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Abstract The interaction of a screw dislocation with a circular inhomogeneity near the free surface is discussed
in this paper. By using the complex potential and conformal mapping technique, an explicit series solution
is obtained. Then, the solution is cast into a new expression to separate the interaction effects between the
dislocation, inhomogeneity, and free surface. The new expression is not only convenient to reveal the coupling
interaction effects, but also helpful to improve the convergence of the solution. As an application of the new
expression, a simple approximate formula is presented with high accuracy. Finally, the full-field interaction
energy and image force are evaluated and studied graphically. It is found that when the screw dislocation,
inhomogeneity, and free surface are close to each other, their interaction effects strongly and intricately couple
in the near field. In the case of a soft inhomogeneity or a hole, there is an unstable equilibrium point of the screw
dislocation between the inhomogeneity and free surface, whereas in the case of a hard or rigid inhomogeneity,
there is an unstable equilibrium point on the opposite side of the inhomogeneity.

Keywords Dislocations · Free surface · Complex potential method · Coupling interaction ·
Simple approximate solution

1 Introduction

The interaction of a dislocation with inhomogeneities is a very important topic in the study of strengthening
and deformation mechanism of many heterogeneous materials. It is because that such an interaction induces
an image forces acting on the dislocation, and consequently induces a motion of the dislocation. From Head’s
work [1], many researches have been performed. It is revealed that the interaction energy and image force
acting on the dislocation are significantly influenced by the shape of inhomogeneities [1–6], the nature of
inhomogeneity/matrix interfaces [7–10], and the size of inhomogeneities [11–13].

In 1953, Head [1] first derived the image force on a dislocation near a straight interface between two dissim-
ilar materials. He found that the dislocation was either repealed or attracted by the interface, depending on the
combination of material constants. The interaction of the dislocation with various shapes of inhomogeneities
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had been well studied since then. Smith [2] analyzed the cases of inhomogeneities with circular or elliptic
sections and derived the series solutions. By using the Eshelby equivalent inclusion method, Li and Shi [3]
studied more general cases of inhomogeneities with arbitrary shape, and obtained a set of simple approximate
formulae with satisfactory accuracy to determine the image force. As an extension to the piezoelectric issue,
Shen et al. [4] investigated the interaction between a screw dislocation and a piezoelectric fiber composite
with a semi-infinite wedge crack. Zeng et al. [5] dealt with the interaction between piezoelectric screw dislo-
cations and two asymmetrical interfacial cracks emanating from an elliptic hole under combined mechanical
and electric load at infinity. Zhang et al. [6] presented a numerical solution of interaction between cracks
and a circular inclusion in a finite plate, in which distributed dislocations were used to model the cracks and
boundaries.

Due to the presence of materials such as fiber coating or transitional layers between inhomogeneities and
the matrix, it is more reasonable in many cases to consider an interface as an interphase layer with finite thick-
ness. Many works have been done to study the interaction between a dislocation and inhomogeneities with
different nature of interfaces. Xiao and Chen [7] considered a circular coated fiber and obtained a closed-form
solution for the stress. Jiang et al. [8] considered the problem of the interaction of a screw dislocation with an
interphase layer between a circular inclusion and a matrix and obtained explicit series solutions by combin-
ing the sectionally holomorphic function, Cauchy integral and Laurent series expansion techniques. Honein
et al. [9] studied a multi-layered interphase between a circularly cylindrical inclusion and a matrix, where the
layers were coaxial cylinders of annular cross-sections with arbitrary radii and different shear moduli, and the
number of layers may also be arbitrary. Sudak [10] considered a circular inhomogeneity with homogeneous
imperfect interface undergoing uniform eigenstrains.

In another important case, though there is no such a coating layer, since the equilibrium lattice spacing
in the interface is different from that in the bulk, the interface stress effect must be considered when the
inhomogeneity is small to nano-size. By introducing the interface stress effects of the nano-inhomogeneity
with the Gurtin–Murdoch model, Fang and Liu [11] investigated the interaction of a screw dislocation with a
circular nano-inhomogeneity, and they found that the normalized image force depended on the inhomogeneity
size. The interface effect becomes negligible when the radius of the inhomogeneity is relatively large. Luo and
Xiao [12] obtained the solution of semi-analytical nature for a screw dislocation interacting with an elliptical
nano-inhomogeneity. Ahmadzadeh-Bakhshayesh et al. [13] dealt with the surface/interface effects on elastic
behavior of a screw dislocation in an eccentric core-shell nanowire.

Actually, free surface is another important factor in some of the interaction issues of dislocations. Exper-
imental investigations revealed interesting interaction phenomena of dislocations with free surfaces [14–17].
The theoretical solution of the interaction of a dislocation with the free surface was firstly given by Head [1].
When a dislocation approaches an inhomogeneity near the free surface, an intricate coupling interaction effect
occurs. The solution of the problem cannot be obtained by a linear superposition of Head’s result and the
solution of a dislocation near an inhomogeneity in an infinite medium. The purpose of this paper is to study
such an interesting coupling phenomenon.

This paper is organized as follows. Section 2 formulates the basic equations. Section 3 provides an exact
series solution of the complex potential by using the conformal mapping technique. Section 4 shows that the
present solution can degenerate into many existing solutions, and this fact suggests a new expression of the
present solution, where various interaction effects are separated. Section 5 derives the interaction energy and
image force. It is found that the new expression not only is convenient to investigation, but also converges
more rapidly. A simple approximate formula with high accuracy is presented. The exact full-field distributions
of the interaction energy and image force are evaluated and shown graphically by two illustrative examples.
In Sect. 6, several conclusions are drawn.

2 Problem description and basic equations

Consider a screw dislocation with the Burgers vector b near a circular isotropic inhomogeneity and the free
surface in a semi-infinite isotropic medium as shown in Fig. 1a, where the radius of the inhomogeneity is R1, the
origin of a Cartesian coordinate system lies at the center of the inhomogeneity and the x-axis is perpendicular to
the free surface. Let h be the distance between the inhomogeneity and the free surface; z0 denotes the location
of the screw dislocation; D1, D2 and D3 denote the regions occupied by the inhomogeneity, the semi-infinite
medium, and the outside of the medium, respectively; �1 and �2 denote the inhomogeneity/medium interface
and the free surface of the medium, respectively.
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Fig. 1 a A screw dislocation near a circular isotropic inhomogeneity and the free surface. b Conformal mapping. c Mapping
region

In anti-plane strain state, the displacement w, the shear stress components τxz and τyz , and the resultant
force T along any arc AB in the material can be expressed in terms of a single analytical function (complex
potential) f (z) of the complex variable z = x + iy as follows [18]

w = 1

2μ

[
f (z) + f (z)

]
, (1)

τxz − iτyz = f ′(z) (2)

T =
B∫

A

(
τxzdy − τyzdx

) = i

2

[
f (z) − f (z)

]B

A
, (3)

where μ is the shear modulus of the material, the overbar represents the complex conjugate, the superscript
prime denotes the differentiation with respect to the argument, [·]B

A signifies the change in the bracketed func-
tion in going from the point A to the point B along any arc AB. f (z) is holomorphic in the region occupied by
the elastic medium, but poles at the screw dislocation points. The assumption of a perfect bonding between
dissimilar materials implies the continuity conditions of stresses and displacements. The stress continuity may
also be integrated to become resultant force continuity conditions. These conditions can be expressed as

w1 = w2, T1 = T2 on �1, (4)

T2 = 0 on �2, (5)

where and hereafter the subscripts 1 and 2 refer to the inhomogeneity and the semi-infinite medium, respec-
tively.

By analyzing the singularities of the complex functions, it is seen that f1(z) in D1 is holomorphic and
f2(z) in D2 can be expressed as

f2(z) = μ2b

2π i
ln(z − z0) + f20(z) in D2 (6)

where f20(z) is the holomorphic part of f2(z), b is the module of the Burgers vector b.

3 Solutions of the complex potential

3.1 Conformal mapping

In order to solve the above problem, the conformal mapping is introduced as

z = m(ζ ) = R2
1(a − ζ )

aζ − R2
1

(7)
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where ζ = ξ + iη, a = −(R1 +h)+
√

(R1 + h)2 − R2
1, R2 = (R1 +h)+

√
(R1 + h)2 − R2

1 and a R2 = −R2
1.

The regions D1, D2 and D3 in Fig. 1a are, respectively, mapped onto the regions D′
1(|ζ | < R1), D′

2(R1 <
|ζ | < R2) and D′

3(|ζ | > R2) in Fig. 1c. �1 and �2 are mapped onto �1 and �2, respectively. The coordinate
origin O , the infinity, and the point z0 are, respectively, mapped onto the points O ′(ζ = a), K (ζ = −R2) and
ζ0. It is noted that the radii of both �1 and �1 are R1.

In the ζ -plane, Eqs. (1), (2) and (3) become

w = 1

2μ

[
ϕ(ζ ) + ϕ(ζ )

]
, (8)

τxz − iτyz = ϕ′(ζ )

m′(ζ )
, (9)

T = i

2

[
ϕ(ζ ) − ϕ(ζ )

]B′

A′ , (10)

and the continuity conditions, Eqs. (4) and (5), become

w1 = w2, T1 = T2 on �1, (11)

T2 = 0 on �2. (12)

The substitution of Eqs. (7) into (6) yields

ϕ2(ζ ) = ϕ2S(ζ ) + ϕ20(ζ ) in D′
2, (13)

where the constant term representing the rigid displacement is neglected, the singular part

ϕ2S(ζ ) = μ2b

2π i
ln

ζ − ζ0

ζ + R2
, (14)

and the holomorphic function ϕ20(ζ ) can be expanded into a Laurent series in the annular region D′
2

ϕ20(ζ ) = G P(ζ ) + G N (ζ ) =
∞∑

n=1

Cnζ
n +

∞∑
n=1

Dnζ
−n for R1 < |ζ | < R2. (15)

In Eq. (15),G P(ζ ) and G N (ζ ) represent the sums of the positive and negative power terms with the undeter-
mined complex constants Cn and Dn , respectively.

3.2 Analytic continuation and solution

For the convenience of analysis, the following new analytical functions are introduced in the corresponding
regions according to the Schwarz symmetry principle.

ϕ1∗(ζ ) = −ϕ1
(
R2

1/ζ
)

for |ζ | > R1, (16)

ϕ2∗(ζ ) = −ϕ2
(
R2

1/ζ
) = μ2b

2π i
ln

ζ − R2
1/ζ0

ζ + R2
1/R2

+ ϕ2∗0(ζ ) for R2
1/R2 < |ζ | < R1, (17)

ϕ2∗∗(ζ ) = −ϕ2
(
R2

2/ζ
) = μ2b

2π i
ln

ζ − R2
2/ζ0

ζ + R2
+ ϕ2∗∗0(ζ ) for R2 < |ζ | < R2

2/R1, (18)

where ϕ2∗0 (ζ ) = −G P
(
R2

1/ζ
)−G N

(
R2

1/ζ
)
, ϕ2∗∗0 (ζ ) = −G P

(
R2

2/ζ
)−G N

(
R2

2/ζ
)
. With the aid of these

functions and basic equations, the continuity conditions of displacements and stresses, Eqs. (11) and (12), can
be reduced to the following functional equations

[μ2ϕ1(t) + μ1ϕ2∗(t)]D′
1

= [μ2ϕ1∗(t) + μ1ϕ2(t)]D′
2

on �1, (19)
{

[ϕ2∗(t) − ϕ1(t)]D′
1

= [ϕ1∗(t) − ϕ2(t)]D′
2

on �1

[ϕ1∗(t) − ϕ2(t)]D′
2

= [ϕ1∗(t) + ϕ2∗∗(t)]D′
3

on �2
, (20)
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where the subscripts D1, D2 and D3 refer to the function values as approached from the three corresponding
regions, respectively.

By using the sectionally holomorphic function theory [18] and the Cauchy integral technique, an exact
series solution for the problem is obtained

ϕ1(ζ ) = −G N
(
R2

1/ζ
) + μ2b

2π i
ln

ζ − ζ0

ζ + R2
+ μ2b

2π i
ln

ζ + R2

ζ − R2
2/ζ0

− G N
(
R2

2/ζ
)
, (21)

ϕ2(ζ ) = μ2b

2π i
ln

ζ − ζ0

ζ + R2
− kG P

(
R2

1/ζ
) + 1 − k

2
G N

(
R2

2/ζ
) + 1 + k

2
G P(ζ )

+kμ2b

2π i
ln

ζ − R2
1/ζ0

ζ + R2
1/R2

+ (1 − k)μ2b

4π i
ln

ζ + R2

ζ − R2
2/ζ0

, (22)

where the parameter

k = μ1 − μ2

μ1 + μ2
, (23)

where μ1 and μ2 are the shear modulus of the inhomogeneity and matrix, respectively. The remaining work
is to determine the coefficients Cn and Dn in Eq. (15). Noting that

ln
ζ − R2

1/ζ0

ζ + R2
1/R2

=
∞∑

n=1

(−1)n R2n
1 R−n

2 − R2n
1 ζ0

−n

n
· ζ−n,

ln
ζ − R2

2/ζ0

ζ + R2
=

∞∑
n=1

(−1)n R−n
2 − R−2n

2 ζ0
n

n
· ζ n,

and substituting them into Eq. (22), a comparison of the coefficients of the same power terms in Eqs. (13)
and (22) yields the complex coefficients

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cn = −μ2b
2πi

(−1)n R−n
2

n + μ2b
2πi

ζ0
n

R−2n
2 +kζ−n

0 R2n
1 R−2n

2

n
(

1+k R2n
1 R−2n

2

)

Dn = μ2b
2πi

k
(
ζ n

0 R2n
1 R−2n

2 −ζ0
−n

R2n
1

)

n
(

1+k R2n
1 R−2n

2

)
. (24)

The substitution of Eq. (24) into (22) and transforming to the z-plane yield

f2(z) = μ2b

2π i
ln(z − z0) + kμ2b

2π i
ln

z − R2
1/z0

z−R2
1/R2

− (1 − k)μ2b

4π i
ln(z + z0 − 2(R1 + h))

+kμ2b

2π i

∞∑
n=1

An + kA
−n

R−2n
1

n(β−2n + k)
·
(

z + a

az + R2
1

)−n

− (1 + k)μ2b

4π i
ln(z − R2)

+μ2b

2π i

∞∑
n=1

(1 + k − kβ2n + k2β2n)A
n

R2n
1 + 2kA−n

2n(β−2n + k)
·
(

z + a

az + R2
1

)n

(25)

where A = z0+a
az0+R2

1
, β = R1/R2.

4 A discussion on the complex potential solution

In this section, special cases of the solution of the complex potential are examined, not only to check correction
of the present solution, but also to seek a new expression of the solution, which is of physical significance
(various interaction effects are separated) and of mathematical elegance (much better convergence). In the
following, we discuss only the special cases of f2(z) in Eq. (25), which determines the internal force acting
on the dislocation.
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4.1 Special cases

4.1.1 A screw dislocation in an infinite medium

Letting μ1 = μ2 and h → ∞ (i.e., k = 0 and R2 → ∞), Eq. (25) degenerates into the solution of a screw
dislocation in an infinite medium

fInf(z) = μ2b

2π i
ln(z − z0), (26)

which is in agreement with the previous result from Muskhelishvili [18].

4.1.2 A screw dislocation near the free surface in a semi-infinite medium

Letting μ1 = μ2, Eq. (25) degenerates to the solution of a screw dislocation near the free surface in a semi-
infinite medium

fSurf(z) = fInf(z) + fSurf0(z), (27)

where fInf(z) is given in Eq. (26) and fSurf0(z) is a holomorphic function in the matrix region, which reflects
the interaction of the screw dislocation with the free surface

fSur0(z) = −μ2b

2π i
ln (z + z0 − 2(R1 + h)) . (28)

By a simple coordinate transformation, Eq. (27) reverts to the previous solution given by Head [1].

4.1.3 A screw dislocation near a circular inhomogeneity in an infinite medium

Letting h → ∞, Eq. (25) degenerates to the solution of a screw dislocation near a circular inhomogeneity in
an infinite medium.

fInh (z) = fInf (z) + fInh0 (z) , (29)

where fInh0(z) is a holomorphic function in the matrix region, which reflects the interaction of the screw
dislocation with the circular inhomogeneity

fInh0(z) = kμ2b

2π i
ln

z − R2
1/z0

z
. (30)

Eq. (29) is in agreement with the previous solution from Smith’s work [2].

4.2 Complex potential with various interaction effects separated

Section 4.1 gives us a significant hint that the complex potential f2(z) can be cast into a new expression
f2New(z), where various interaction effects are separated:

f2New(z) = fInf(z) + fSurf0(z) + fInh0(z) + fCpl(z), (31)

where fInf(z), fSurf0(z) and fInh0(z) refer to Eqs. (26), (28), and (30), respectively. fSurf0(z) and fInh0(z)
reflect the interactions of the screw with the free surface and circular inhomogeneity, respectively. Compared
with Eq. (25), the residual part fCpl(z) can be written as

fCpl(z) = − ln

(
z−R2

1/R2

z

)
+ kμ2b

2π i

∞∑
n=1

An + kA
−n

R−2n
1

n(β−2n + k)
·
(

z + a

az + 1

)−n

+ kμ2b

2π i

∞∑
n=1

A−n − A
n

R2n
1 β2n

n(β−2n + k)
·
(

z + a

az + 1

)n

,

(32)

which reflects a coupling interaction caused by the free surface and the circular inhomogeneity. From its phys-
ical meaning, fCpl(z) represents a higher-order interaction effect than fSurf0(z) and fInh0(z), so Eq. (31) more
rapidly converges than Eq. (25), which will be further discussed in Sect. 5.2.
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5 Interaction energy and image force

5.1 Fundamental theory and nondimensional expressions

The interaction energy and image force acting on dislocation are of practical importance in understanding the
behavior of inhomogeneous materials. The strain energy due to the presence of a dislocation is equal to the
work required to introduce the dislocation into the material. The displacement along the dislocation is just the
module b of the Burgers vector b, and the total force on the dislocation can be calculated from Eq. (3). Thus,
the strain energy W is given by [19]

W = 1

2
bT, (33)

where T refers to Eq. (3).The interaction energy is the difference between W and the self-energy of the screw
dislocation in the homogeneous material, which can be formally written as

	W = 1

2
bIm [	 f2(z0)] , (34)

where Im denotes the imaginary part of a complex quantity, and 	 represents the part of the complex potential
after removing the dislocation singularity. By substituting Eqs. (25) or (31) into (34) and dividing both sides
by μ2b2/(4π), the nondimensional interaction energy can be written as

W̃ = 4π

μ2b2 	W = 2π

μ2b
Im [ f20(z0)] . (35)

According to the Peach–Koehler formula, the image force at the point z0 is [20]

Fx − iFy = ib
[
τ̂xz2(z0) − iτ̂yz2(z0)

]
, (36)

where Fx and Fy are the force components in the x-axis and y-axis directions, respectively. τ̂xz2(z0) and
τ̂yz2(z0) denote the perturbation stress components at the dislocation point, which can be derived by subtract-
ing those attributions to the dislocation in the corresponding infinite homogeneous medium from the obtained
stresses, then taking the limit as z approaches z0. The substitution of Eqs. (2) and (25) [or (31)] into (36) and
dividing both sides by μ2b2/(2π R1) yield the nondimensional image force

F̃ = 2π R1

μ2b2

(
Fx − iFy

) = 2π R1i

μ2b

[
f ′
20(z)

]
z=z0

. (37)

The nondimensional physical quantities, W̃ and F̃ , both are functions of the position coordinates of the
dislocation.

5.2 Convergence of the nondimensional image force

In this subsection, numerical examples are presented to compare the convergence of the two expressions (25)
and (31) of the complex potential solution.

Computations show that the interaction energy varies most rapidly on H1 H2 of the x-axis (Fig. 1a). From
Eq. (37), Fy = 0 in the x-axis and F̃ = 2π R1 Fx/μ2b2.

Without loss of generality, we introduce a relative location of dislocation

δ = x − R1

h
, (38)

where h is the length of H1 H2 in Fig. 1a. Take five representative points on H1 H2 : δ = 0.01, 0.25, 0.5, 0.75,

0.99. Without loss of generality, define a nondimensional distance h̃ = h/R1. Consider four typical properties
of the inhomogeneity: (1) a hole (k = −1), (2) a soft inhomogeneity (k = −0.5), (3) a hard inhomo-
geneity (k = 0.5), and (4) a rigid inhomogeneity (k = 1). By using f2New(z) in Eq. (31) and f2(z) in
Eq. (25), the number N0 of terms in series required at a 1 % truncation error of the nondimensional image force
F̃ = 2π R1 Fx/μ2b2 is listed in Table 1.
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Table 1 The number N0 of terms in series required at a 1 % truncation error of the nondimensional image force F̃ = 2π R1 Fx/μ2b2

for 5 values of the relative location δ = (x − R1)/h and 4 values of the material parameter k, where the nondimensional distance
h̃ = h/R1 = 1

k = μ1−μ2
μ1+μ2

Number of terms N0

δ = 0.01 δ = 0.25 δ = 0.50 δ = 0.75 δ = 0.99

f2New f2 f2New f2 f2New f2 f2New f2 f2New f2

−1 0 0 2 2 1 1 1 1 0 0
−0.5 0 0 1 3 1 3 1 6 0 139
0.5 0 0 1 2 1 3 1 7 0 187
1 0 0 1 2 1 4 1 8 0 199

Table 2 The number N0 of terms in series required at a 1 % truncation error of the nondimensional image force F̃ = 2π R1 Fx/μ2b2

for 5 values of the nondimensional distance h̃ = h/R1 and 4 values of the material parameter k, where the relative location
δ = (x − R1)/h = 0.75

k = μ1−μ2
μ1+μ2

Number of terms N0

h̃ = 10 h̃ = 5 h̃ = 1 h̃ = 0.5 h̃ = 0.05

f2New f2 f2New f2 f2New f2 f2New f2 f2New f2

−1 0 0 0 0 1 1 1 1 4 4
−0.5 0 3 0 4 1 6 1 7 3 21
0.5 0 5 0 5 1 7 1 10 3 27
1 0 5 0 5 1 8 1 10 4 29

It is seen from Table 1 that f2New(z) converges more rapidly than f2(z). In most cases, only one term
(N0 = 1) is needed to ensure that the error is < 1 %. It is noticed that for a hole, the point δ = 0.25 is very
close to the equilibrium point where the image force is equal to zero (refer to Fig. 5).

The influence of the nondimensional distance h̃ on the number N0 of terms in series is shown in Table 2
at a 1 % truncation error. It is seen from Table 2 that with the decrease of h̃, N0 rapidly increases for f2(z),
whereas except for a very small distance, only one term is needed with f2New(z). Even if the value of h̃ is very
small, N0 required with f2New(z) is much smaller than that with f2(z).

5.3 Simple approximate solution

From Sect. 5.2, it is seen that attributing to uncoupling of various interaction effects, in most cases the first-order
approximation f2App(z) of the complex potential solution f2New(z) in Eq. (31),

f2App(z) = μ2b

2π i
ln(z − z0) + kμ2b

2π i
ln

z − R2
1/z0

z−R2
1/R2

− μ2b

2π i
ln(z + z0 − 2(R1 + h))

+kμ2b

2π i

A−1 − AR2
1β2

β−2 + k

z + a

az + 1
+ kμ2b

2π i

A + kA
−1

R−2
1

β−2 + k

az + 1

z + a
, (39)

has high accuracy. In order to demonstrate the accuracy of the simple approximate solution (39), the curves of
the nondimensional image force F̃ = 2π R1 Fx/μ2b2 versus the relative location δ are depicted in Fig. 2 for
a hard and rigid inhomogeneity and in Fig. 3 for a soft inhomogeneity and a hole, respectively. From Figs. 2
and 3, it is seen that the accuracy of the simple approximate solution is so high that it cannot be distinguished
from the exact solution. Of course, as seen from Table 2, for a very small value of h̃, the higher-order solution
is still required.

5.4 Distribution of the interaction energy and image force

In the previous sections, the full-field solution of the complex potential is derived, in terms of which the
interaction energy and the image force of a screw dislocation can be evaluated.
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Fig. 2 Nondimensional image force F̃ = 2π R1 Fx/μ2b2 versus the relative location δ by using the exact and approximate
solutions for rigid (k = 1) and hard (k = 0.5) inhomogeneities, where δ = (x − R1)/h, k = (μ1 − μ2)/(μ1 + μ2)

Fig. 3 Nondimensional image force F̃ = 2π R1 Fx/μ2b2 versus the relative location δ by using the exact and approximate
solutions for a hole (k = −1) and soft (k = −0.5) inhomogeneity, where δ = (x − R1)/h, k = (μ1 − μ2)/(μ1 + μ2)

Consider a circular hard inhomogeneity (k = 0.5), and let the nondimensional distance between the inho-
mogeneity and free surface h̃ = h/R1 = 1. The distribution of the nondimensional interaction energy W̃ and
image force F̃ is depicted in Fig. 4, where W̃ and F̃ refer to Eqs. (35) and (37), respectively. It is seen that
the coupling interaction effects induced by the inhomogeneity and free surface severely distort the interaction
energy contour (dashed lines where the values of W̃ are marked) and image force line (solid lines where the
directions of F̃ are marked). As predicted, the two families of curves still keep being orthogonal to each other.
The image force lines first leave along the outer normal of the inhomogeneity, and then gradually turn to the
free surface. The interaction energy contour lines vary most dramatically on the interval (1, 2) of the x-axis.
With the increase in the distance from the inhomogeneity, the interaction effect induced by the inhomogeneity
decays. An unstable equilibrium point of the screw dislocation is found at the point E(x̃ = x/R1 = −1.87).

The interaction energy contour and image force line induced by the interaction of a screw dislocation with
a circular hole (k = −1) near the free surface are depicted in Fig. 5, where h̃ = 1. An unstable equilibrium
point is found at the point E (x̃ = x/R1 = 1.34).

When the inhomogeneity is far from the free surface, the diagram approaches to the case that there is no
free surface. The diagram is not depicted to save space.
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Fig. 4 The nondimensional interaction energy contour (dashed lines where the values of W̃ are marked) and image force line
(solid lines where the directions of F̃ are marked) induced by the interaction of a screw dislocation with a circular hard inhomo-
geneity (k = (μ1 − μ2)/(μ1 + μ2) = 0.5) near the free surface, where the nondimensional distance between the inhomogeneity
and free surface h̃ = h/R1 = 1

Fig. 5 The nondimensional interaction energy contour (dashed lines where the values of W̃ are marked) and image force
line (solid lines where the directions of F̃ are marked) induced by the interaction of a screw dislocation with a circular hole
(k = (μ1 − μ2)/(μ1 + μ2) = −1) near the free surface, where the nondimensional distance between the inhomogeneity and
free surface h̃ = h/R1 = 1

6 Conclusion

(1) The interaction of a screw dislocation with a circular inhomogeneity near the free surface is dealt with.
By using the complex potential and conformal mapping technique, an explicit series solution is obtained
and many existing solutions can be reobtained as the special cases of the present solution.

(2) The present solution is cast into a new expression where various interaction effects are separated. The new
expression converges more rapidly, and a simple approximate formula with high accuracy is presented.
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(3) The full-field interaction energy and image force are evaluated and shown graphically. It is found that in
the case of a soft inhomogeneity or hole, there is an unstable equilibrium point of the screw dislocation
between the inhomogeneity and free surface, whereas in the case of a hard or rigid inhomogeneity, there
is a unstable equilibrium point on the opposite side of the inhomogeneity. When the screw dislocation,
inhomogeneity, and free surface are close to each other, the interaction energy and image force exhibit a
strong and intricate coupling in the near field.

The present work has led to a much improved understanding of coupling interaction among the dislocation,
inhomogeneity, and free surface.
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