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a b s t r a c t

This paper performs further study on the micro–macro homogenization approach of granular materials
(Li et al., 2010) based on the advancement of Hill’s lemma for Cosserat continuum (Liu, 2013). Firstly,
the average couple stress tensor, expressed as the volume integration of quantities over the representa-
tive volume element (RVE) in the average-field theory of Cosserat continuum, is further deduced and
expressed in terms of discrete quantities on the discrete particle assembly RVE of granular materials.
The expression is also discussed and compared with other typical definitions of the effective couple stress
tensor for granular materials in the literature. Then, rate forms of micromechanically based constitutive
models consistent with different types of RVE boundary conditions are derived and discussed. Since the
presented micro–macro homogenization approach is used, not only the micro–macro energy equivalence
is satisfied, but also the microstructure and its evolution can be taken into account in the constitutive for-
mulation with no need of specifying macroscopic phenomenological constitutive model.
� 2013 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.
1. Introduction

Most engineering materials, such as composites and granular
materials are heterogeneous in nature. It is of great importance
to determine the micromechanically based macroscopic overall
characteristics of these materials for engineering applications.
The average-field theory is one of the basic approaches in microm-
echanics dealing with this subject. This theory is based on the fact
that the effective mechanical properties are determined by rela-
tions between the volume averages of the stresses and strains of
microscopically heterogeneous samples. Hence, macroscopic-field
quantities are defined as the volume averages of the corresponding
microscopic-field ones, and the effective properties are determined
by relations between the averaged microscopic-field quantities
under the prescribed boundary conditions on the representative
volume element (RVE). The average-field theory of the classical
continuum has been well developed and widely applied to the
multi-scale analysis and computation of composites. An abundant
literature, including the work contributed by Hill [1], Hashin [2],
Suquet [3], Nemat-Nasser and Hori [4], Michel et al. [5], Miehe
and Koch [6], Qu and Cherkaoui [7], deals with this subject.
Granular material is a typical heterogeneous medium and con-
sists of discrete grains and voids. This discontinuous medium is
represented by an equivalent continuum on the macroscopic level.
The phenomenological constitutive models are needed to describe
the mechanical behavior. These models are usually complex and
contain some fitting parameters which are difficult to be deter-
mined. On the other hand, granular material is naturally modeled
as an assembly of discrete particles in contact from the microscopic
view. However, if a typical macroscopic structure is fully described
as a discrete particle assembly, the computation task is too heavy
to be acceptable. Therefore, it is reasonable and significant to
develop proper multi-scale homogenization schemes combining
the macroscopic and microscopic models.

One major objective of the multi-scale analysis for granular
materials is to determine the effective overall properties and re-
sponses of the heterogeneous medium in terms of the properties
and responses of the microstructure [8,9]. The nature of granular
medium is that each discrete particle possesses rotational degrees
of freedom in addition to translational degrees of freedom in the
kinematics and is capable of bearing and transmitting couples in
addition to forces from one particle to the other in contact in the
kinetics [10,11]. Thus, the RVE, considered as a discrete particle
assembly characterizing the local microstructure, should be
modeled as an equivalent Cosserat continuum [12–15] instead of
a classical continuum in order to link with the macroscopic Coss-
erat continuum. This process implies that Cosserat continuum is
reserved.
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Fig. 1. Stresses and couple stresses for Cosserat continuum in 2-D case.
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assumed at both microscopic and macroscopic scales in the
homogenization procedures. Cosserat continuum model has been
successfully applied to the simulation of phenomena with size ef-
fect, which is essentially a multi-scale phenomenon and stems
from the influence of the microscopic structures on the macro-
scopic behavior [16–20]. However, fewer contributions have been
devoted to the development of the homogenization scheme for
the heterogeneous Cosserat continuum in contrast to the case in
classical continuum. Among them are Forest et al. [21], Yuan and
Tomita [22], Hu et al. [23], Sulem and Muhlhaus [24], Trovalusci
and Masiani [25], and Besdo [26].

A micro–macro homogenization approach for discrete particle
assembly – Cosserat continuum modeling of granular materials is
proposed in the framework of the average-field theory [27]. The
interest lies in that the constitutive relation is formulated to take
into account the microstructure and its evolution with no need
of specifying macroscopic phenomenological constitutive model.
Starting from the derivation of a version of Hill’s lemma for Coss-
erat continuum, proper RVE boundary conditions connecting the
micro and macro quantities are determined. With the link between
the discrete particle assembly and its equivalent Cosserat contin-
uum in an individual RVE, the boundary conditions prescribed on
the RVE modeled as Cosserat continuum can be transformed into
those prescribed on the peripheral particles of the RVE modeled
as the discrete particle assembly. The average stress and average
couple stress measures are further expressed in terms of the inte-
grations along the boundary of the RVE modeled as a Cosserat con-
tinuum. These measures are then determined by using the
discretized counterpart of the boundary integrations evaluated at
the discrete contacting points of the peripheral particles in the
assembly. Finally, the rate forms of micromechanically based mac-
roscopic constitutive relation taking into account the microstruc-
ture and its evolution is formulated in light of proper RVE
boundary conditions and the definitions of corresponding macro-
scopic average quantities.

Although the primary idea and procedure of the proposed ap-
proach are formulated in paper [27], some basic issues are still
open and need to be further elaborated. On the one hand, the
expression of the macroscopic average couple stress tensor in
terms of microscopic stresses and/or couple stresses is not unique
in the average-field theory of Cosserat continuum [10,14,21–23].
There are mainly two kinds of expression used in the literature,
i.e. �lij ¼ 1

V

R
V lijdV suggested by Yuan and Tomita [22] and

�lij ¼ 1
V

R
V ðlij � xiejklrklÞdV proposed by Forest et al. [21]. Only the

former definition �lij ¼ 1
V

R
V lijdV was adopted to derive Hill’s lem-

ma of Cosserat continuum and to develop the micro–macro
homogenization scheme of granular materials in paper [27]. On
the other hand, only mixed translational displacement-surface
couple conditions can be prescribed on the RVE boundary accord-
ing to the Hill’s lemma in paper [27]. Other types of RVE boundary
conditions commonly used in classical homogenization method
were not properly given for Cosserat continuum. It should be
stressed that the above two issues are vital to the homogenization
approach of granular materials in order to ensure the satisfaction
of the micro–macro energy equivalence (named ‘Hill-Mandel con-
dition’) and to derive the micromechanically based constitutive
models. Recent research on the average-field theory of Cosserat
continuum produces a new version of Hill’s lemma based on the
definition �lij ¼ 1

V

R
V ðlij � xiejklrklÞdV , from which more versatile

RVE boundary conditions are properly given [28]. This motivates
us to reconsider and extend the homogenization approach of gran-
ular materials proposed in paper [27].

This paper performs further study on the micro–macro homog-
enization scheme of granular materials based on the development
of Hill’s lemma for Cosserat continuum. Firstly, the average couple
stress tensor, expressed as the volume integration of quantities
over the RVE in the average-field theory of Cosserat continuum
[28], is deduced and expressed in terms of quantities on the RVE
boundary. The definition can be further expressed in terms of static
quantities over the domain of the discrete particle assembly RVE of
granular materials. The significance for the definition of the effec-
tive couple stress tensor of granular materials is presented by com-
parison with other typical definitions in the literature. Then, rate
forms of micromechanically based constitutive models for granular
materials are derived according to three types of RVE boundary
conditions in the strong form, i.e. homogeneous translational and
rotational displacement boundary conditions, mixed translational
displacement and surface couple boundary conditions, and mixed
surface traction and rotational displacement boundary conditions.
Further analysis and discussion are also given on these constitutive
models. Compared to the previous contribution [27], this paper
presents a more comprehensive theoretical reference for the mi-
cro–macro homogenization of discrete particle assembly – Coss-
erat continuum modeling in the framework of the average-field
theory.

2. Cosserat theory: equilibrium and kinematics

In a Cosserat model the independent kinematical degrees of
freedom are the displacements ui and the rotations xi. Accordingly,
in addition to the classical stresses rij, independent couple stresses
lij are introduced [16–20], as shown in Fig. 1. The strain measures
eij and jij (curvatures) are defined as

eij ¼ uj;i � eijkxk ð1Þ
jij ¼ xj;i ð2Þ

where eijk is the permutation tensor. The summation rule of tensor
indices will be applied throughout the present paper. The equilib-
rium conditions can be expressed as

rij;i ¼ 0 ð3Þ
lij;i þ ejklrkl ¼ 0 ð4Þ

Equilibrium on the surface of the Cosserat RVE requires that

ti ¼ njrji ð5Þ
qi ¼ njlji ð6Þ

where ti is the surface traction, qi is the surface couple, and nj is the
unit vector normal to the surface.

3. Hill’s lemma and RVE boundary conditions of Cosserat
continuum

In this section, Hill’s lemma and RVE boundary conditions in the
average-field theory of Cosseat continuum in paper [28] are briefly
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listed. Besides, the signification of the average rotational degrees of
freedom is further highlighted from the view of their higher order
essence and the application to the fact of granular materials.

The micro–macro homogenization approach in the frame of
average-field theory for heterogeneous materials can be schemat-
ically demonstrated by Fig. 2. The concept of an RVE is used to esti-
mate the continuum properties under specified boundary
conditions determined by the deformation of macroscopic contin-
uum point and its infinitesimal neighborhood. A typical RVE with
volume V and boundary S is considered to be associated with a gi-
ven sample point, which is usually an integration point of the
macro-mesh. For any microscopic stress fields rij, lij and micro-
scopic strain fields eij, jij in the RVE under prescribed boundary
traction (ti, qi) or boundary displacement (ui, xi) conditions, we de-
note the average stresses and the average strains over the domain
of the RVE with �rij; �lij and �eij; �jij. Hereafter in this paper, as the
over-bar is applied to a microscopic quantity (⁄), ð��Þ is defined to
denote its volume average over the domain of the RVE. With this
stipulation in symbol, according to the basic assumptions of the
classical homogenization theory, we denote the macroscopic aver-
age strains and curvatures over the domain of the RVE as

�eij ¼
1
V

Z
V
eijdV ¼ 1

V

Z
V
ðuj;i�eijkxkÞdV ¼ 1

V

Z
V

uj;idV�eijk
1
V

Z
V
xkdV ¼ �uj;i�eijk �xk ð7Þ

�jij ¼ �xj;i ¼
1
V

Z
V
xj;idV ¼ 1

V

Z
S

nixjdS ð8Þ

It should be pointed out that the volume average over the RVE is
usually performed to the differential of the basic kinematical
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Fig. 2. Micro–macro homogenization of granular materials: di
quantities in the average-field theory, for example
�uj;i ¼ 1

V

R
V uj;idV . Then, the volume average can be further expressed

in terms of the integrations along the RVE boundary by use of
Gauss theorem, for example �uj;i ¼ 1

V

R
V uj;idV ¼ 1

V

R
S niujdS. However,

Eq. (7) gives �xk ¼ 1
V

R
V xkdV according to the definition of macro-

scopic strains �eij, i.e., the volume average is directly performed to
the rotational degrees of freedom. The reason lies in that the rota-
tional degrees of freedom essentially belong to higher order terms
compared to the translational degrees of freedom in continuum
mechanics. This has been shown in the governing Eq. (1), in which
the rotational degrees of freedom directly contribute to the strains.
Thus we can conclude that the rotations belong to the order of the
gradient of translational displacements. It has been pointed out
that the continua with local rigid structure belong to the class of
higher-order materials [29], and the strain gradient theory [30]
gave the expression �xi ¼ 1

2 eijk�uk;j, which also proved this point.
Although the rotational degrees of freedom are independent of
the translational degrees of freedom in Cosserat continuum model,
the higher order essence of rotations compared to the translational
displacements cannot be neglected in the formulation.

Besides, although the rotational degrees of freedom and corre-
sponding intrinsic scale parameters have been successfully applied
as a regularization mechanism in the macroscopic finite element
simulation of the strain localization behavior of granular materials
[16–20], the physical meaning of rotational degrees of freedom in
Cosserat continuum model are still obscure for granular materials.
The expression �xk ¼ 1

V

R
V xkdV given in this paper can be further

deduced as �x ¼ 1
V

R
V xdV ¼ 1

V

PNg

i¼1x
iV i, in which Ng is the total
RVE 

Cosserat continuum equivalent 

V
S

 

m

Sampling point

screte particle assembly – Cosserat continuum modeling.
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number of particles in the RVE, xi and Vi is respectively the rota-
tion and the volume of the i’th discrete particle in the RVE. It im-
plies that, for granular materials, the macroscopic rotational
degrees of freedom �xk are equal to the volume average of the inde-
pendent rotational displacements of discrete particles over the
microscopic RVE, which provides a physical interpretation for the
rotational degrees of freedom of the Cosserat continuum model.

With the use of force, bulk and surface balance and divergence
theorem as known within average-field theory [4,7], the macro-
scopic average stresses are expressed as

�rij ¼
1
V

Z
V
rijdV ¼ 1

V

Z
V

@

@xk
ðrkjxiÞdV ¼ 1

V

Z
S

nkrkjxidS

¼ 1
V

Z
S

xitjdS ð9Þ

There are mainly two kinds of definitions for the average couple
stress tensor expression in the literature. In the first version, the
macroscopic average couple stresses are directly defined as the vol-
ume average of the corresponding microscopic couple stresses [22],
i.e.

�lij ¼
1
V

Z
V
lijdV ð10Þ

Based on this definition, Li et al. derived a version of Hill’s lemma
for Cosserat continuum in paper [27] as below

rijeij � �rij�eij þ lijjij � �lij �jij ¼
1
V

Z
S
ðui � �ui;jxjÞðnkrki

� nk �rkiÞdSþ 1
V

Z
S
ðxi � �xiÞ

� ðnklki � nk �lkiÞdS ð11Þ

In the other version, in addition to the microscopic couple stresses,
the effect of microscopic stresses is taken into account in the defi-
nition of average couple stresses [21,23], i.e.

�lij ¼
1
V

Z
V
ðlij � xiejklrklÞdV ð12Þ

Recently, Liu [28] presented a new version of Hill’s lemma based on
the definition (12) in the following form

rijeij � �rij�eij þ lijjij � �lij �jij ¼
1
V

Z
S
ðui � �ui;jxjÞðnkrki

� nk �rkiÞdSþ 1
V

Z
S
½xi � ð �xi

þ �xi;jxjÞ�ðnklki � nk �lkiÞdS ð13Þ

Analysis and discussion [28] also show that more versatile RVE
boundary conditions in the strong form can be properly obtained
from Hill’s lemma (13) including:

(1) Homogeneous translational and rotational displacement
boundary conditions
uijS ¼ �ui;jxj; xijS ¼ �xi þ �xi;jxj ð14Þ
(2) Mixed boundary conditions I, consisting of the translational
displacement and the surface couple boundary condition
uijS ¼ �ui;jxj; qijS ¼ ðnklkiÞjS ¼ nk �lki ð15Þ
(3) Mixed boundary conditions II, consisting of the surface trac-
tion and the rotational displacement boundary condition
tijS ¼ ðnkrkiÞjS ¼ nk �rki; xijS ¼ �xi þ �xi;jxj ð16Þ
Fig. 3. Particles in contact.
These results motivate us to further develop the micro–macro
homogenization scheme of granular materials based on the aver-
age-field theory of Cosserat continuum. The following sections will
focus on the development of micro–macro homogenization formu-
lation of granular materials based on Eqs. (12)–(16) as the extension
of the work [28]. To make the formulation more concise and clear,
some symbols used in the following sections are slightly different
from those in paper [27].

4. The microscopic discrete particle model of granular materials
[27]

The microscopic model in this paper follows the discrete parti-
cle model adopted in paper [27]. The primary idea and formulation
are summarized and listed in this section.

It is usually assumed that the medium is composed of rigid dis-
crete circular (spherical in 3D case) particles. Each particle pos-
sesses translational and rotational degrees of freedom. The
movement of a typical particle follows the Newton’s second law.
The interaction between particles consists of both contact forces
and contact moments, as shown in Fig. 3. According to the common
assumption of discrete element method, as addressed in the contri-
bution by Cundall and Strack [31], the particles are allowed to
overlap one another at contact points. This overlapping behavior
takes the place of the deformation of the individual particles. The
magnitude of the overlap is related directly to the contact forces.
However, these overlaps are small in relation to the particle sizes.
The deformations of the individual particles are small in compari-
son with the deformation of a granular assembly as a whole. The
latter deformation is due primarily to the movements of the parti-
cles as rigid bodies. Therefore, precise modeling of particle defor-
mation is not necessary to obtain a good approximation of the
mechanical behavior.

The particles within the RVE are partitioned into two parts, i.e.
the interior and the peripheral. The particles classified into the lat-
ter part are assumed to contact with the material outside the RVE.
The boundary S of the RVE is actually an envelope of the peripheral
particles of the assembly as shown in Fig. 2. There are only a finite
number Nc of material points located on the boundary S of the RVE.
We denote the total number of particles within the RVE with Ng

and numbers of the interior and the peripheral particles with Ni

and Np respectively, i.e. Ng = Ni + Np. To consider a RVE in 2D case,
the number of contacting points Nc of the peripheral particles will
be equal to Np or Np + 4, i.e. Nc = Np or Nc = Np + 4 for the RVE with a
circular or rectangular boundary respectively. To simplify the dis-
cussion, we provisionally assume Nc = Np = N being a constant, i.e.
each peripheral particle has only one contacting point with the
boundary of the RVE, as shown in Figs. 2 and 4, and the total num-
ber N of peripheral particles in the RVE is unchanged.
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4.1. Stiffness matrix relating two particles in contact

The rates of the contacting force vector _fpq
l applied to a particle p

by a neighbor particle q via the contacting point can be expressed
as [10,31,32]

_fpq
l ¼ Kpq

l
_dpq ð17Þ

where _fpq
l is referred to the local coordinate system defined at the

contacting point as shown in Fig. 3, and _dpq is the rates of the dis-
placement vector consisting of both translational and rotational dis-
placements of the two typical particles and is referred to the global
coordinate system. Kpq

l is the corresponding tangent stiffness matrix
relating to the two typical particles and can be formulated according
to the model used on the microscopic level to take into account phys-
ical and geometrical evolutions of the microstructures [33,34]. For
the 2D case _fpq

l and _dpq can be expressed with their components as

_fpq
l ¼ _f pq

n
_f pq

t _mpq
h iT

ð18Þ
_dpq ¼ _up

x _up
y _xp _uq

x _uq
y _xq

� �T ð19Þ

where subscripts n, t denote the normal and tangential axes of the
local coordinate system, respectively, and x, y denote the global
Cartesian coordinate axes. As the orientation of the local coordi-
nates n–t with respect to the global coordinates x–y is denoted by
the angle upq, as shown in Fig. 3, the rates of the contacting force
vector _fpq applied at the center of the particle p by the particle q
referring to the global coordinates are given by

_fpq ¼ Tpq _fpq
l ð20Þ

in which the transformation matrix has the form

Tpq ¼
cos upq � sin upq 0
sinupq cos upq 0

0 rp 1

2
64

3
75 ð21Þ

where rp is the radius of the circular particle p. Substitution of Eq.
(17) into Eq. (20) gives

_fpq ¼ TpqKpq
l

_dpq ¼ Kpq _dpq ð22Þ

where Kpq is the stiffness matrix referred to the global coordinates.
The sum of the rate contacting forces _fpq applied at the center of a
typical particle p by all of the neighboring particles in contacts with
the particle p is given by

_fp ¼
XNq

q¼1

_fpq ¼
XNq

q¼1

Kpq _dpq ð23Þ
Fig. 4. The microstructure of granular RVE.
4.2. Stiffness equation for the discrete particle assembly

We denote the displacement vector d of the discrete particle
assembly of the RVE with

d ¼ dI

dB

( )
with dI ¼ uI

xI

� �
and dB ¼ uB

xB

� �
ð24Þ

where u and x denote the translational and angular displacement
vector respectively, the superscripts I and B stand for the interior
and the boundary (peripheral) degrees of freedom, i.e. dI and dB list
the displacements of the centers of all interior and peripheral par-
ticles respectively. The rates of the stiffness equation of the discrete
assembly RVE can be expressed by

Kb
uu Kb

ux

Kb
xu Kb

xx

" #
_uB

_xB

� �
¼

_fB;ext

_mB;ext

( )
ð25Þ

in which _fB;ext and _mB;ext list the external forces and moments di-
rectly exerted on the centers of the peripheral particles,
Kb

uu; Kb
ux; Kb

xu and Kb
xx are the block stiffness matrices.

4.3. Transformation of the reference point of the RVE stiffness equation

In the discrete element model, the displacement degrees of
freedom and the corresponding forces are usually defined at the
particle centers, as expressed by Eq. (25). In the micro–macro
homogenization, the microscopic discrete particle assembly con-
tacts with the material outside the RVE through the peripheral
points, as shown in Figs. 2 and 4. The imposition of RVE boundary
conditions and the definition of effective continuum quantities are
referred to peripheral contacting points. Therefore, the RVE gov-
erning Eq. (25) should be further transformed.

According to the kinematics and statics of rigid circular particle,
we have

_xB ¼ _xC ; _uB ¼ _uC � R _xC ð26Þ
_fB;ext ¼ _fC ; _mB;ext ¼ _mC þ RT _fC ð27Þ

in which _uC and _xC list the translational and rotational displace-
ment rates of the peripheral contacting points, _fC and _mC list the
external forces and moments rates exerted on the peripheral con-
tacting points,

R ¼

R1 0 0 0 0 0
0 � 0 0 0 0
0 0 Rc 0 0 0
0 0 0 � 0 0
0 0 0 0 � 0
0 0 0 0 0 RN

2
6666666664

3
7777777775

ð28Þ

Rc ¼ �rc
2 rc

1½ �T ð29Þ

Substitution of Eqs. (26) and (27) into Eq. (25) leads to

_fC ¼ Kfu _uC þ Kfx _xC ð30Þ
_mC ¼ Kmu _uC þ Kmx _xC ð31Þ

where

Kfu ¼ Kb
uu

Kfx ¼ Kb
ux � Kb

uuR
� �

Kmu ¼ Kb
xu � RTKb

uu

Kmx ¼ Kb
xx � RTKb

ux � Kb
xuR þ RTKb

uuR

ð32Þ
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Eqs. (30) and (31) give the external force rates _fC and the external
moment rates _mC applied at peripheral contacting points of the
RVE in terms of _uC and _xC , i.e. the translational and rotational dis-
placement rates imposed to the contacting points.

5. The macroscopic stress and couple stress

To determine the macroscopic average stresses and the average
couple stresses in the homogenization procedure of granular mate-
rials in the frame of the average-field theory, the integrals of Eqs. (9)
and (12) should be expressed in terms of the discrete quantities at
the peripheral contacting points of the discrete particle assembly
RVE. The boundary integrals given by Eq. (9) can be discretized as

�r ¼ 1
V

Z
S

x� tdS ¼ 1
V

XN

c¼1

xc � tcDSc ¼ 1
V

XN

c¼1

xc � fc ð33Þ

With Eqs. (3)–(6), we haveZ
V
ðlij þ ejklrilxkÞdV ¼

Z
V

@

@xm
xiðlmj þ ejklxkrmlÞ
h i

dV

¼
Z

S
xinmðlmj þ ejklxkrmlÞdS

¼
Z

S
ðxiqj þ ejklxixktlÞdS ð34Þ

On the other hand,Z
V
ðlij þ ejklrilxkÞdV ¼

Z
V
ðlij þ ejklrilxkÞdV �

Z
V

xiejklrkldV

þ
Z

V
xiejklrkldV

¼
Z

V
ðlij � xiejklrklÞdV þ ejkl

Z
V
ðxirkl þ xkrilÞdV

¼
Z

V
ðlij � xiejklrklÞdV þ ejkl

Z
V

@

@xm
ðxixkrmlÞdV

¼
Z

V
ðlij � xiejklrklÞdV þ ejkl

Z
S

xixktldS ð35Þ

From Eqs. (34) and (35), we can obtain
1
V

Z
V
ðlij � xiejklrklÞdV ¼

Z
S
ðxiqj þ ejklxixktlÞdS

�
Z

V
ejklxixktldV

¼
Z

S
xiqjdS ð36Þ

Thus the macroscopic couple stress tensor of Eq. (12) can be ex-
pressed as

�l ¼ 1
V

Z
S

x� qdS ¼ 1
V

XN

c¼1

xc � qcDSc ¼ 1
V

XN

c¼1

xc �mc ð37Þ

The static relation between a discrete particle assembly and its
effective Cosserat continuum model has been discussed by some
authors [10,13,14,35–37]. The definition of effective stress tensor
has arrived at a uniform expression identical with Eq. (33), which
can be further expressed in terms of the contact quantities over
the RVE domain as below

�rij ¼
1
V

X
c2B

xc
i f c

j ¼
1
V

X
c2V[B

lc
i f c

j ð38Þ

in which f c
j is the contact force vector between two particles, c 2 B

denote the set of peripheral contacting points of the RVE, c 2 VUB
denote the set of both the internal (V) and peripheral (B) contacting
points over the RVE. lc

i ¼ xq
i � xp

i is the so-called branch vector con-
necting the centers of two contacting particles p and q.
The definition of effective couple stress tensor of a discrete par-
ticle assembly is still open and does not arrive at a unified conclu-
sion. Some authors give definition and derivation based on a
typical particle and its neighborhood. The representative work in-
cludes the contribution by Suiker et al. [35] and Tordesillas and
Walsh [13]. Others hold that the stress measures should be defined
on the basis of a statistically homogeneous RVE containing a suffi-
cient number of particles so as to preserve the essential character-
istics of the equivalent continuum modeling. This is consistent
with the basic assumptions of the average-field theory. The repre-
sentative work of this type includes the contribution by Kruyt [37]
and Chang and Kuhn [14]. Kruyt gives definition and derivation
based on the scale separation assumption and moments of equilib-
rium equations of the discrete particle assembly. Chang and Kuhn
apply the principle of virtual work to the discrete system and re-
vealed the equivalence of expressions summing over the set c 2 B
and over the set of c 2 VUB.

In the previous work of the average-field theory for Cosserat
continuum [27], the macro average couple stress tensor is defined
as Eq. (10), i.e. �lij ¼ 1

V

R
V lijdV . According to the derivation in paper

[37], �lij can be further expressed in terms of the contact quantities
over the RVE domain as below

�lij ¼
1
V

Z
V
lijdV ¼ 1

V

X
c2V[B

lci mc
j ð39Þ

in which mc
j is the contact moment vector between two particles.

According to the results from the work by Chang and Kuhn [14],
Eq. (37) can be equivalently expressed in terms of the contact
quantities over the RVE domain in the form

�lij ¼
1
V

X
c2B

xc
i mc

j ¼
1
V

X
c2V[B

lci mc
j þ ejklf c

k Jc
li � xc

l lc
i

� 	h i
ð40Þ

in which

lc
i ¼

xq
i � xp

i c 2 V

xc
i � xp

i c 2 B

(
; Jc

ij ¼
xq

i xq
j � xp

i xp
j c 2 V

xc
i xc

j � xp
i xp

j c 2 B

(
ð41Þ

Thus, a new definition of the effective couple stress tensor Eq. (40)
is given for the Cosserat continuum modeling of a discrete particle
assembly in light of Hill’s lemma (13) combining with the contribu-
tion [14]. The first equation in (40), i.e. �lij ¼ 1

V

P
c2Bxc

i mc
j , is strictly

derived in light of the average-field theory, as shown in Eqs. (34)–
(37). The second equation in (40), i.e. 1

V

P
c2Bxc

i mc
j ¼ 1

V

P
c2V[B

lc
i mc

j þ ejklf c
k Jc

li � xc
l lc

i

� 	h i
, is one of the essential results from paper

[14], which insures that a shifting of the coordinate system will
not affect the expression of the effective couple stress tensor.

It should be again stressed that the derivation of Eq. (40) is
based on the average-field theory which is essentially different
from the work based on a typical particle and its neighborhood
[13,35]. On the other hand, Eq. (40) is also slightly different from

the macro couple stress �l0
ij ¼ 1

V

P
c2V[B lc

i mc
j þ ejklf c

k
1
2 Jc

li � xc
l lc

i

� 	h i
de-

fined by Chang and Kuhn [14]. The origin of this difference lies in
that Chang and Kuhn assumed a gradient-enhanced Cosserat con-
tinuum model in which second-order gradients of translational
displacements ui, jk is considered. While the standard (first-order)
Cosserat continuum model is adopted in our presentation.

Furthermore, the above formulations inspire us to reconsider
the issue of effective couple stress tensor definition of a discrete
particle assembly from the view of the average-field theory, i.e.
the definition of effective couple stress tensor is not necessarily un-
ique and the two definitions (39) and (40) can both be properly
used in the micro–macro homogenization of granular materials,
provided that corresponding kinematical quantities are properly
chosen and determined in light of Hill’s lemma (11) and/or (13).
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Therefore, it provides an alternative theoretical reference for the
definition and use of effective couple stress tensor of granular
materials with the premise that micro–macro energy equivalence
is satisfied in the homogenization approach.

6. Micromechanically based constitutive models consistent
with RVE boundary conditions

In the homogenization approach based on the average-field
theory in paper [27], the micromechanically based constitutive
relation is consistent with RVE boundary conditions. In other
words, different types of RVE boundary conditions will lead to
constitutive models with different forms. In this section, the rate
forms of micromechanically based constitutive models for gran-
ular materials are derived according to RVE boundary conditions
given by Eqs. (14)–(16).

6.1. Constitutive model consistent with homogeneous translational
and rotational displacement boundary conditions

As the homogeneous displacement boundary conditions
uijS ¼ �ui;jxj; xijS ¼ �xi þ �xi;jxj are imposed on the continuous
boundary S of the Cosserat continuum equivalent RVE to ensure
the satisfaction of the Hill-Mandel condition, the discrete counter-
part of the boundary conditions prescribed on the discrete N con-
tacting points of the peripheral particles are written for a typical
contacting point c in the rate form

_uc
i ¼ _�ui;jxc

j or _uc ¼ xc � _E ð42Þ
_xc

i ¼ _�xi þ _�xi;jxc
j or _xc ¼ _�xþ xc � _�j ð43Þ

where E ¼ Eji ¼ �ui;j denote the gradient of the macroscopic
displacements.

According to Eqs. (33) and (37), the macroscopic stress and cou-
ple stress rates can be expressed in terms of the microscopic quan-
tities of the discrete particle assembly as below

_�r ¼ d
1
V


 �XN

c¼1

xc � fc þ 1
V

XN

c¼1

xc � _fc þ 1
V

XN

c¼1

_xc � fc ð44Þ

_�l ¼ d
1
V


 �XN

c¼1

xc �mc þ 1
V

XN

c¼1

xc � _mc þ 1
V

XN

c¼1

_xc �mc ð45Þ

It is observed from Eqs. (44) and (45) that the averaged stress and cou-
ple stress rates depend on not only the changes of the contacting forces
and moments assigned to the discrete peripheral particles, but also the
evolutions of geometric configuration characterized by the changes of
the positions of those particles and the volume of the RVE.

According to the definition given in Section 4.3, _fC is the exter-
nal force vector composed of all the external forces applied to the
contacting point of the peripheral particles. The rate of transla-
tional contacting force _fc , which is required to be further deter-
mined in Eq. (44), is applied at the contacting point of the c0th
peripheral particle of the RVE. Eq. (29) can be expanded as

_f1

�
_fc

�
_fN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

Kfuð11Þ � Kfuð1cÞ � Kfuð1NÞ

� � � � �
Kfuðc1Þ � KfuðccÞ � KfuðcNÞ

� � � � �
KfuðN1Þ � KfuðNcÞ � KfuðNNÞ

2
666664

3
777775

_u1

�
_uc

�
_uN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

Kfxð11Þ � Kfxð1cÞ � Kfxð1NÞ

� � � � �
Kfxðc1Þ � KfxðccÞ � KfxðcNÞ

� � � � �
KfxðN1Þ � KfxðNcÞ � KfxðN1Þ

2
666664

3
777775

_x1

�
_xc

�
_xN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð46Þ
From Eq. (46), _fc can be expressed as

_fc ¼
XN

b¼1

½KfuðcbÞ _ub þ KfxðcbÞ _xb� ð47Þ

Similarly, _mc is expressed as

_mc ¼
XN

b¼1

½KmuðcbÞ _ub þ KmxðcbÞ _xb� ð48Þ

To establish the micromechanically based macroscopic consti-
tutive model, the rate form of the macroscopic stress–strain rela-
tions and corresponding consistent tangent modular tensors are
required to be derived. According to the boundary conditions de-
scribed by Eqs. (42) and (43), the macroscopic kinematical quanti-
ties _E; _�x; _�j will act as ‘‘external loads’’ to apply to the RVE. The
micromechanical analysis for the RVE modeled as a discrete parti-
cle assembly is then performed and the micromechanically based
macroscopic consistent tangent modular tensors are derived.

After a series of derivation as shown in Appendices A.1,A.2,A.3,
the three terms at the right hand side of Eq. (44) can be further de-
duced to result in the following expressions:

d
1
V


 �XN

c¼1

xc � fc ¼ �ð�r� IÞ : _E ð49Þ

1
V

XN

c¼1

xc � _fc ¼ Du;rE�1 : _Eþ Du;rx � _�xþ Du;rj : _�j ð50Þ

1
V

XN

c¼1

_xc � fc ¼ Du;rE�2 : _E ð51Þ

with the modular tensors given below

Du;rE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfuðcbÞ

jl xb
kei � ej � ek � el ð52Þ

Du;rx ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jk ei � ej � ek ð53Þ

Du;rj ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jl xb
kei � ej � ek � el ð54Þ

Du;rE�2 ¼ 1
V

XN

c¼1

dilxc
kf c

j ei � ej � ek � el ð55Þ

Substitution of Eqs. (49)–(51) into Eq. (44) results in

_�r ¼ �ð�r� IÞ : _Eþ Du;rE�1 : _Eþ Du;rx � _�xþ Du;rj : _�jþ Du;rE�2

: _E ¼ Du;rE : _Eþ Du;rx � _�xþ Du;rj : _�j ð56Þ

in which

Du;rE ¼ �ð�r� IÞ þ Du;rE�1 þ Du;rE�2 ð57Þ

The three terms at the right hand side of Eq. (45) can be further de-
duced to result in the following expressions, as shown in Appendi-
ces A.4,A.5,A.6

d
1
V


 �XN

c¼1

xc �mc ¼ �ð�l� IÞ : _E ð58Þ

1
V

XN

c¼1

xc � _mc ¼ Du;lE�1 : _Eþ Du;lx � _�xþ Du;lj : _�j ð59Þ

1
V

XN

c¼1

_xc �mc ¼ Du;lE�2 : _E ð60Þ

The modular tensors in the above three equations are given as
below
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Du;lE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmuðcbÞ

jl xb
kei � ej � ek � el ð61Þ

Du;lx ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jk ei � ej � ek ð62Þ

Du;lj ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jl xb
kei � ej � ek � el ð63Þ

Du;lE�2 ¼ 1
V

XN

c¼1

dilxc
kmc

j ei � ej � ek � el ð64Þ

Substitution of Eqs. (58)–(60) into Eq. (45) results in

_�l ¼ �ð�l� IÞ : _Eþ Du;lE�1 : _Eþ Du;lx � _�xþ Du;lj : _�jþ Du;lE�2

: _E ¼ Du;lE : _Eþ Du;lx � _�xþ Du;lj : _�j ð65Þ

in which

Du;lE ¼ �ð�l� IÞ þ Du;lE�1 þ Du;lE�2 ð66Þ

In summary, micromechanically based macroscopic constitu-
tive relations consistent with the homogeneous translational and
rotational displacement boundary conditions can be constituted
with Eqs. (56) and (65), and re-expressed together as below

_�r ¼ Du;rE : _Eþ Du;rx � _�xþ Du;rj : _�j ð67Þ
_�l ¼ Du;lE : _Eþ Du;lx � _�xþ Du;lj : _�j ð68Þ
6.2. Constitutive model consistent with the mixed RVE boundary
conditions I

As the mixed boundary conditions I, i.e. uijS ¼ �ui;jxj; qijS
¼ ðnklkiÞjS ¼ nk �lki are imposed on the RVE boundary to ensure
the satisfaction of Hill-Mandel condition, the counterpart with rate
forms prescribed on the discrete N contacting points of the periph-
eral particles are written for a typical contacting point c as

_uc ¼ xc � _E
_mc ¼ nc � _�lDSc

ð69Þ

The macroscopic stress rates have been given by Eq. (44). According
to Eq. (8), the macroscopic curvature rates can be expressed as

_�j ¼ d
1
V


 �XN

c¼1

nc �xcDSc þ 1
V

XN

c¼1

nc � _xcDSc

þ 1
V

XN

c¼1

_nc �xcDSc ð70Þ

in which DSc is the area weight of the peripheral particle c as shown
in Figs. 2 and 4.

Eqs. (29) and (30) can be equivalently transformed in the
following form

_fC ¼ KIfu _uC þ KIfm _mC ð71Þ
_xC ¼ KIxu _uC þ KIxm _mC ð72Þ

in which

KIfu ¼ Kfu � Kfx½Kmx��1Kmu

KIfm ¼ Kfx½Kmx��1

KIxu ¼ �½Kmx��1Kmu

KIxm ¼ ½Kmx��1

ð73Þ

Thus we have
_fc ¼
XN

b¼1

½KIfuðcbÞ _ub þ KIfmðcbÞ _mb� ð74Þ

_xc ¼
XN

b¼1

½KIxuðcbÞ _ub þ KIxmðcbÞ _mb� ð75Þ

According to the derivations in Appendices B.1 and B.2, Eq. (44) can
be further expressed under the mixed RVE boundary conditions I in
the following form

_�r ¼ d
1
V


 �XN

c¼1

xc � fc þ 1
V

XN

c¼1

xc � _fc þ 1
V

XN

c¼1

_xc � fc

¼ �ð�r� IÞ : _Eþ ðDI;rE�1 : _Eþ DI;rl : _�lÞ þ Du;rE�2 : _E

¼ DI;rE : _Eþ DI;rl : _�l

ð76Þ

where the modular tensors are expressed as

DI;rE ¼ �ð�r� IÞ þ DI;rE�1 þ Du;rE�2 ð77Þ

DI;rE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIfuðcbÞ

jl xb
kei � ej � ek � el ð78Þ

DI;rl ¼ 1
V

XN

c¼1

XN

b¼1

DSbxc
i KIfmðcbÞ

jl nb
kei � ej � ek � el ð79Þ

As shown in Appendices B.3,B.4,B.5, the three terms at the right
hand side of Eq. (70) can be further expressed as

_�j ¼ d
1
V


 �XN

c¼1

nc �xcDSc þ 1
V

XN

c¼1

nc � _xcDSc þ 1
V

XN

c¼1

_nc

�xcDSc

¼ �ð�j� IÞ : _Eþ ðDI;jE�1 : _Eþ DI;jl�1 : _�lÞ þ ðDI;jE�2

: _Eþ DI;jl�2 : _�lÞ ¼ DI;jE : _Eþ DI;jl : _�l ð80Þ

where the modular tensors are expressed as

DI;jE ¼ �ð�j� IÞ þ DI;jE�1 þ DI;jE�2 ð81Þ
DI;jl ¼ DI;jl�1 þ DI;jl�2 ð82Þ

DI;jE�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScnc
i KIxuðcbÞ

jl xb
kei � ej � ek � el ð83Þ

DI;jl�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIxmðcbÞ

jl nb
kei � ej � ek � el ð84Þ

DI;jE�2 ¼ 1
V

XN

c¼1

XN

b¼1

DScxc
j Tnx

ip KIxuðcbÞ
pl xb

kei � ej � ek � el ð85Þ

DI;jl�2 ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbxc
j Tnx

ip KIxmðcbÞ
pl nb

kei � ej � ek � el ð86Þ

in which Tnx
ip is expressed by Eq. (B.11) in Appendix B.

Eqs. (76) and (80) can be equivalently expressed as

_�r ¼ DI;rE� : _Eþ DI;rj� : _�j ð87Þ
_�l ¼ DI;lE� : _Eþ DI;lj� : _�j ð88Þ

in which

DI;rE� ¼ DI;rE � DI;rl : ðDI;jlÞ�1
: DI;jE

DI;rj� ¼ DI;rl : ðDI;jlÞ�1

DI;lE� ¼ �ðDI;jlÞ�1
: DI;jE

DI;lj� ¼ ðDI;jlÞ�1

ð89Þ
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In summary, Eqs. (87) and (88) are the micromechanically
based macroscopic constitutive relations consistent with the
mixed boundary conditions I.

6.3. Constitutive model consistent with the mixed RVE boundary
conditions II

As the mixed boundary conditions II, i.e. tijS ¼ ðnkrkiÞjS
¼ nk �rki;xijS ¼ �xi þ �xi;jxj are imposed on the RVE boundary to en-
sure the satisfaction of Hill-Mandel condition, the counterpart in
the rate form prescribed on the discrete N contacting points of
the peripheral particles are written for a typical contacting point
c as

_fc ¼ nc � _�rDSc

_xc ¼ _�xþxc � _�j
ð90Þ

The macroscopic couple stress rates are expressed by Eq. (45), and
we can obtain from Eq. (7)

Eij ¼ �uj;i ¼
1
V

Z
V

uj;idV ¼ 1
V

Z
S

niujdS ¼ 1
V

XN

c¼1

nc
i � uc

j DSc ð91Þ

Thus

_E ¼ d
1
V


 �XN

c¼1

nc � ucDSc þ 1
V

XN

c¼1

nc � u�cDSc þ 1
V

XN

c¼1

_nc

� ucDSc ð92Þ

Eqs. (29) and (30) can be equivalently transformed in the following
form

_uC ¼ KIIuf _fC þ KIIux _xC ð93Þ
_mC ¼ KIImf _fC þ KIImx _xC ð94Þ

in which

KIIuf ¼ ½Kfu�
�1

KIIux ¼ �½Kfu�
�1

Kfx

KIImf ¼ KmuKIIuf

KIImx ¼ KmuKIIux þ Kmx

ð95Þ

Thus we have

_uc ¼
XN

b¼1

½KIIuf ðcbÞ _fb þ KIIuxðcbÞ _xb� ð96Þ

_mc ¼
XN

b¼1

½KIImf ðcbÞ _fb þ KIImxðcbÞ _xb� ð97Þ

After a series of derivations as shown in Appendices C.1,C.2,C.3, Eq.
(92) can be further deduced to result in the following expression

½Iþ ðE� IÞ� : _E ¼ DII;Er : _�rþ DII;Ex � _�xþ DII;Ej : _�j ð98Þ

where the modular tensors are expressed as

DII;Er ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIIuf ðcbÞ

jl nb
kei � ej � ek � el ð99Þ

DII;Ex ¼ 1
V

XN

c¼1

XN

b¼1

DSc nc
i KIIuxðcbÞ

jk þ Tnx
il uc

j

� �
ei � ej � ek ð100Þ

DII;Ej ¼ 1
V

XN

c¼1

XN

b¼1

DSc nc
i KIIuxðcbÞ

jl xb
k þ Tnx

il uc
j xc

k

� �
ei � ej � ek � el ð101Þ

After a series of derivations as shown in Appendices C.4,C.5,C.6, Eq.
(45) can be further deduced to result in the following expression
_�l ¼ DII;lE : _Eþ DII;lr : _�rþ DII;lx � _�xþ DII;lj : _�j ð102Þ

where the modular tensors are expressed as

DII;lE ¼ �ð�l� IÞ : _E ð103Þ

DII;lr ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIImf ðcbÞ

jl þmc
j KIIuf ðcbÞ

il

� �
DSbnb

kei � ej � ek � el ð104Þ

DII;lx ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jk þmc
j KIIuxðcbÞ

ik

� �
ei � ej � ek ð105Þ

DII;lj ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jl þmc
j KIIuxðcbÞ

il

� �
xb

kei � ej � ek � el ð106Þ

Eqs. (98) and (102) can be further expressed as

_�r ¼ DII;rE� : _Eþ DII;rx� � _�xþ DII;rj� : _�j ð107Þ
_�l ¼ DII;lE� : _Eþ DII;lx� � _�xþ DII;lj� : _�j ð108Þ

in which

DII;rE� ¼ ðDII;ErÞ�1
: ½Iþ ðE� IÞ�

DII;rx� ¼ �ðDII;ErÞ�1
: DII;Ex

DII;rj� ¼ �ðDII;ErÞ�1
: DII;Ej

ð109Þ

DII;lE� ¼ DII;lE þ DII;lr : DII;rE�

DII;lx� ¼ DII;lx þ DII;lr : DII;rx�

DII;lj� ¼ DII;lj þ DII;lr : DII;rj�

ð110Þ

In summary, Eqs. (107) and (108) are the micromechanically based
macroscopic constitutive relations consistent with the mixed RVE
boundary conditions II.

6.4. Discussion

The micromechanically based constitutive models developed in
this section are consistent with specific types of RVE boundary
conditions which are extracted from Hill’s lemma and examined
by basic assumptions of the average-field theory [28]. It insures
that the developed homogenization scheme satisfies the micro–
macro energy equivalence condition, i.e. Hill-Mandel condition.

Since the micro and macro models are linked by RVE boundary
in the developed homogenization approach, the discrete particle
assembly is subjected to RVE boundary displacement and/or trac-
tion measures determined from corresponding macroscopic quan-
tities. The mechanical responses of the discrete particle assembly
are then analyzed by using discrete element method (DEM) to
solve for discrete physical variables, i.e. displacements of each par-
ticle and contacting forces between each two particles in contact.
Since the equilibrium conditions for each particle are fulfilled in
the DEM simulation, the overall equilibrium of the discrete particle
assembly RVE is naturally fulfilled, too.

The stiffness matrix Knm
l relating to two typical particles in Eq.

(17) can be formulated according to the specific model used on
the microscopic level (for example, elastic or elastic–plastic con-
tact models between two particles etc.) to take into account phys-
ical evolutions of the microstructures. It is observed from Eqs.
(44),(45), (70) and (92) that the evolutions of geometric configura-
tion characterized by the changes of the positions of those particles
and the RVE volume are also taken into account in the developed
micromechanically based constitutive models.

Three RVE boundary conditions are considered in this paper, as
shown in Eqs. (14)–(16). The micromechanically based constitutive
Eqs. (67),(68),(87),(88),(107) and (108) can be used to estimate the
macroscopic responses under corresponding type of RVE boundary



Fig. 5. The computational homogenization scheme.
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conditions, respectively. It has been recognized that the homoge-
neous displacement boundary conditions usually result in a stiff
response, while the mixed RVE boundary conditions yield more
accurate estimate on the macroscopic responses in the micro–
macro homogenization method. However, as the computational
homogenization procedure is considered, as shown in Fig. 5, the
displacement-based finite element method is commonly used on
the macroscopic level. The kinematical quantities E; �x; �j and/or
their increments _E; _�x; _�j are determined and given at the macro-
scopic integration points. These kinematical quantities will act as
‘‘external loads’’ to apply to the discrete particle assembly through
the RVE boundary. Then, the discrete particles within the RVE will
displace and rotate to a new equilibrium status. The stress mea-
sures �r; �l and the tangential modulus matrix Dt at the integration
point will be computed and extracted from the discrete particle
RVE to be used in the macroscopic finite element equations. This
procedure is consistent with the homogeneous displacement RVE
boundary conditions Eq. (14) and corresponding micromechanical-
ly based constitutive Eqs. (67) and (68).

An alternative way to yield more accurate responses is to con-
struct RVE boundary conditions in the weak form. The periodic
boundary conditions on the rectangular-shaped RVE are of this
type and have been widely used in the analysis and computation
of composites with periodic microstructures [3–7]. Proper periodic
RVE boundary conditions of Cosserat continuum have been given
in paper [28]. However, granular materials in nature and engineer-
ing applications usually do not have periodic microstructure, as
shown in Fig. 4. Thus the periodic RVE boundary conditions are
not suitable for the physical fact of granular materials. Therefore,
the homogeneous displacement RVE boundary conditions are the
proper choice for the computational homogenization of granular
materials. It can yield stiff, but still reasonable, estimate on the re-
sponses of the heterogeneous material.

It should be noted that the stress rate _�r and couple stress rate _�l
in the above sections are not objective. As the macroscopic consti-
tutive relations and the associated tangent modular tensors, some
objective rates associated with _�r and _�l known as ‘co-rotational
rates’ should be formulated. Alternatively, a specific material refer-
ence frame should be specified. We will resort to the co-rotational
approach for continua [38–40] in the following work.
7. Conclusion

This paper performs further study on the micro–macro homog-
enization scheme of granular materials [27] based on the advance-
ment of Hill’s lemma for Cosserat continuum [28].

Firstly, a new definition of effective couple stress tensor is given
for the Cosserat continuum modeling of a discrete particle assem-
bly in light of the average-field theory. Analysis also shows that
different definitions of the effective couple stress tensor of granular
materials can be used in the homogenization method from the
view of the average-field theory, provided that corresponding kine-
matical quantities are properly chosen to satisfy the micro–macro
energy equivalence condition.

Then, rate forms of micromechanically based constitutive mod-
els for granular materials are derived according to three types of
RVE boundary conditions in the strong form. The micromechani-
cally based constitutive equations can be used to estimate the
macroscopic responses under corresponding type of RVE boundary
conditions, respectively. Analysis and discussion show that the
developed homogenization scheme not only satisfies the micro–
macro energy equivalence condition and RVE equilibrium condi-
tion, but also can take into account the physical and geometrical
evolution of the microstructure.

The following work will focus on the application of the pre-
sented micro–macro homogenization formulation including the
theoretical analysis of effective properties and the numerical sim-
ulation of mechanical behavior of granular materials.
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Appendix A. Derivation of modular tensors under the
homogeneous translational and rotational displacement RVE
boundary conditions

A.1. Calculation of d 1
V

� 	PN
i¼1xc � fc

When the rate of change d 1
V

� 	
of the RVE is calculated, the RVE is

considered as a continuum and can be expressed as

d
1
V


 �
¼ � dV

V2 ¼ �
1

V2 Vtrð _EÞ ¼ � 1
V

I : _E ðA:1Þ

with the macroscopic strain tensor defined as

_E ¼ _Eji ¼ _�ui;j ðA:2Þ

Then we have with the use of Eq. (33)

d
1
V


 �XN

c¼1

xc � fc ¼ �ð�r� IÞ : _E ðA:3Þ
A.2. Calculation of 1
V

PN
c¼1xc � _fc

With Eq. (47) we have

1
V

XN

c¼1

xc � _fc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KfuðcbÞ _ub þ KfxðcbÞ _xb� ðA:4Þ

Substitution of Eqs. (42) and (43) into Eq. (A.4) leads to

1
V

XN

c¼1

xc � _fc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KfuðcbÞ _ub þ KfxðcbÞ _xb�

¼ 1
V

XN

c¼1

XN

b¼1

xc � ½KfuðcbÞ � ðxb � _EÞ� þ 1
V

XN

c¼1

XN

b¼1

xc

� ½KfxðcbÞ � ð _�xþ xb � _�jÞ�

¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfuðcbÞ

jl xb
k

_Ekl þ
1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jk
_�xk

þ 1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jl xb
k

_�jkl

¼ Du;rE�1 : _Eþ Du;rx � _�xþ Du;rj : _�j ðA:5Þ



446 Q. Liu et al. / Advanced Powder Technology 25 (2014) 436–449
where the modular tensors are expressed as

Du;rE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfuðcbÞ

jl xb
kei � ej � ek � el ðA:6Þ

Du;rx ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jk ei � ej � ek ðA:7Þ

Du;rj ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KfxðcbÞ

jl xb
kei � ej � ek � el ðA:8Þ
A.3. Calculation of 1
V

PN
c¼1

_xc � fc

With the use of boundary Eq. (42), we have

1
V

XN

c¼1

_xc � fc ¼ 1
V

XN

c¼1

_uc � fc ¼ 1
V

XN

c¼1

ðxc � _EÞ � fc

¼ 1
V

XN

c¼1

dilxc
kf c

j
_Ekl ¼ Du;rE�2 : _E ðA:9Þ

where

Du;rE�2 ¼ 1
V

XN

c¼1

dilxc
kf c

j ei � ej � ek � el ðA:10Þ
A.4. Calculation of d 1
V

� 	PN
i¼1xc �mc

According to Eqs. (A.1),(A.2) and (37), we have

d
1
V


 �XN

c¼1

xc �mc ¼ �ð�l� IÞ : _E ðA:11Þ
A.5. Calculation of 1
V

PN
c¼1xc � _mc

With the use of Eqs. (42),(43) and (48), we have

1
V

XN

c¼1

xc � _mc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KmuðcbÞ _ub þ KmxðcbÞ _xb�

¼ 1
V

XN

c¼1

XN

b¼1

xc � ½KmuðcbÞ � ðxb � _EÞ� þ 1
V

XN

c¼1

XN

b¼1

xc

� ½KmxðcbÞ � ð _�xþ xb � _�jÞ�

¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmuðcbÞ

jl xb
k

_Ekl þ
1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jk
_�xk

þ 1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jl xb
k

_�jkl

¼ Du;lE�1 : _Eþ Du;lx � _�xþ Du;lj : _�j ðA:12Þ

where the modular tensors are expressed as

Du;lE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmuðcbÞ

jl xb
kei � ej � ek � el ðA:13Þ

Du;lx ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jk ei � ej � ek ðA:14Þ

Du;lj ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KmxðcbÞ

jl xb
kei � ej � ek � el ðA:15Þ
A.6. Calculation of 1
V

PN
c¼1

_xc �mc

With the use of boundary Eq. (42), we have

1
V

XN

c¼1

_xc �mc ¼ 1
V

XN

c¼1

_uc �mc ¼ 1
V

XN

c¼1

ðxc � _EÞ �mc

¼ 1
V

XN

c¼1

dilxc
kmc

j
_Ekl ¼ Du;lE�2 : _E ðA:16Þ

where

Du;lE�2 ¼ 1
V

XN

c¼1

dilxc
kmc

j ei � ej � ek � el ðA:17Þ
Appendix B. Derivation of modular tensors under the mixed
RVE boundary conditions I

B.1. Calculation of d 1
V

� 	PN
i¼1xc � fc and 1

V

PN
c¼1

_xc � fc

According to (A.3) and (A.9), we have

d
1
V


 �XN

c¼1

xc � fc ¼ �ð�r� IÞ : _E ðA:3Þ

1
V

XN

c¼1

_xc � fc ¼ Du;rE�2 : _E ðA:9Þ
B.2. Calculation of 1
V

PN
c¼1xc � _fc

With the use of Eq. (74), we have

1
V

XN

c¼1

xc � _fc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KIfuðcbÞ _ub þ KIfmðcbÞ _mb� ðB:1Þ

Substitution of the boundary conditions (69) into Eq. (B.1) gives

1
V

XN

c¼1

xc � _fc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KIfuðcbÞ _ub þ KIfmðcbÞ _mb�

¼ 1
V

XN

c¼1

XN

b¼1

xc � ½KIfuðcbÞ � ðxb � _EÞ� þ 1
V

XN

c¼1

XN

b¼1

xc

� ½KIfmðcbÞ � ðnb � _�lDSbÞ�

¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIfuðcbÞ

jl xb
k

_Ekl þ
1
V

XN

c¼1

XN

b¼1

DSbxc
i KIfmðcbÞ

jl nb
k

_�lkl

¼ DI;rE�1 : _Eþ DI;rl : _�l ðB:2Þ

where the modular tensors are expressed as

DI;rE�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIfuðcbÞ

jl xb
kei � ej � ek � el ðB:3Þ

DI;rl ¼ 1
V

XN

c¼1

XN

b¼1

DSbxc
i KIfmðcbÞ

jl nb
kei � ej � ek � el ðB:4Þ
B.3. Calculation of d 1
V

� 	PN
c¼1nc �xcDSc

According to Eqs. (A.1), (A.2) and (8), we have

d
1
V


 �XN

c¼1

nc �xc ¼ �ð�j� IÞ : _E ðB:5Þ
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B.4. Calculation of 1
V

PN
c¼1nc � _xcDSc

With the use of Eqs. (75) and (69), we have

1
V

XN

c¼1

nc � _xcDSc ¼ 1
V

XN

c¼1

DScnc �
XN

b¼1

½KIxuðcbÞ _ub þ KIxmðcbÞ _mb�

¼ 1
V

XN

c¼1

XN

b¼1

DScnc � ½KIxuðcbÞ � ðxb � _EÞ�

þ 1
V

XN

c¼1

XN

b¼1

DScnc � ½KIxmðcbÞ � ðnb � _�lDSbÞ�

¼ 1
V

XN

c¼1

XN

b¼1

DScnc
i KIxuðcbÞ

jl xb
k

_Ekl

þ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIxmðcbÞ

jl nb
k

_�lkl

¼ DI;jE�1 : _Eþ DI;jl�1 : _�l ðB:6Þ

where the modular tensors are expressed as

DI;jE�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScnc
i KIxuðcbÞ

jl xb
kei � ej � ek � el ðB:7Þ

DI;jl�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIxmðcbÞ

jl nb
kei � ej � ek � el ðB:8Þ
B.5. Calculation of 1
V

PN
c¼1

_nc �xcDSc

According to Eqs. (105)–(108) in paper [27],

_nc ¼ ðI� nc � ncÞ �Nc � _xc ¼ Tnx � _xc ðB:9Þ

where

Nc ¼
0 nc

3 �nc
2

�nc
3 0 nc

1

nc
2 �nc

1 0

2
64

3
75 ðB:10Þ

Tnx ¼ ðI� nc � ncÞ � Nc ðB:11Þ

With the use of Eqs. (75) and (69), we have

1
V

XN

c¼1

_nc �xcDSc ¼ 1
V

XN

c¼1

½Tnx � _xc� �xcDSc

¼ 1
V

XN

c¼1

½Tnx �
XN

b¼1

ðKIxuðcbÞ _ub þ KIxmðcbÞ _mbÞ� �xcDSc

¼ 1
V

XN

c¼1

XN

b¼1

½Tnx � KIxuðcbÞ � ðxb � _EÞ

þ Tnx � KIxmðcbÞ � ðnb � _�lDSbÞ� �xcDSc

¼ 1
V

XN

c¼1

XN

b¼1

DScxc
j Tnx

ip KIxuðcbÞ
pl xb

k

� �
_Ekl

þ 1
V

XN

c¼1

XN

b¼1

DScDSbxc
j Tnx

ip KIxmðcbÞ
pl nb

k

� �
_�lkl

¼ DI;jE�2 : _Eþ DI;jl�2 : _�l ðB:12Þ

where

DI;jE�2 ¼ 1
V

XN

c¼1

XN

b¼1

DScxc
j Tnx

ip KIxuðcbÞ
pl xb

kei � ej � ek � el ðB:13Þ

DI;jl�2 ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbxc
j Tnx

ip KIxmðcbÞ
pl nb

kei � ej � ek � el ðB:14Þ
Appendix C. Derivation of modular tensors under the mixed
RVE boundary conditions II

C.1. Calculation of d 1
V

� 	PN
c¼1nc � ucDSc

According to Eqs. (A.1) and (91), we have

d
1
V


 �XN

c¼1

nc � ucDSc ¼ �ðE� IÞ : _E ðC:1Þ
C.2. Calculation of 1
V

PN
c¼1nc � _ucDSc

With the use of Eqs. (90) and (96), we have

1
V

XN

c¼1

nc� _ucDSc ¼ 1
V

XN

c¼1

DScnc�
XN

b¼1

½KIIuf ðcbÞ _fbþKIIuxðcbÞ _xb�

¼ 1
V

XN

c¼1

XN

b¼1

DScnc�½KIIuf ðcbÞ � ðnb � _�rDSbÞ�þ 1
V

XN

c¼1

XN

b¼1

DScnc�½KIIuxðcbÞ � ð _�xþxb � _�jÞ�

¼ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIIuf ðcbÞ

jl nb
k

_�rklþ
1
V

XN

c¼1

XN

b¼1

DScnc
i KIIuxðcbÞ

jk
_�xkþ

1
V

XN

c¼1

XN

b¼1

DScnc
i KIIuxðcbÞ

jl xb
k

_�jkl

¼DII;Er : _�rþDII;Ex�1 � _�xþDII;Ej�1 : _�j

ðC:2Þ

where the modular tensors are expressed as

DII;Er ¼ 1
V

XN

c¼1

XN

b¼1

DScDSbnc
i KIIuf ðcbÞ

jl nb
kei � ej � ek � el ðC:3Þ

DII;Ex�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScnc
i KIIuxðcbÞ

jk ei � ej � ek ðC:4Þ

DII;Ej�1 ¼ 1
V

XN

c¼1

XN

b¼1

DScnc
i KIIuxðcbÞ

jl xb
kei � ej � ek � el ðC:5Þ
C.3. Calculation of 1
V

PN
c¼1

_nc � ucDSc

With Eq. (B.9), we have

1
V

XN

c¼1

_nc � ucDSc ¼ 1
V

XN

c¼1

DSc½Tnx � _xc� � uc

¼ 1
V

XN

c¼1

DSc½Tnx � ð _�xþ xc � _�jÞ� � uc

¼ 1
V

XN

c¼1

DScTnx
ik uc

j

� �
_�xk þ

1
V

XN

c¼1

DScTnx
il uc

j xc
k

� �
_�jkl

¼ DII;Ex�2 : _�xþ DII;Ej�2 : _�j ðC:6Þ

where

DII;Ex�2 ¼ 1
V

XN

c¼1

DScTnx
ik uc

j ei � ej � ek ðC:7Þ

DII;Ej�2 ¼ 1
V

XN

c¼1

DScTnx
il uc

j xc
kei � ej � ek � el ðC:8Þ

Thus, we have

_E ¼ d
1
V


 �XN

c¼1

nc � ucDSc þ 1
V

XN

c¼1

nc � _ucDSc þ 1
V

XN

c¼1

_nc

� ucDSc

¼ �ðE� IÞ : _Eþ DII;Er : _�rþ DII;Ex�1 � _�xþ DII;Ej�1

: _�jþ DII;Ex�2 : _�xþ DII;Ej�2 : _�j ðC:9Þ
i.e.

½Iþ ðE� IÞ� : _E ¼ DII;Er : _�rþ DII;Ex � _�xþ DII;Ej : _�j ðC:10Þ
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DII;Ex ¼ DII;Ex�1 þ DII;Ex�2

DII;Ej ¼ DII;Ej�1 þ DII;Ej�2
ðC:11Þ

C.4. Calculation of d 1
V

� 	PN
i¼1xc �mc

According to Eqs. (A.1) and (37), we have

d
1
V


 �XN

c¼1

xc �mc ¼ �ð�l� IÞ : _E ðC:12Þ
C.5. Calculation of 1
V

PN
c¼1xc � _mc

With the use of Eqs. (90) and (97), we have

1
V

XN

c¼1

xc � _mc ¼ 1
V

XN

c¼1

xc �
XN

b¼1

½KIImf ðcbÞ _fb þ KIImxðcbÞ _xb�

¼ 1
V

XN

c¼1

XN

b¼1

xc � ½KIImf ðcbÞ � ðnb � _�rDSbÞ�

þ 1
V

XN

c¼1

XN

b¼1

xc � ½KIImxðcbÞ � ð _�xþ xb � _�jÞ�

¼ 1
V

XN

c¼1

XN

b¼1

DSbxc
i KIImf ðcbÞ

jl nb
k

_�rkl þ
1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jk
_�xk

þ 1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jl xb
k

_�jkl

¼ DII;lr�1 : _�rþ DII;lx�1 � _�xþ DII;lj�1 : _�j ðC:13Þ

where the modular tensors are expressed as

DII;lr�1 ¼ 1
V

XN

c¼1

XN

b¼1

DSbxc
i KIImf ðcbÞ

jl nb
kei � ej � ek � el ðC:14Þ

DII;lx�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jk ei � ej � ek ðC:15Þ

DII;lj�1 ¼ 1
V

XN

c¼1

XN

b¼1

xc
i KIImxðcbÞ

jl xb
kei � ej � ek � el ðC:16Þ
C.6. Calculation of 1
V

PN
c¼1

_xc �mc

With the use of Eqs. (90) and (96), we have

1
V

XN

c¼1

_xc �mc ¼ 1
V

XN

c¼1

_uc �mc

¼ 1
V

XN

c¼1

XN

b¼1

½KIIuf ðcbÞ _fb þ KIIuxðcbÞ _xb� �mc

¼ 1
V

XN

c¼1

XN

b¼1

½KIIuf ðcbÞ � ðnb � _�rDSbÞ

þ KIIuxðcbÞ � ð _�xþ xb � _�jÞ� �mc

¼ 1
V

XN

c¼1

XN

b¼1

DSbmc
j KIIuf ðcbÞ

il nb
k

_�rkl

þ 1
V

XN

c¼1

XN

b¼1

mc
j KIIuxðcbÞ

ik
_�xk þ

1
V

XN

c¼1

XN

b¼1

mc
j KIIuxðcbÞ

il xb
k

_�jkl

¼ DII;lr�2 : _�rþ DII;lx�2 � _�xþ DII;lj�2 : _�j ðC:17Þ
where

DII;lr�2 ¼ 1
V

XN

c¼1

XN

b¼1

DSbmc
j KIIuf ðcbÞ

il nb
kei � ej � ek � el ðC:18Þ

DII;lx�2 ¼ 1
V

XN

c¼1

XN

b¼1

mc
j KIIuxðcbÞ

ik ei � ej � ek ðC:19Þ

DII;lj�2 ¼ 1
V

XN

c¼1

XN

b¼1

mc
j KIIuxðcbÞ

il xb
kei � ej � ek � el ðC:20Þ

So, we have

_�l ¼ d
1
V


 �XN

c¼1

xc �mc þ 1
V

XN

c¼1

xc � _mc þ 1
V

XN

c¼1

_xc �mc

¼ �ð�l� IÞ : _Eþ DII;lr�1 : _�rþ DII;lx�1 � _�xþ DII;lj�1

: _�jþ DII;lr�2 : _�rþ DII;lx�2 � _�xþ DII;lj�2 : _�j ¼ DII;lE

: _Eþ DII;lr : _�rþ DII;lx � _�xþ DII;lj : _�j ðC:21Þ

in which

DII;lE ¼ �ð�l� IÞ
DII;lr ¼ DII;lr�1 þ DII;lr�2

DII;lx ¼ DII;lx�1 þ DII;lx�2

DII;lj ¼ DII;lj�1 þ DII;lj�2

ðC:22Þ
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