstroke in the backward swimming and forward swimming
modes for case D. The two averaged shapes over half plunging cy-
cle (upstroke) for the backward swimming and forward swimming
modes are shown in Fig. 17(c). From the shape shown in Fig. 17(c),
the seemingly counter-intuitive motion in the backward swim-
ming mode can be easily understood by the fact that the flapper
pushes fluid towards the left and thus propels itself towards the
right.

4.4. Influence of flexibility on wake structure

To characterize the vortex shedding behaviors in flapping
wings, the Strouhal number (St) has been widely used in the liter-
ature [45]. In this work, we define the amplitude-based Strouhal
number as

St ¼ 2fATeUc

			 			 ¼ 1
p

UrefeUc

			 			 AT

A
¼ 1

p Ucj j
AT

A
; ð20Þ

where eUc is the dimensional cruising velocity; A and AT are the
dimensional amplitudes of the leading- and trailing-edge, respec-
tively. Unlike that for a tethered foil placed in the uniform flow,
the Strouhal number for a self-propelled foil is the result of the
fluid–structure interaction problem and is a priori unknown.

For the Strouhal numbers observed in nature (including those in
flying and swimming), 0.2–0.4 is considered to be the optimized
range [46]. The results of this work indicate that the optimized
range of Strouhal number can be achieved in a very wide range
of bending rigidity (see the St� c diagrams shown in Figs. 18(a),
19(a), 20(a) and 21(a)). It is observed that for all cases studied in
this work, the Strouhal numbers in rigid foils always lie in the
optimized range. It is also seen that the Strouhal numbers corre-
sponding to the maximum cruising velocities are also in the range
of 0.2–0.4, with case B being the only exception, where Strouhal
number is slightly lower than 0.2 within a narrow range of bending
rigidity centered around the value for achieving the maximal cruis-
ing speed (see Fig. 19(a)). The observations above suggest that the
Strouhal number is not the only indicator for measuring efficiency.
For a fixed Strouhal number in the optimized range, detailed vortex
dynamic features (such as the intensities of the leading- and trail-
ing-edge vortices) are still needed to determine the efficiency of
the system.

We now look at the evolution of wake structure with the vari-
ation of bending rigidity. Fig. 18 shows the instantaneous vorticity
contours for case A. At c ¼ 1; c ¼ 3:8 and c ¼ 0:4, symmetric vor-
tex streets are observed. The only difference (in the wake struc-
ture) among them is the spacing between two neighboring
vortices in the vortex street. Obviously, different spacing is due
to the different cruising velocities achieved. At c ¼ 0:035, a de-
flected vortex street is observed. Unlike the deflected vortical
structures in the wake of a rigid flapping foil, this non-symmetric
vortex-street is accompanied by the up-down non-symmetric flap-
ping (see the mode shape in Fig. 12(e)). At c ¼ 0:004, which corre-
sponds to the backward-swimming mode, the vortex street is not



Fig. 18. Instantaneous vorticity contours for case A at various bending rigidities. St number as a function of bending rigidity is also plotted in (a) for reference purpose; (b)
c ¼ 1 (St = 0.28); (c) c ¼ 3:8 (St = 0.25); (d) c ¼ 0:4 (St = 0.75); (e) c ¼ 0:035 (St = 1.4); and (f) c ¼ 0:004 (St = 5.41). The contour color range is from �2.0 to 2.0. The red color
represents positive (counterclockwise) vorticity while the blue color represents negative (clockwise) vorticity. Case (f) is not labeled in (a) since the St number lies too far
beyond the optimized range. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. The comparison of the shapes of the flexible foil during upstroke in backward swimming and forward swimming modes of case D: (a) 15 snapshots in backward
swimming mode; (b) 15 snapshots in forward swimming mode; and (c) the averaged shapes over half plunging cycle (upstroke) in backward swimming and forward
swimming modes. The averaged fluid forces (resultant forces and streamwise components) exerted on the foils are also plotted. The positions of the flexible foil plotted in this
figure are in the frame which moves with the leading-edge horizontally but is static in the vertical direction. The snapshots in (a) and (b) are taken very 1/30 period. Red lines
denote the shapes in the backward swimming mode; blue lines denote the shapes in the forward swimming mode. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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observed due to the fact that the Reynolds number based on the
cruising velocity is very small (around 20). Instead, structures of
high vorticity concentration are only found in the very near wake.
Note that the St number defined in Eq. (20) is not appropriate for
characterizing the wakes of the backward-swimming mode, a
more suitable quantity will be the Strouhal number based on the
amplitude of the leading-edge.

For case B, the transition of the wake structure with decreasing
c is similar to that in case A. However, there are still some
difference between them, especially at higher bending rigidities
(see Fig. 19). At c ¼ 1, a deflected (non-symmetric) vortex street
with large deflection angle is observed. At c ¼ 0:8 (where maxi-
mum cruising velocity is achieved), it is seen that the up-down
symmetry of the vortex street is preserved. If we compare this
wake with the symmetric vortex street in case A (see Fig. 18(c)),
the difference can be clearly seen. At c ¼ 0:8 in case B, two vortices
with the same sign are shed downstream in one half-cycle (it is
termed as 2P-mode in some references while the vortex structure



Fig. 19. Instantaneous vorticity contours for case B at various bending rigidities. St number as a function of bending rigidity is also plotted in (a) for reference purpose; (b)
c ¼ 1 (St = 0.38); (c) c ¼ 0:8 (St = 0.18); (d) c ¼ 0:08 (St = 0.64); and (e) c ¼ 0:02 (St = 0.98). The contour color range is from �2.0 to 2.0. The red color represents positive
(counterclockwise) vorticity while the blue color represents negative (clockwise) vorticity. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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in Fig. 18(c) is termed as 2S-mode). After being convected further
downstream, the two same-sign vortices coalesce and eventually
the vortical structure similar to that in Fig. 18(c) is formed. This
type of wake structure (2P-mode) has also been reported
previously in [30]. At c ¼ 0:08, the symmetric vortex street which
resembles the one in Fig. 18(c) is observed. At c ¼ 0:02, a deflected
vortex street associated with the asymmetric flapping is observed.
Compared with the one at c ¼ 1, the direction of deflection of the
vortex street has been switched. For this case, the backward-
swimming mode is not observed. The non-periodic state can be
reached if c is further reduced.

For case C, the evolution of wake structure with decreasing
bending rigidity is shown in Fig. 20. A symmetric wake is observed
at c ¼ 1 and c ¼ 12:0, while a deflected wake is observed at
c ¼ 5:0 and c ¼ 4:0. At c ¼ 0:4, the backward-swimming mode is
observed. The backward cruising velocity in this case is relatively
larger than those in case A and case D (see Figs. 18(f) and 21(f)
for comparisons). As a result, a symmetric vortex street (which
resembles the one shown in Fig. 18(d)) is clearly seen behind the
flapper.

Fig. 21 shows the wake structures at various bending rigidities
in case D. At c ¼ 1, a deflected vortex street is observed. At c ¼ 2:4,
the up-down symmetry of the wake is preserved. At c ¼ 1:2, sym-
metry breaking occurs again in the wake and results in a deflected
vortex street. It is also observed that the direction of deflection in
the vortex street is now switched when compared with the one at
c ¼ 1. At c ¼ 0:8 the wake is also characterized by a deflected vor-
tex street. It is interest to see that the direction of deflection in the
vortex street is switched again when compared with the one at
c ¼ 1:2 (the direction of deflection is now the same as the one at
c ¼ 1). Note in this study the initial condition is exactly the same
for all simulations. This phenomenon has been reported previously
in the studies of rigid flapping foils, both in experiment [47] and in
simulation [48]. The reason for the switching of direction of the de-
flected wake at different bending rigidities is still not clear and
merits further study. At c ¼ 0:4, the backward-swimming mode
is also observed. The wake structure at this bending rigidity looks
very similar to that of the backward-swimming mode in case A
(see Fig. 18(f)). However, a very short vortex street can still be seen
after careful examination. Due the low cruising Reynolds number,
the vortices shed into the wake decay very quickly.

By comparing the wake structures at c ¼ 1 and at moderate
bending rigidities in case B (or case D), it is conjectured that mod-
erate flexibility can inhibit symmetry breaking of the wake. Further
comments regarding the influence of flexibility on the stability
property of the wake are presented here. As shown in Godoy-Diana
et al. [49], the up-down symmetry of the reversed Karman vortex
street can be persevered if the Strouhal number is less than a crit-
ical value (in the range of 0.33–0.44) for a rigid pitching foil at the
Re number of 255. At the first glance, the ‘symmetry-preserving’
effect of flexibility can be attributed to reducing St number (to a
value below the critical one). However, the observations of the cur-
rent work cannot be simply rationalized by the fact that flexibility
modifies the St number. It is found that for foils with moderate
bending rigidities, the wake can stay symmetric at St number as
high as 0.75 (see Fig. 18(d)), which is much higher than the critical
Strouhal number for rigid foils. Another counterexample is shown
in Fig. 21(b) and (c). At c ¼ 1 and c ¼ 2:4, the St numbers are iden-
tical (which equal 0.39). The former one produces a deflected wake
while the up-down symmetry is preserved in the latter one. We



Fig. 20. Instantaneous vorticity contours for case C at various bending rigidities. St number as a function of bending rigidity is also plotted in (a) for reference purpose; (b)
c ¼ 1 (St = 0.27); (c) c ¼ 12:0 (St = 0.29); (d) c ¼ 5:0 (St = 0.56); (e) c ¼ 4:0 (St = 0.68); and (f) c ¼ 0:4 (St = 0.73). The contour color range is from �2.0 to 2.0. The red color
represents positive (counterclockwise) vorticity while the blue color represents negative (clockwise) vorticity. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 21. Instantaneous vorticity contours for case D at various bending rigidities. St number as a function of bending rigidity is also plotted in (a) for reference purpose; (b)
c ¼ 1 (St = 0.39); (c) c ¼ 2:4 (St = 0.39); (d) c ¼ 1:2 (St = 0.58); (e) c ¼ 0:8 (St = 0.81); and (f) c ¼ 0:4 (St = 1.06). The contour color range is from �2.0 to 2.0. The red color
represents positive (counterclockwise) vorticity while the blue color represents negative (clockwise) vorticity. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 22. A diagram map for the wake symmetry/asymmetry with respect to the
bending rigidity and the plunging amplitude. (a) b ¼ 0:2; (b) b ¼ 2:0. The filled
diamonds represent cases with symmetric wake in forward motion. The empty
diamonds represent cases with asymmetry wake in forward motion. The filled
triangles represent cases in backward motion.

Fig. B1. The stencil used in the discretization of the structure equation. The
displacement X is located at places denoted by triangles; while the tension
coefficient is located at places denoted by circles.

18 X. Zhu et al. / Computers & Fluids 97 (2014) 1–20
notice that a similar observation was also reported in a more re-
cent work by Marais et al. [50], where the symmetry breaking of
the reversed Karman vortex street behind a flexible pitching foil
has been inhibited in a large range of parameters explored. In an-
other recent work by Zheng and Wei [51], it was observed that
symmetry breaking of the wake behind a rigid plunging foil can
be influenced individually by frequency and amplitude (even if
the St number is kept fixed). Furthermore, they also found that
symmetry breaking can also be affected by the (cruising) Reynolds
number. The findings in these two papers can provide some clues
for rationalizing the observations of the current work. In the cur-
rent study, it is also observed that excessive flexibility can even
trigger symmetry breaking in the wake (see Figs. 18(e) and
19(e)). To our knowledge, this is the first report of such phenome-
non and the mechanism behind it is not well understood either. A
diagram map for the wake symmetry/asymmetry with respect to
the bending rigidity and the plunging amplitude are shown in
Fig. 22. Further studies are needed to understand the mechanism
for the transition of the wake (from symmetric pattern to asym-
metric pattern or visa verse).
5. Conclusions

To investigate the influence of flexibility on the hydrodynamics
of a self-propelled foil, we consider a simplified model problem in
which the two-dimensional laminar flow interacts with an inex-
tensible filament. The control parameters in the model problem
are: the flapping Reynolds number Ref , the dimensionless oscillat-
ing amplitude A, the mass ratio b and the dimensionless bending
rigidity c. In the numerical simulations, we fix the flapping
Reynolds number to 200 and consider four different combinations
of dimensionless oscillating amplitude and mass ratio. For each
combination, we performed a series of simulations by varying
the dimensionless bending rigidity in a certain range while keeping
other parameters unchanged.

It is shown that for a specific plunging motion, the optimal
cruising speed is always achieved in the foils with some passive
flexibility and not the rigid ones. The bending rigidities for achiev-
ing the global maxima in cruising speed and propulsive parameter
(which is used to characterize efficiency) are very close to each
other. The range of reduced forcing frequency for achieving
optimized performance lies much below the resonance point
(0.52–0.64 for maximal cruising speed and 0.5–0.75 for maximal
efficiency). Thus optimum performance cannot be achieved by
seeking resonance. This numerical observation is consistent with
the measurements of some flying insects, such as hoverfly and
dragonfly. Rather than seeking resonance, we believe that the opti-
mal propulsive performance is closely related to the ‘streamlined’
shape formed during flapping.

In the range of flexibility considered in this work, only mode
shapes of mode-1 or mode-2 type are observed. In a certain range
of bending rigidity, the up-down symmetry of the flapping motion
can be lost (due to the occurrence of symmetry-breaking in the
wake), although the plunging motion at the leading-edge is always
perfectly symmetric. The dynamical states of the self-propelled foil
can be classified into three types: non-periodic movement, peri-
odic backward-movement and periodic forward-movement. The
transition among these three states may occur with the increasing
of bending rigidity. The periodic backward-movement state can be
missing for specific parameter values.

The wake structures behind the self-propelled flapping foil in
forward movement can be classified into two types: symmetric
and deflected vortex streets. It is observed that moderate flexibility
can inhibit symmetry breaking of the wake. Since a deflected vor-
tex street is always associated with a net lift and torque, animals
may avoid it when cruising. One important implication of this
observation is that flexibility may be used favorably by animals
during cruising, not only to achieve higher speed or efficiency
but also to preserve wake symmetry. However, it is also observed
that excessive flexibility can trigger symmetry breaking in the
wake. Thus the effects of flexibility on the stability properties of
the wake are very complex and still not well understood.

The results obtained in the current work shed some light on the
role of flexibility in flapping-based biolocomotion. The model de-
scribed in this paper can serve as a canonical problem for further
numerical inquires. There are several avenues for future research.
Firstly, more thorough parametric studies, such as the effects of
Ref ;A and b, could be extremely helpful in assessing the overall
performance of the system. Secondly, other kinematics, such as
pitching or the combination of plunging and pitching needs to be
studied. Thirdly, the influences of flexibility on the wake symmetry
properties need to be further explored and this is one direction of
our ongoing research.
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Appendix A. Dimensionless numbers used in this paper

Flapping Reynolds number: Ref ¼ 2pAfL
m ¼ Uref L

m ;

Cruising Reynolds number: Rec ¼
eUcL
m ¼

Uref L
m �

eU c
Uref
¼ Uc � Ref ;

Mass ratio: b ¼ qs
qf L;

Dimensionless bending rigidity: c ¼ B
qf U2

ref L3;

Dimensionless tension: f ¼ T
qf U2

ref L
;

Froude number: Fr ¼ gL
U2

ref
;

Strouhal number: St ¼ 2fATeU c

		 		 ¼ 1
p

UrefeU c

		 		 AT
A ¼ 1

p Ucj j
AT

A
;

Reduced forcing frequency: �x ¼ xf

x1
¼ 2pf

x1
; with x1 being the

first natural angular frequency.
Appendix B. Discretization of structural equation

The discretized form of Eq. (3) can be written as

b
Xnþ1

i
�2Xn

i þXn�1
i

Dt2 ¼ ðFtÞnþ1
i þ ðFbÞnþ1

i þ bFr g
g � ðFÞ

n
i ;

For X;
i ¼ 1; . . . ;N ðself -propelledÞ
2; . . . ;N ðpinnedÞ



For Y ; i ¼ 2; . . . ;N

ðB1Þ

where Ft and Fb are the tension force and bending force respec-
tively. The superscripts n � 1, n, and n + 1 denote the indices of time
steps, while the subscripts i denotes the index of node (see Fig. B1
for the stencil used in the discretization).

The tension force is computed by

ðFtÞnþ1
i ¼

f
nþ1

2
iþ1

2
ðDsX

nþ1Þiþ1
2
� f

nþ1
2

i�1
2
ðDsX

nþ1Þi�1
2

Ds
; i ¼ 2; . . . ;N � 1;

ðFtÞnþ1
1 ¼

f
nþ1

2
3
2
ðDsX

nþ1Þ3
2

Ds
; ð for self -propelled onlyÞ

ðFtÞnþ1
N ¼

�f
nþ1

2
N�1

2
ðDsX

nþ1ÞN�1
2

Ds
;

ðB2Þ

where Ds is the operator of first-order central difference defined as

ðDsXÞiþ1
2
¼ Xiþ1 � Xi

Ds
;

ðDsXÞi�1
2
¼ Xi � Xi�1

Ds
; i ¼ 2; . . . ;N � 1:

ðB3Þ

Note that in computing the tension force at end-points, the con-

ditions f
nþ1

2

Nþ1
2
¼ 0 and f

nþ1
2

1
2
¼ 0 (for self-propelled foil only) are used

in Eq. (B2).
The bending force is computed by

ðFbÞnþ1
i ¼�c

ðDssX
nþ1Þiþ1�ðDssX

nþ1ÞiþðDssX
nþ1Þi�1

Ds2 ; i¼ 2; . . . ;N�1;

Fð1Þb

� �nþ1

1
¼�c

ðDsssX
nþ1Þ3

2
�ðDsssX

nþ1Þ1
2

Ds
¼�c

ðDsssX
nþ1Þ3

2

Ds
ð for self -propelled onlyÞ;

ðFbÞnþ1
N ¼�c

ðDsssX
nþ1ÞNþ1

2
�ðDsssX

nþ1ÞN�1
2

Ds
¼ c
ðDsssX

nþ1ÞN�1
2

Ds
;

ðB4Þ
where Dss is the operator of second-order central difference defined
as

ðDssXÞi ¼
ðDsXÞiþ1

2
� ðDsXÞi�1

2

Ds
; i ¼ 1; . . . ;N � 1;

ðDssXÞN ¼ ð0;0Þ:
ðB5Þ

In Eq. (B4), Dsss is the operator of third-order difference defined
as

ðDsssXÞ3
2
¼ ðDssXÞ2�ðDssXÞ1

Ds ¼

ðDssXÞ2
Ds ð for pinnedÞ

ðDssXÞ2� ðDsXÞ3
2
�ð1;0Þ

h i
Ds ð for self -propelledÞ

8><>: ;

ðDsssXÞN�1
2
¼ ðDssXÞN�ðDssXÞN�1

Ds ¼ �ðDssXÞN�1
Ds :

ðB6Þ

The computation of Fð2Þb

� �
1

in the case of self-propelled foil will
be described later.

The discretized form of Eq. (6) can be written as

ðDsX
�Þiþ1

2
� ½DsðDsðfnþ1=2DsX

�ÞÞ�iþ1
2

¼ 1
2

Dþt D�t ðDsX
n � DsX

nÞiþ1
2
� ðDsU

n � DsU
nÞiþ1

2

� ðDsX
�Þiþ1

2
� ½Ds F�b � Fn� �

�iþ1
2
; i ¼ 1;2; . . . ;N � 1; ðB7Þ

where X� is the predicted displacement vector for the Lagrangian
point at time step n + 1 by using a temporal extrapolation from
those at time steps n � 1 and n, i.e., X� ¼ 2Xn � Xn�1. F�b is the bend-
ing force valuated at X�. Dþt and D�t are the first order forward and
backward difference operator in time respectively.

For the self-propelled foil, a supplementary relation is needed

for computing F�ð2Þb (or Fð2Þb ) at the leading-edge in Eq. (B7) (or

Eq. (B4)). This relation can be derived by using @2Y�

@t2

� �
1
¼ €yðtÞ (or

ðF�ð2Þt Þ1 þ ðF
�ð2Þ
b Þ1 � ðF

ð2ÞÞ1 þ bFr gð2Þ

g ¼ €yðtÞ). Since ðF�ð2Þt Þ1 ¼ 0, it now

becomes F�ð2Þb

� �
1
¼ Fð2Þ
� �

1
� bFr gð2Þ

g þ €yðtÞ.

For the filament with a pinned leading-edge, in addition to
Eq. (12), one more boundary condition of f is needed for solving
Eq. (B7). This supplementary relation (between f1

2
and f3

2
) can be

derived by using the condition @2X
@t

� �
1
¼ 0 (or ðFtÞ1 þ ðFbÞ1 � ðFÞ1þ

bFr g
g ¼ 0). Substituting Eqs. (B2) and (B4), this condition becomes

½DsðfDsXÞ�1 � ½DssðcDssXÞ�1 ¼ Fð Þ1 � bFr
g
g
: ðB8Þ
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