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Linear stability in Hagen-Poiseuille flow of a Bingham fluid is considered. Bingham
fluid exhibits a yield stress in addition to a plastic viscosity. A Bingham number
B, which describes the ratio of yield and viscous stresses, is used to characterize
the behavior of Bingham-Hagen-Poiseuille flow. The effects of B on the stability
are investigated using the energy method and the non-modal stability theory. The
energy analysis shows that the non-axisymmetric disturbance has the lowest critical
energy Reynolds number for all B. The global critical energy Reynolds number Reg

increases with B. At sufficient large B, Reg has the order of B1/2. For the non-modal
stability, we focus on response to external excitations and initial conditions. The
former is studied by examining the ε-pseudospectrum, and the latter is by examining
the energy growth function G(t). For the problem of response to external excitations,
the maximum response is achieved by non-axisymmetric and streamwise uniform
disturbances at the frequency of ω = 0, with a possible choice of the azimuthal
wavenumbers of n = 1, 2, or 3. For the problem of response to initial conditions, it is
found that there can be a rather large transient growth even though the linear operator
of the Bingham-Hagen-Poiseuille flow has no unstable eigenvalue. For small B, the
optimal disturbance is in the form of streamwise uniform vortices and streaks. For
large B, the optimal disturbance is in the form of oblique waves. The optimal energy
growth decreases and the optimal azimuthal wavenumber increases with the increase
of B. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861025]

I. INTRODUCTION

Flows of viscoplastic fluids occur in many industrial processes, for example, in oil wells,
especially during drilling and cementing operations, and also in the food processing and in mining
industries.1 The fluid behavior of a viscoplastic material is characterized by the existence of a yield
stress (τ 0) below which the material exhibits solid-like behavior and beyond which it exhibits liquid-
like behavior. Most natural and industrial materials (glues, inks, pastes, slurries, paints, emulsions,
foodstuffs, blood, drilling muds, etc.) obtained by suspending a large number of particles interacting
via colloidal forces or direct contact in water fall into this category exhibiting a yield stress.2 This
yield stress is in fact the strength necessary to break the continuous network of interactions between
particles throughout the sample.

The Bingham model is widely used to describe the rheological behavior of a viscoplastic fluid.
The constitutive laws are formulated by as

τ = (
τ0

γ̇
+ μ0)γ̇ ⇔ τ ≥ τ0,

γ̇ = 0 ⇔ τ < τ0, (1)
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where γ̇ is the rate of strain, τ is the stress tensor, γ̇ and τ are the second invariants of the rate-of-
strain and deviatoric stress tensors, respectively. We note that from the experimental point of view,
more complex models such as the Herschel-Bulkley model can be more accurate to describe the
viscoplastic behavior. However, the most important features of viscoplastic fluid flows, i.e., a yield
stress and a shear-thinning behavior of the effective viscosity are contained by the simple Bingham
model.

The transition from laminar to turbulent flow in a circular pipe or in a plane channel is one
of the most intriguing problems of classical hydrodynamics since the original work of Reynolds.3

However, an understanding of the mechanism of transition from laminar towards turbulence is far
from complete, even for Newtonian fluids.

Traditionally, a first step in investigating transition is the normal-mode analysis. For this ap-
proach, it is assumed that each mode has an exponential time dependence, thus the base flow
is considered to be unstable if an eigenvalue is found in the unstable complex half plane. It is
well known that the pipe Poiseuille flow (Hagen-Poiseuille flow) is linear stable at all Reynolds
numbers4, 5 (here, Re = UD/ν where U is the mean speed, D is the diameter of the pipe, and ν is the
kinematic viscosity of the fluid). However, in most experiments of pipe Poiseuille it is found that
the transitional Reynolds number depends on the level of disturbance in the flow. Transition in a
circular pipe flow is observed at Re ≈ 2000, whereas, in carefully designed experiments the transition
point can be delayed to Reynolds numbers as large as Re ≈ 100 000.6 Peixinho and Mullin7 have
performed a novel experiment to provide direct evidence for critical point behavior in the problem
of the transition to turbulence in a pipe. Their experimental facility enabled a laminar flow to be
achieved up to a flow rate corresponding to Re = 23 000. For more experimental and theoretical
works on the transition to turbulence in pipe flow, we refer the reader to the review articles8, 9 and
references therein. Similar discrepancies between the computed critical Reynolds number of linear
stability analysis and the observed transitional Reynolds number in experiments also exist in other
simple flows, such as Couette and Poiseuille flows.10, 11

Until now, no full theory of transition to turbulence in shear flows exists. Nevertheless, significant
progress has been achieved due to the emergence of the non-modal stability theory. In the normal-
mode analysis, a common simplification is the assumption that each mode has an exponential
time dependence. The behavior of each mode is inferred from the spectrum of the governing linear
operator. The base flow is considered to be unstable if an eigenvalue is found in the unstable complex
half-plane. For most wall-bounded shear flows, because of the non-normality of the governing linear
operator, the spectrum is a poor proxy for the disturbance behavior as it only describes the long-
term behavior of the perturbation. The main point of departure of the non-modal theory from the
traditional eigenvalue analysis is the fact that even if all of the eigenvalues of a linear system
are distinct and lie well inside the stable half-plane, inputs to that system may be amplified by
substantially large factors if the linear operator is non-normal.12 Trefethen et al.10 addressed the
general concept of the non-modal stability theory and studied the transient behavior for plane
Poiseuille flow and plane Couette flow. Plane Poiseuille flow, plane Couette flow, and pipe Poiseuille
flow have been extensively studied in the framework of the non-modal theory.4, 11, 13 A common
conclusion of the these studies is that disturbance may experience a substantial amplification even for
exponentially damped modes because of the transient growth mechanism. The optimal disturbance
is in the form or close to the form of streaks. The so called “lift-up” effect is responsible for
the amplification of the optimal disturbance from streamwise vortices to alternating low and high
velocity streaks in the streamwise velocity component.14–16 This mechanism works by efficiently
extracting momentum from the mean flow and transferring it to the perturbation. Mathematically
speaking, the non-modal theory offers an explanation of why these streamwise streaks are so
common: even though these structures are not eigenmodes of the linearized flow problem, they are
pseudomodes.10

We should note that the results of non-modal theory are basically linear. Given the apparently
potent linear amplification of the optimal disturbances predicted by non-modal theory, interest was
naturally focused on how energy of the disturbance can be sustained after a substantial transient
growth. It is naturally believed that a sufficient growth of the optimal disturbances may trigger
strongly nonlinear mechanisms capable of sustaining turbulence. However, the kinetic energy of
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optimal disturbance predicted by the non-modal approach will eventually decay and the optimal
disturbance in the form of streamwise uniform vortices and streaks is not able to trigger transition.17

Waleffe18 proposed the “Self-Sustaining Process” (SSP) to understand how turbulence is maintained
at low Reynolds numbers. The SSP consists of three distinct phases: formation of streamwise streaky
flow by streamwise vortices, instability of streaky flow, and the regeneration of the streamwise
vortices. During streak breakdown, a set of nonlinear interactions re-energizes the streamwise
vortices, leading to formation of a new set of streaks, and completing the regeneration cycle. In the
SSP cycle, the mechanism of the transient growth is responsible for the formation of streaks. Even
though the non-modal analysis is basically linear, it may provide a lower bound of the Reynolds
number for the transition and predicts possible initial conditions most likely to be responsible for
the transition.

For many industrial applications, the control of flows of a yield-stress fluid requires knowledge
of determining the flow regime and in particular of the conditions for stability and transition to
turbulence. Consequently, as with Newtonian flows, studies of stability and transition for flows of
yield-stress fluids have remained a problem of practical interest over the years. Frigaard et al.19

studied the linear stability with respect to two-dimensional disturbances of plane Poiseuille flow of a
Bingham fluid using a modal approach. However, the results are incomplete because even symmetry
for the eigenfunction of the vertical velocity was imposed. Nouar and Frigaard20 performed a
nonlinear stability analysis based on the energy method. The results showed that the critical energy
Reynolds number, Re, increases with Bingham number, B, at least as fast as Re ∼ B1/2 as B → ∞.
In general, for non-Newtonian fluids Squire’s theorem is not valid. In these cases, three-dimensional
disturbance must be considered for stability problems. Frigaard and Nouar21 investigated the problem
of eigenvalue bounds for three-dimensional disturbances in plane Bingham-Poiseuille flow (PBPF).
The authors showed that three-dimensional linear stability can be achieved for a Reynolds number
bound of form Re = O(B3/4) as B → ∞. Recently, Nouar et al.22 investigated the stability of plane
Bingham-Poiseuille flow in the framework of the non-modal theory. The results showed that the
optimal disturbance consists of almost streamwise vortices as B � 1, whereas the optimal disturbance
becomes oblique for large B.

The works on the stability of Bingham fluid mentioned above focus on plane channel flows.
Escudier and Presti23 and Escudier et al.24 studied experimentally the flow structure of a yield
stress fluid in a cylindrical pipe. The result showed that asymmetrical flow behavior exists in
transitional pipe flow. Peixinho et al.25 presented an experimental study on laminar transitional
and turbulent flow in a pipe of a yield stress fluid, a shear thinning fluid without yield stress and
a Newtonian fluid. The results showed that the transition for the yield stress fluid takes place in
two stages. First, low frequency oscillations of the axial velocity are observed in the annular zone.
The experimental velocity profile departs slightly from the laminar theoretical solution. Then, with
increasing the Reynolds number, turbulent spots appear to fill up the whole section. Esmael and
Nouar26 showed that a robust nonlinear coherent structure characterized by two weakly modulated
counter-rotating longitudinal vortices exists in transitional flow. Esmael27 performed in his Ph.D.
thesis a three-dimensional linear stability analysis for a pipe flow of a yield-stress fluid described by
the Herschel-Bulkley model. It is found that the nonlinear coherent structure in Ref. 26 is similar to
the suboptimal disturbance in the form streamwise uniform streaks with the azimuthal wavenumber
m = 1 instead of the optimal disturbance with m = 2. Further experiments were performed by
Esmael et al.26 to show that this nonlinear asymmetric state is a weakly turbulent flow induced
by shear-thinning behavior. Recently, Güzel et al.28 investigated experimentally the transition to
turbulence of Hagen-Poiseuille flow of a yield stress fluid. Their results indicated that transition
occurs only when the Reynolds stresses of the flow equal or exceed the yield stress of the fluid,
i.e., the plug is broken before transition commences. Most of the works mentioned above focus on
experimental work on laminar and transitional flow in yield stress flow in a pipe. However, a careful
look at previous works indicates that the theoretical works on the stability of pipe Poiseuille flow
of a Bingham fluid are very limited. Sine a pipe Poiseuille flow has been believed to be linearly
stable, it seems that study of the modal linear stability of Bingham fluid flow is non-productive. In
the present paper, we will study the non-modal stability of Bingham-Hagen-Poiseuille flow (BHPF).
The purpose of the present paper is to understand the effect of the behavior of viscoplasticity on the
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non-modal stability, including response to excitations and optimal disturbances in the form of initial
conditions in Bingham-Hagen-Poiseuille flow.

The paper is organized as follows. In Sec. II, the mathematical formulation of the physical
model is presented. In Sec. III, the numerical method is presented. In Sec. IV, we present the results
and discussions. In Sec. V, we summarize the results and present the conclusions.

II. MATHEMATICAL FORMULATION

A. Physical model

A pipe flow of an incompressible Bingham fluid with a yield stress τ 0 and a plastic viscosity
μ0 is considered. The flow is driven by a constant pressure gradient along the axis of the pipe. As
shown in Fig. 1, R is the radius of the pipe, r0 is the radius of the unyielded zone, d = R − r0 is
the width of the yielded zone, and U0 is the maximum velocity of the base flow. To assess the effect
of yield stress on the instability of pipe flows, it is important to employ an appropriate length scale.
Because the flow is confined in the yielded zone, it is appropriate to use d as the length scale instead
of R. In the controlling equations, we choose the scales of length, time, velocity, and pressure as d,
d/U0, U0, and ρU 2

0 . The Navier-Stokes equations are expressed in dimensionless form as

∇·u = 0, (2)

∂u
∂t

+ u·∇u = −∇ p + ∇·τ , (3)

where p is the pressure, τ is the stress tensor, and u = uer + veθ + wez is the velocity vector, in
which u, v, w are the velocity components and er, eθ , ez are the unit vectors in the radial, the
azimuthal, and the axial directions.

The constitutive equations for Bingham fluids are

τ = 1

Re
μγ̇ ⇔ τ >

B

Re
,

γ̇ = 0 ⇔ τ ≤ B

Re
, (4)

where the effective viscosity is

μ = 1 + B

γ̇
, (5)

and γ̇ , τ are given by

γ̇ = [
1

2
γ̇i j γ̇i j ]

1/2, τ = [
1

2
τi jτi j ]

1/2. (6)

R

r0

x
y

r

unyie lde d zone

FIG. 1. Sketch of the geometry of a Bingham-Hagen-Poiseuille flow. (x, y, z) is a Cartesian coordinate system with z the
axial coordinate along the cylinder. A cylindrical coordinate system (r, θ ) is chosen at the cylinder centerline r = 0.
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The two dimensionless parameters B and Re are, respectively, the Bingham number and the Reynolds
number defined as

B = τ0d

μ0U0
, Re = ρU0d

μ0
. (7)

The basic flow considered is a steady one driven by an imposed pressure gradient −P0 in the
z-direction, i.e.,

p = −P0z. (8)

The velocity of the base flow is one-dimensional and can be written in the form of ū = (0, 0, W (r )).
The expression of the axial velocity profile W (r ) is

W (r ) =
{

1, 0 ≤ r < r∗,
B

2r∗ [1 − (r − r∗)2], r∗ ≤ r ≤ 1 + r∗,
(9)

where r* = r0/d denotes the position of the yield surface. Since the maximum value of velocity has
been used to scale the flow, it follows that

B = 2r∗. (10)

As B → 0, the unyielded zones is reduced to the centerline, and the velocity of the base state
approaches the Newtonian case. With the increase of B the unyielded zone widens towards the wall.
As B → ∞, the unyielded zone fills almost the whole pipe.

In experiments, it is usual to use the radius R as the length scale. The Bingham number and the
Reynolds number are defined as

B̃ = τ0 R

μ0U0
, R̃e = ρU0 R

μ0
. (11)

The relations between B and B̃, and Re and R̃e are

B̃

B
= R̃e

Re
= 1 + B

2
. (12)

As B → 0, B̃ ∼ B. As B → ∞, B̃ ∼ B2/2.

B. Linear stability analysis

Following the classic linear stability analysis, our starting point for the analysis of infinitesimal
disturbances (u′, p′) is to linearize the Navier-Stokes equation around the primary flow (ū, p̄). The
linearized perturbation equations in the yielded zones are as follows:

∇·u′ = 0, (13)

∂u′

∂t
+ u′·∇ū + ū·∇u′ = −∇ p′ + ∇·τ ′, (14)

where

τ ′ = 1

Re
(μ′ ¯̇γ + μ̄γ̇ ′), (15)

in which

μ̄γ̇ ′ = γ̇ ′ + B

γ̇ (ū)
γ̇ ′. (16)

The viscosity perturbation μ′ can be expressed as

μ′ = dμ

dγ̇
|u=ū γ̇ ′ = dμ

dγ̇
|u=ū Sgn( ¯̇γzr )γ̇ ′

zr . (17)
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It can be shown straightforwardly that

τ ′
i j = μ̄γ̇ ′

i, j f or i j �= r z, zr,

τ ′
i j = μt γ̇

′
i, j f or i j = r z, zr, (18)

in which μt is the tangent viscosity defined as μt = μ̄ + dμ
dγ̇

|u=ū ¯̇γ . For a non-Newtonian fluid, the
difference between μt and μ̄ identifies the departure from Newtonian viscosity. For a Bingham fluid,
it can be shown that

μt − μ̄ = − B

γ̇ (ū)
. (19)

At last we obtain the divergence of perturbed stress tensor as

∇·τ ′ = 1

Re
{μ̄∇2u′ + dμ̄

dr
er ·γ̇ ′ + (μt − μ̄)

∂γ̇ ′
zr

∂z
er + 1

r

∂r (μt − μ̄)γ̇ ′
r z

∂r
ez}.

(20)

For B > 0, it is assumed that the position of the yield surface undergoes an initially infinitesimal
perturbation, during which the unyielded zone persists, and then the perturbation develops from its
initial position. Some justification for this assumption can be found in Ref. 19. The yielded surface
can be linearly perturbed from its initial position,

rY = r∗ + h, (21)

in which rY denotes the yield surface position, h denotes the disturbance of the surface with respect
to the initial position. As the flow is periodic in the azimuthal direction and is assumed periodic in
the streamwise direction, all solutions to the linearized controlling equations can be expressed as
superpositions of complex Fourier modes of the form

[u′(r, θ, z, t), p′(r, θ, z, t), h(z, t)] = [û(r, t), p̂(r, t), h(t)]ei(nθ+kz), (22)

in which the streamwise wavenumber k ∈ R, and the azimuthal wavenumber n ∈ Z .
At last the flowing initial value problem is obtained:

Dû + û

r
+ in

r
v̂ + ikŵ = 0, (23)

∂ û

∂t
= −D p̂ − ikW û + μ̄

Re
[(D2 + D

r
)û − (

n2 + 1

r2
+ k2)û − 2in

r2
v̂]

+ 1

Re
[2Dμ̄Dû + (μt − μ̄)(ikDŵ − k2û)], (24)

∂v̂

∂t
= − in

r
p̂ − ikW v̂ + μ̄

Re
[(D2 + D

r
)v̂ − (

n2 + 1

r2
+ k2)v̂ + 2in

r2
û]

+Dμ̄

Re
[
in

r
û + Dv̂ − v̂

r
], (25)

∂ŵ

∂t
= −ik p̂ − ikW ŵ − ûDW + 1

Re
[(D2 + D

r
)ŵ − (

n2

r2
+ k2)ŵ] +

1

Re

B

γ̇ (ū)
[−(

n2

r2
+ k2)ŵ − ik(D + 1

r
)û], (26)

in which D ≡ ∂/∂r .
The boundary conditions at the pipe wall (r = 1 + r*) are given by the no-slip assumption

û = v̂ = ŵ = 0. (27)

Assuming k �= 0 or n �= 0, the boundary conditions at the unperturbed yield surface, r = r*, are

û = v̂ = ŵ = 0, (28)
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Dû = Dv̂ = 0, Dŵ = −hD2W. (29)

The boundary conditions for a plane Bingham-Poiseuille flow has been derived by Nouar et al.19

For a pipe Poiseuille flow of a Bingham fluid, derivation of the boundary conditions is similar to
that of the plane Poiseuille flow. The Dirichlet boundary conditions u′ = 0 at the yield surface come
from the fact that the unyielded plug zone is constrained to move as a rigid body according to the
Bingham model. With the help of velocity continuity across the yield surface, it follows that the
fluid particles at the yield surface satisfy

∂

∂θ
u′ = ∂

∂z
u′ = 0. (30)

The Neumann conditions come from linearization of the condition γ̇ (ū + u′) = 0, at the perturbed
yield surface, onto the unperturbed yield surface position.

Note that the equations and boundary conditions are valid for k �= 0 or n �= 0. For the case of k
= 0 and n = 0, it is easy to find that û = 0, v̂ = 0, and p̂ = 0. Thus, the stability problem reduces
to a one-dimensional problem for ŵ and h as

∂ŵ

∂t
= 1

Re
(D2 + D

r
)ŵ, (31)

at the pipe wall r = 1 + r*,

ŵ = 0, (32)

at the yield surface r = r*,

Dŵ = −hD2W, r∗ ∂ŵ

∂t
= 2(

d

R
)(

τw

τ0
)

B

Re
h. (33)

Now we will show that there is no positive eigenvalue for the one-dimensional problem. Using the
normal mode expansions, the disturbance can be written in the form of (ŵ, h) ∼ (ŵ(r ), h)eλt . Note
that λ is real, since ŵ is real. We assume that λ is a positive number. Non-trivial solution for ŵ are
ŵ = A[I0(

√
Reλr )K0(

√
Reλ(1 + r∗)) − I0(

√
Reλ(1 + r∗))K0(

√
Reλr )]. At last, we can obtain the

dispersion relation
√

Reλ[I ′
0(

√
Reλr∗)K0(

√
Reλ(1 + r∗)) − I0(

√
Reλ(1 + r∗))K ′

0(
√

Reλr∗)]

+D2W (r∗)

2

r∗λR

d

τ0

τw

Re

B
[I0(

√
Reλr∗)K0(

√
Reλ(1 + r∗)) − I0(

√
Reλ(1 + r∗))K0(

√
Reλr∗)] = 0,

(34)

in which I0 and K0 are the two linearly independent solutions to the 0 order modi-
fied Bessel’s equation. Note that D2W (r∗) < 0, K ′

0(x) < 0, and I ′
0(x) < 0 for all x > 0.

Thus, [I ′
0(

√
Reλr∗)K0(

√
Reλ(1 + r∗)) − I0(

√
Reλ(1 + r∗))K ′

0(
√

Reλr∗)] > 0, and [I0(
√

Reλr∗)
K0(

√
Reλ(1 + r∗)) − I0(

√
Reλ(1 + r∗))K0(

√
Reλr∗)] < 0. So, the left side of the dispersion rela-

tion is a positive number. This means there is no positive eigenvalue for the problem of k = 0 and
n = 0.

For the non-modal stability, the two-dimensional Reynolds stress mechanism and the lift-up
mechanism are responsible for the energy growth. These two mechanisms are absent in the case of
k = 0 and n = 0. So, for the non-modal stability problem, we do not consider the case of k = 0 and
n = 0.

III. NUMERICAL METHOD

The controlling equations (23)–(26) and the boundary conditions (27)–(29) can be expressed in
vector form

B
∂

∂t
q = A q, (35)
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in which q = (û, v̂, ŵ, p̂, h)T . Finally, we obtain the linear initial value problem

∂

∂t
q = −iL q, (36)

in which L = iB−1A .
In the present paper, we will examine the non-modal stability, including the response to external

excitations and initial conditions. Now we begin with the responses to external excitations. Suppose
a fluid system is driven by a signal of the form

qin(x, y, z, t) = exp(−iωt) Qin(x, y, z), (37)

in which ω is the complex frequency. Then the response qout (x, y, z, t) and the input signal
qin(x, y, z, t) satisfy the equation

∂

∂t
qout = −iL qout + exp(−iωt) Qin. (38)

From Eq. (38), we obtain the response qout in the form of

qout (x, y, z, t) = i(ωI − L )−1qin(x, y, z). (39)

Here, I is the identity operator. The solution operator (ωI − L )−1 is known as the resolvent. We
denote the maximum amplification of a disturbance at frequency ω by R(ω). R(ω) is equal to the
norm of the resolvent and expressed as

R(ω) = max
qin �=0

‖ qout ‖
‖ q in ‖ =‖ (ωI − L )−1 ‖ . (40)

Here, ‖ · ‖ denotes a norm on CN , “max ” denotes the maximum. An eigenvalue of L is a number
ω such that ‖ (ωI − L )−1 ‖→ ∞. Generalizing this result leads naturally to the definition of “ε
− pseudospectrum.”29 For any ε ≥ 0, the “ε-pseudospectrum” of L is defined as

�ε(L ) = {ω ∈ C : ‖(ωI − L )−1‖ ≥ ε−1}. (41)

Quest for maximum amplification of initial conditions is of particular interest in many hydro-
dynamic stability problems. For the linear system (36), the solution has the form

q(t) = exp(−iL t)q(0). (42)

The maximum amplification of initial condition can be described by the growth function G(t)
as

G(t) = max
q(0) �=0

‖ q(t) ‖2

‖ q(0) ‖2
=‖ e−iL t ‖2 . (43)

We should note that R(ω) and G(t) are related to the choice of definition of the norm ‖ · ‖. In the
present paper, we choose the norm ‖ · ‖ as the energy norm. For variable q, we will make use of a
scalar product based on energy density defined as

(q1, q2)M = π

∫ 1+r∗

r∗
r [û1û∗

2 + v̂1v̂∗
2 + ŵ1ŵ∗

2 ]dr, (44)

in which * denotes the complex conjugate. Based on this scalar product, the associated energy norm
is given as follows:

‖q‖2
M = (q, q)M = π

∫ 1+r∗

r∗
r [|û|2 + |v̂|2 + |ŵ|2]dr. (45)

For initial value problems in hydrodynamics, we may be interested in the energy growth rate at
the initial stage. The concept of numerical range can be used to link the operator to the initial energy
growth. The numerical range is defined as

W (A) = {x∗Ax : x ∈ CN , ‖x‖ = 1}, (46)
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in which A ∈ CN×N . The numerical abscissa of A is defined as

ω(A) = sup
z∈W (A)

Re(z) = lim
t→0

d

dt
‖eAt‖. (47)

The main application of numerical range is to the analysis of energy growth for initial value
problems. The numerical abscissa of −iL corresponds to the initial growth rate of the energy
growth function.11, 29

The spectral method can yield great accuracy for hydrodynamic stability problems. In the
present paper, a Chebyshev-collocation method is used to solve the eigenvalue problem. We first
transform the domains of [r*, 1 + r*] to the Chebyshev domain [ − 1, 1] by introducing

ζ = 2(r − r∗) − 1. (48)

The variables û and p̂ are expanded as

û =
N∑

n=0

ûnTn(ζ ), p̂ =
N∑

n=0

p̂nTn(ζ ), (49)

in which Tn denotes the nth Chebyshev polynomial.
Using the Chebyshev series (49) and substituting ∂/∂t with −iω, the governing equations can

be written in discrete form

Ax = ωBx, (50)

in which x is the vector consisting of the spectral coefficients of û and p̂, and A,B arise from
discretization of the controlling equations and boundary conditions. This system of equations is
required to solve for 4N + 5 unknowns. The numerical method for general eigenvalue problem in
the form Ax = ωBx has been described by Canuto et al. 30

The computation of response to external forcing R(ω) and the energy growth function G(t)
can be accomplished using an eigenvector expansion method in which eigenvectors are obtained
from the Chebyshev-collocation method. For the procedure of this approach, we refer the reader to
Refs. 4, 11.

IV. RESULTS AND DISCUSSIONS

For the stability problem of Bingham-Hagen-Poiseuille flow, the stability is determined by
two parameters, i.e., the Reynolds number Re and the Bingham number B. For the energy stability
problem, we will fix B and study the critical conditions of the Reynolds number. For non-modal
stability problem, we will study the amplification of optimal disturbance. For most of Newtonian
channel flows, the optimal disturbances are in the form of or close to streamwise independent vortices
and streaks. For streamwise independent disturbance (k = 0), the optimal energy growth has the
form of G(t) = Re2f(t/Re) for Newtonian channel and pipe flows.11, 17 For Bingham-Hagen-Poiseuille
flow, if the scaled time t/Re and velocity û/Re are introduced, it can be easily shown that the optimal
energy growth has the form G(t) = Re2f(t/Re, B) for a given azimuthal wavenumber n at k = 0. For
a given azimuthal wavenumber, results obtained for a particular Reynolds number can be scaled to a
different Reynolds number in a straightforward manner. Thus, when investigating the optimal energy
growth of the streamwise independent disturbance for the non-modal stability problem, we can fix
Re and examine the influence of B on the problem. In most of the results, we fixed the Reynolds
number at Re = 3000. It is convenient to convert the results of Re = 3000 to other values of Re
for streamwise independent disturbances. From the definition of B in Eq. (10), B is proportional to
the ratio r0/d. It is clear that small and large B correspond to the wide-gap and narrow-gap cases,
respectively. In our results, we choose B = 0.05, 0.5, 2, and 20. B = 0.05 is a wide-gap case,
B = 0.5 and 2 are two medium-gap cases, and B = 20 is a narrow-gap case.
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FIG. 2. The curves of the critical energy Reynolds number ReE versus the streamwise wavenumber k for various B.
(a) B = 0.05, (b) B = 0.5, (c) B = 2, (d) B = 20.

A. Condition for no energy growth

In this subsection, we are interested in the condition for which there is no growth of the
perturbation kinetic energy. Energy methods give conditions for no energy growth. For a linear
system d

dt x = −iL x, we define the energy density E =‖ x ‖2
2. There is no energy growth if and

only if all the eigenvalues of the anti-symmetric part of L , i.e., 1
2 (L − L H ) in which H denotes

the Hermitian transpose, lie in the lower half plane. For hydrodynamics stability problems, the
linear stability theory gives the sufficient conditions for instability, and the energy theory gives the
sufficient conditions for stability. The energy method shows that there is no energy growth if the
Reynolds number is less than the critical energy Reynolds number ReE.

We now examine the condition below which the kinetic energy of an infinitesimal disturbance
decays monotonically. Let σ be the leading eigenvalue of 1

2 (L − L H ). The condition with no
energy growth is given by the energy Reynolds number ReE such that σ = 0. For a given Bingham
number B, the global critical energy Reynolds number is given by Reg = min n, kRe(n, k), in which
σ (n, k, B, Re) = 0.

In Fig. 2, we plot the curves of the critical energy Reynolds number versus the streamwise
wavenumber for various azimuthal wavenumbers at some typical values of B = 0.05, 0.5, 2, and 20.
B = 0.05 and 20 are close to the wide-gap limit of r* → 0 and the narrow-gap limit of r* → ∞.
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FIG. 3. Global critical energy Reynolds number Reg versus the Bingham number B.

In Fig. 2(a) for B = 0.05, for the axisymmetric case of n = 0 the minimal critical energy Reynolds
number is about 200 at k ≈ 4. For non-axisymmetric cases of n > 0, the critical Reynolds number
increases with the streamwise wavenumber k. The lowest critical energy Reynolds number of Re
� 93.5 is achieved at the longwave limit of k = 0 by the disturbance of n = 2. For n ≥ 2, with
the increase of n the energy stability curves become more stable at all streamwise wavenumbers.
In the limit of zero yield stress, one recovers a Newtonian pipe Poiseuille flow. In this case, the
velocity profile of the base state of Bingham-Hagen-Poiseuille flow approaches the Newtonian case.
However, as B → 0 the linear stability problem of Bingham-Hagen-Poiseuille flow cannot reduce to
the Newtonian one because of additional boundary conditions arising from the perturbation of the
yielded surface. For Hagen-Poiseuille flow of a Newtonian fluid, the global lowest energy Reynolds
number of Re � 81.6 is associated with non-axisymmetric and streamwise dependent disturbances
with n = 1 and k � 1.1.4 However, for Bingham-Hagen-Poiseuille flow as B → 0 the most unstable
disturbance is associated with the streamwise uniform and non-axisymmetric disturbances with
n = 2.

In Fig. 2(b), the curves of the critical energy Reynolds number are plotted for a medium-gap
case of B = 0.5. In this figure, the structures of the curves of both the axisymmetric and the non-
axisymmetric cases are similar to those of B = 0.05 in Fig. 2(a). For B = 0.5, the disturbance with
n = 3 has the lowest critical energy Reynolds number of Re � 125.8 at k = 0. For n ≥ 3, the critical
energy Reynolds number increases with n at all k. In Fig. 2(c), the curves of the critical energy
Reynolds are plotted for a narrower-gap case of B = 2. In this figure, the lowest critical energy
Reynolds number of Re � 209.7 is given by the disturbance of n = 5 at k = 0. For n ≥ 5, the
minimum value of each curves occurs at k = 0 and the critical energy Reynolds number increases
with n at all k. For n < 5, the flow becomes more unstable with the increase of n at all k. Being
different from the curves of non-axisymmetric cases in Figs. 2(a) and 2(b), in Fig. 2(c) for n = 1
and 2 the streamwise wavenumber of the most unstable mode is non-zero. In Fig. 2(d), the curves
of the critical energy Reynolds number are plotted for the narrow-gap case of B = 20. In this figure,
the lowest critical energy Reynolds number of each curve is achieved by a streamwise non-uniform
disturbance. The global lowest energy Reynolds number is associated with non-axisymmetric and
streamwise dependent disturbances with n = 12 and k � 0.8. It is interesting to consider the narrow-
gap case of B → ∞. As B → ∞, substituting n/r ∼ β and 1/r → 0 into Eqs. (23)–(26), where β

is the spanwise wavenumber, the present problem reduces to the controlling equations for the plane
Bingham Poiseuille flow.22

In order to know the effect of B on the energy stability of the Bingham-Hagen-Poiseuille flow,
we plot in Fig. 3(a) the curve of Reg as a function of B, and in Fig. 3(b) the azimuthal wavenumber
and the streamwise wavenumber corresponding to the critical energy Reynolds number. At small
Bingham numbers, Reg slightly increases with B. At large Bingham numbers B ≥ 30, Reg increases
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with B at the order of Reg ∼ O(B1/2), which is consistent to the results of plane Bingham Poiseuille
flow.22 In Fig. 3(b), for B < 4 the most unstable disturbance is in the form of streamwise independent
streaks (k = 0). For B > 4, the streamwise wavenumber of the critical mode reaches the maximal
value at about B ∼ 10. For large B, k decreases with the increase of B. At small B < 0.4, the azimuthal
wavenumber n is 2. With the increase of B, n increase to 13 at B ≈ 30. As B increases further, n
decrease to 0 for B > 60. For small B < 4, the critical mode is in the form of streamwise independent
vortices. For medium 4 < B < 60, the critical mode is oblique. For large B > 60, the critical mode
is azimuthal uniform.

From Eq. (5), the viscosity of a Bingham fluid decreases with the increase of γ̇ . This shows that
the Bingham fluid is shear-thinning. It is interesting to compare the stability of Hagen-Poiseuille
flow of a Bingham fluid with other types of shear-thinning fluids. Recently, Liu and Liu31 studied
the linear stability of Hagen-Poiseuille flow of a shear-thinning fluid. The non-Newtonian viscosity
is described by the Carreau rheological law. The energy analysis showed that the non-axisymmetric
disturbance with the azimuthal wavenumber n = 1 has the lowest critical energy Reynolds number
at a finite streamwise wavenumber k for both the Newtonian and shear-thinning cases. For Bingham-
Hagen-Poiseuille flow, the azimuthal wavenumber of the most unstable mode changes with the
increase of B.

B. Transient behavior and non-modal stability

In the non-modal theory, two types of problems are of particular interest, i.e., response to
external excitations and transient energy growth of initial conditions. For the former, the norm of
the resolvent denotes the maximum amplification of external excitations; for the latter, the growth
function G(t) identifies the optimal growth of energy at time t.

1. Pseudospectrum and response to external excitations

The behavior of a non-normal operator depends on not solely the eigenvalues, but the structure
of ε-pseudospectra. As discussed in Sec. III, the resolvent norm represents the amplification of
response to external forcing. In order to know the response to external excitations, we plot the
ε-pseudospectra for several typical parameters.

We have computed the eigenvalue problem for a wide range of Reynolds and Bingham numbers.
The computational results show that all the eigenvalues are stable. In Fig. 4, the ε-pseudospectra
and the spectrum are plotted for streamwise non-uniform disturbances at Re = 3000 for the cases of
B = 0.05 and 20. For plane and pipe Poiseuille flows, the eigenvalues are located on three main
branches, called A, P, and S.32 In Fig. 4, being similar to the Newtonian one, the spectrum of Bingham-
Hagen-Poiseuille flow also consists of three main branches. The eigenvalues on the left branch, the
right branch, and the middle branch are A, P, and S modes. A modes, which have largest variation close
to the wall, have rather small phase velocities, whereas, the P modes, which have their maxima close
to the surface of the unyielded zone, have much higher phase speeds. The S modes, which are highly
damped, have a phase speed (cr =ωr/k) that is nearly equal to 2/3. Being different from the Newtonian
pipe Poiseuille flow, the S branch consists of spectra locating in two straight lines because the
eigenvalues of the Squire mode depart from the Orr-Sommerfeld modes in the S branch. As shown in
Figs. 4(a) and 4(b) for B = 0.05, the eigenvalues of Squire mode only slightly depart from the Orr-
Sommerfeld modes. As B increase to 20, in Figs. 4(c) and 4(f) the distance between the phase speeds
of these two modes increases. Comparing Figs. 4(c) and 4(d) with 4(a) and 4(b), we found that with
the decrease of B, the number of the eigenvalues of the A, P, and S branches increases.

In Fig. 5, we plot the spectrum and ε-pseudospectra for streamwise uniform disturbances for
B = 0.05 and B = 20. In these two figures, the structures of the pseudospectrum and eigenvalues are
qualitatively similar to the Squire mode of the Newtonian pipe Poiseuille flow. In Figs. 4 and 5, it is
found that the numerical range protrudes into the upper plane. This means that at the initial time the
energy of the disturbance is growing. Comparing Figs. 5(a) and 5(b) shows that the numerical range
protrudes deeper into the upper plane for B = 0.05 than for B = 20. This result shows that the initial
energy growth rate decreases with the increase of B.
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FIG. 4. Spectrum and pseudospectra for streamwise non-uniform disturbances in Bingham-Hagen-Poiseuille flow at
Re = 3000. (a) n = 0, k = 1, B = 0.05, (b) n = 1, k = 1, B = 0.05, (c) n = 0, k = 1, B = 20, (d) n = 12, k = 1,
B = 20. •, eigenvalues; dashed line −− −, boundary of the numerical range; solid lines −, contours from outermost to
innermost (ith) represent levels of the ε-pseudospectrum from ε = 10−1 to 10−i .

In the complex ω plane, we are particularly interested in the resonance of the real axis because
it corresponds to external excitations at real frequencies. In Fig. 6, we plot the maximum response
to spatially harmonic forcing at a wide range of frequencies for several typical cases at Re = 3000.
In Figs. 6(a)–6(d), the curves of the response of the streamwise uniform disturbances are plotted for
various Bingham numbers. In each figure, the disturbance is mainly amplified in the low frequency
range and decreases significantly in the high frequency range. At B = 0.05, 0.5, and 2, the azimuthal
wavenumbers of the most amplified streamwise mode are n = 1, 2, and 3. However, we found it
interesting that for a large Bingham number of B = 20 the azimuthal wavenumber of the most
amplified mode is n = 1. For B = 0.05, the azimuthal wavenumber of the most amplified mode is
the same as the Newtonian pipe flow. But the amplification in Fig. 6(a) for B = 0.05 is lower than
the Newtonian case in which R(0) of n = 1 is more than 104.31

In Figs. 6(e) and 6(f), the curves of the response of disturbance in the form of oblique waves
with k = 1.0 and various n are presented for B = 0.05 and 20. In these two figures, most of the curves
show that external forcing is significantly amplified in a limited band of frequency. As shown in
Fig. 4, the intersection region of A, P, S branches is very sensitive to disturbances. The inner
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FIG. 5. Spectrum and pseudospectra for streamwise uniform disturbances in Bingham-Hagen-Poiseuille flow at Re = 3000.
(a) n = 2, k = 0, B = 0.05, (b) n = 15, k = 0, B = 20. •, eigenvalues; dashed line −− −, boundary of the numerical range;
solid lines −, contours from outermost to innermost (ith) represent levels of the ε-pseudospectrum from ε = 10−1 to 10−i.

region of the plateau shape is mainly due to the resonance between the intersection region and
disturbances (off-resonance), and the boundary region is mainly due to the resonance of the left
and right branches (at resonance). Comparing Fig. 6(e) with 6(a) and 6(f) with 6(b) shows that
the maximum amplification of the streamwise uniform forcing is much higher than the streamwise
dependent case.

Fig. 6 shows the frequency of the most amplified disturbance changes with the streamwise
wavenumber. In order to know the maximum response to forcing with different streamwise wavenum-
bers, we define

Rmax = maxR(ω). (51)

In Fig. 7, we plot the curves of the maximum response of Rmax versus the streamwise wavenum-
ber k for different Bingham numbers at Re = 3000. As shown in these figures, the maximum energy
growth is always realized at k = 0. In Figs. 7(a)–7(c) for B = 0.05, 0.5, and 2, the maximum re-
sponse Rmax of each curve decreases with the increase of k. For B = 0.05, 0.5, and 2, the azimuthal
wavenumber of the most amplified mode is n = 1, 2, and 3. As shown in Fig. 7(d) for B = 20, the
maximum response of n = 0 and 1 does not decrease monotonically with k, and the largest response
is achieved by the mode with n = 1 at k = 0.

In order to find the azimuthal wavenumber of the most amplified external forcing, in Fig. 8
we plot the curves of the maximum response Rmax versus the Bingham number B for various n at
Re = 3000. In Fig. 8, in the range of B < 0.3, Rmax of n = 1 gradually decreases with the increase
of B, and Rmax of other modes is insensitive to B. For B < 0.3, the value of Rmax of n = 1 is higher
than the values of other curves. As B increases further, Rmax of each curve becomes more sensitive
to B and decreases drastically with the increase of B. For 0.3 < B < 0.8 , n = 2 or n = 3 becomes
the most amplified mode. It is interesting that for large B the value of Rmax of n = 1 almost does
not change with B, and the disturbance with n = 1 becomes the most amplified mode.

In order to know more about the physical mechanism of the response to external forcing, we
present the spatial structures of the optimal input of spatially harmonic forcing and the output for
B = 0.05, 0.5, and 2 at Re = 3000 in Fig. 9. As the optimal frequency is ω = 0, only plots of
input and output are needed. We have computed the velocity fields of the optimal input and output.
The result shows that the streamwise velocity components of the input disturbances are very weak
and the radial and azimuthal velocity components have most of the perturbation kinetic energy.
For the optimal output, the magnitudes of radial and azimuthal velocity components are smaller in
comparison with the streamwise component. For B = 0.05, 0.5, and 2, the azimuthal wavenumber
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FIG. 6. The curves of the optimal response R(ω) to spatially harmonic external forcing versus the real frequency ω at Re
= 3000. (a) k = 0, B = 0.05, (b) k = 0, B = 0.5, (c) k = 0, B = 2, (d) k = 0, B = 20, (e) k = 1, B = 0.05, (f) k = 1, B = 20.
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FIG. 7. The curves of the maximum response Rmax to spatially harmonic external forcing versus the wavenumber k at
Re = 3000. (a) B = 0.05, (b) B = 0.5, (c) B = 2, (d) B = 20.

of the most amplified disturbance is n = 1, 2, and 3. The velocity field uer + veθ associated with the
optimal input is plotted in Figs. 9(a), 9(c), and 9(e) for B = 0.05, 0.5, and 2. The flow of the input
field is characterized by pairs of counter-rotating vortices. The optimal output of the amplitude of the
streamwise velocity component w plotted in Figs. 9(b), 9(d), and 9(f) shows that the counter-rotating
vortices of the input result in streaks of output. The flow fields of the optimal input and output in
Fig. 9 imply that the lift-up effect is responsible for the amplification of the optimal input.

2. Transient growth and optimal disturbances

In this subsection, we will study the transient energy growth of the optimal disturbance in the
form of response to initial conditions. The aim is to provide physical insights into the transition
from laminar flow towards turbulence in Bingham-Hagen-Poiseuille flow. In plane channel and pipe
flows, one possible path from laminar to turbulence is the SV scenario in which transition is initiated
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FIG. 8. The curves of the maximum response Rmax versus the Bingham number B.

by optimal streamwise vortices. Schematically, the SV scenario is

(SV) streamwise vortices ⇒ streamwise streaks ⇒ streak breakdown ⇒ transition.

This scenario was shown to be pertinent in parallel shear flows, such as plane Couette and plan
Poiseuille flows,17 and boundary layers.32 The optimal perturbations in the form of two-dimensional

FIG. 9. Cross-stream (r-θ ) view of the optimal input and output flow fields of the response to spatially harmonic forcing
at Re = 3000. (a), (c), and (e): The velocity components of u and v of the input. (b), (d), and (f): Isolines of the velocity
component w of the output. (a) and (b) B = 0.05 and n = 1; (c) and (d) B = 0.5 and n = 2; (e) and (f) B = 2 and n = 3.
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FIG. 10. The curves of transient energy growth function G(t) versus time t for various azimuthal wavenumbers. (a) B = 0.05,
Re = 3000, (b) B = 0.5, Re = 3000, (c) B = 2 Re = 3000, (d) B = 20 Re = 6000.

streamwise rolls evolve into streamwise streaks via the lift up mechanism. The amplification of the
optimal disturbances can be sufficiently large that the disturbances may result in the modification of
the basic flow rendering it unstable to three-dimensional perturbations. This secondary instability,
also referred to as streak breakdown, leads to turbulence. The mechanism of the transient growth is
responsible for the formation of streaks.

We can define the energy growth maximized over time as

Gmax = G(topt ) = max G(t), t ≥ 0. (52)

If the Reynolds number is less than the critical energy Reynolds number Reg, then G(t) ≤ 1 for
all time. In this case, Gmax = 1 and topt = 0. If the Reynolds number exceeds the linear critical
Reynolds number Rec such that the operator L has an unstable eigenvalue, then Gmax → ∞ at
topt → ∞. If Reg < Re < Rec, the flow is linearly stable but has a transient energy growth. For
Bingham-Hagen-Poiseuille flow, Rec is infinite. When examining the characteristics of the transient
growth, we only need to consider the case of Re > Reg.

In Fig. 10, the curves of maximum response to initial conditions are plotted for streamwise
uniform disturbances with various azimuthal wavenumbers for different B. In Fig. 10, each curve
shows that the disturbance experiences a rapid transient growth and then decays after topt because of
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the effect of viscosity. Being similar to Newtonian plane and pipe Poiseuille flows, for streamwise
uniform disturbances the lift up effect is responsible for the energy growth.15, 16 For the Newtonian
pipe Poiseuille flow, the optimal energy growth is achieved by the streamwise uniform disturbance
with n = 1.17 At Re = 3000, the optimal energy growth of Hagen-Poiseuille flow is Gmax ≈ 649.1
at a specific time topt ≈ 148.5. However, as shown in Fig. 10(a) for B = 0.05 the optimal energy
growth of Gmax ≈ 522.5 is achieved by the disturbance with n = 2 at a specific time topt ≈ 87.6.
This result shows that as B → 0, the optimal energy growth of Bingham-Hagen-Poiseuille flow is
lower than Hagen-Poiseuille flow because of the presence of an unyielded zone. In Fig. 10(a), the
disturbances of the modes of n = 3 and 4 reach the maximum energy growth more rapidly than the
mode of n = 2. The energy growth of the optimal mode with n = 1 is lower than that of n = 2, but
the optimal time topt of n = 1 is larger than that of n = 2. After the optimal time, it is found that the
energy growth of the mode with n = 1 damps more slowly than all other modes.

In Fig. 10(b) for B = 0.5, the optimal energy growth of Gmax ≈ 277.4 is achieved by the
disturbance with n = 3 at topt ≈ 60.2. For n < 3, the energy growth of the optimal disturbance damps
more slowly than n = 3. For n > 3, both the optimal energy growth Gmax and the optimal time topt

decrease with the increase of n. With the increase of B, the azimuthal wavenumber n of the optimal
disturbance increases. In Figs. 10(c) and 10(d), for B = 2 and 20 the azimuthal wavenumbers of the
optimal disturbances are n = 5 and 16, respectively.

In order to know the optimal energy growth for streamwise non-uniform disturbances, we
plot the curves of Gmax versus the streamwise wavenumber k for different Bingham numbers. In
Figs. 11(a) and 11(b) for B = 0.05 and 0.5, the maximum energy growth of each curve is realized at
k = 0 and Gmax decreases with the increase of k. This means at small Bingham numbers the optimal
disturbances are in the form of streamwise uniform vortices and streaks. In Figs. 11(c) and 11(d)
for B = 2 and 20, the maximum energy growth of each curve is achieved by a disturbance with a
non-zero streamwise wavenumber. This result means that for large Bingham numbers, the optimal
disturbances are in the form of oblique waves.

In Fig. 12, we plot the maximum energy growth and the corresponding streamwise and azimuthal
wavenumbers of the optimal disturbance versus the Bingham number. In Fig. 12(a), for small values
of B ≤ 0.1, Gmax slightly decreases with the increase of B. For medium value of 0.1 < B ≤ 1, Gmax

becomes more sensitive to B and gradually decreases with the increase of B. For sufficiently large
values of B > 1, it is found that the maximum energy growth behaves closely as Gmax ∼ B−1. In
Fig. 12(b), it is found that the azimuthal wavenumber of the optimal disturbance increases with B.
The reason is that the radial size and the azimuthal size of the input vortices and output streaks
should be comparable for all B. For large Bingham numbers, we speculate that the BHPF behaves
like the PBPF. We can link the azimuthal wavenumber of the optimal disturbance of BHPF to PBPF.
For BHPF, the azimuthal wavenumber of the optimal response to initial conditions can be estimated
by n ≈ (2B + 1)β/2, in which β is the spanwise wavenumber of optimal disturbance for PBPF.
For BHPF, the azimuthal wavenumber of the optimal disturbance is n = 5 at B = 2. The estimated
value of spanwise wavelength is 3.33 for BHPF. This result is very close to the result for PBPF in
which β ≈ 3.11 at B = 2.22 In Fig. 12(b), in the range of B < 1 the streamwise wavenumber of
the optimal disturbance is zero. In this case, the optimal disturbances are in the form of streamwise
uniform vortices and streaks. For medium values of 1 < B < 10, the streamwise wavenumber k of the
optimal disturbance increases with the increase of B. For sufficiently large value of B, the streamwise
wavenumber k of the optimal disturbance is close to 1.4. For B > 1, the optimal disturbances are in
the form of oblique waves.

In Fig. 13, we plot the flow fields of the optimal disturbance at the initial time t = 0 and the
optimal time t = topt for different Bingham numbers. In Figs. 13(a)–13(d) for B = 0.05 and 0.5,
at the initial time t = 0 and the optimal time t = topt, the flow fields are characterized by two
counter-rotating vortices and streaks. These flow structures of the initial problem are very similar
to that of the input-output problem in Fig. 9. The lift up effect is responsible for the energy growth
of the streamwise uniform disturbance. In Figs. 13(e) and 13(f) for B = 2, the flow fields are in
the form of oblique streaks. For streamwise dependent disturbances, both the lift up effect and
the two-dimensional Reynolds stress mechanism33 are responsible for the transient growth of the
disturbances.
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FIG. 11. The maximum transient energy growth Gmax versus the streamwise wavenumber k. (a) B = 0.05, Re = 3000,
(b) B = 0.5, Re = 3000, (c) B = 2, Re = 3000, (d) B = 20, Re = 6000.
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FIG. 12. (a) The maximum transient energy growth Gmax and (b) corresponding azimuthal and streamwise wavenumbers
versus the Bingham number B at Re = 3000.
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FIG. 13. The cross-stream (r-θ ) view of the optimal input and output flow fields of the response to initial conditions at
Re = 3000. (a), (c), and (e): The velocity components of u and v of the input. (b), (d), and (f): Isolines of the velocity
component w of the output. (a) and (b) B = 0.05 and n = 2; (c) and (d) B = 0.5 and n = 3; (e) and (f) B = 2 and n = 5.

For the problem of response to external forcing, the optimal disturbance is always in the form
of streamwise uniform streaks. The azimuthal wavenumber of the optimal disturbance can be n = 1,
2, and 3. However, for the problem of response to initial conditions, for large Bingham numbers the
optimal disturbances are in the form of oblique waves. The azimuthal wavenumber of the optimal
disturbance increases with B.

V. CONCLUSIONS

In the present paper, we have investigated the linear stability in Bingham-Hagen-Poiseuille flow
using the energy method and the non-modal stability theory. We focus on the effect of yield stress
on the stability of the flow.

We investigated the critical condition of the energy Reynolds number ReE below which there is
no energy growth for both axisymmetric and non-axisymmetric disturbances. The results of energy
stability analysis show that both axisymmetric and non-axisymmetric disturbances can experience an
energy growth at the initial time. For small Bingham numbers, the critical condition is determined
by a streamwise uniform disturbance. For sufficiently large values of the Bingham number, it is
determined by a streamwise non-uniform disturbance. As B → 0, the critical condition is reached by
the mode with the azimuthal wavenumber n = 2 and the streamwise wavenumber k = 0. This result
is different from the Newtonian pipe Poiseuille flow in which the global lowest energy Reynolds
number is associated with the non-axisymmetric disturbance with the wavenumbers of n = 1 and
k �= 0. It is found that the global critical energy Reynolds number Reg increases with the increase
of B. At sufficiently large Bingham numbers, the global critical energy Reynolds number behaves
closely as Reg ∼ B1/2.

In the non-modal stability analysis, we focus on the response to external excitations and initial
conditions. The response to external excitations is characterized by the ε-pseudospectrum. For
Bingham-Hagen-Poiseuille flow, both axisymmetric and non-axisymmetric external forcing can be
amplified by a rather large factor. However, the amplification of response to axisymmetric external
forcing is much lower than that of the non-axisymmetric one. The most amplified forcing is always
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in the form of streamwise uniform vortices at the frequency of ω = 0. For B < 1, the maximum
amplification decreases with the increase of B. For sufficiently large B, the maximum amplification
becomes insensitive to B. For small B, the azimuthal wavenumber of the most amplified mode is
n = 1. For B < 1, with the increase of B the azimuthal wavenumber of the most amplified mode can
increase to n = 2 or 3. As B exceeds 1, the azimuthal wavenumber of most amplified mode is always
n = 1.

We have studied the transient energy growth of the optimal disturbance in the form of initial
conditions. The results show that even though all the eigenvalues of Bingham-Hagen-Poiseuille flow
are stable, the disturbances also can be amplified substantially. For small B, the optimal transient
energy growth is achieved by streamwise uniform vortices and streaks. The lift up effect is responsible
for the transient energy growth. For sufficiently large B, the optimal disturbance is in the form of
oblique waves. Both the lift up effect and the two-dimensional Reynolds stress mechanism are
responsible for the transient energy growth. At small B, the maximum value of the optimal transient
energy growth Gmax slightly decreases with the increase of B. At large B, Gmax decreases as the order
of B−1. With the increase of B, the azimuthal wavenumber of the optimal disturbance increases. The
azimuthal wavenumber of the optimal disturbance can be estimated by n ≈ (2B + 1)β/2, in which
β is the spanwise wavenumber of optimal disturbance for the plane Bingham-Poiseuille flow.

We also compared results of the case of B = 0.05 to the Hagen-Poiseuille flow. The result shows
that as B → 0 Bingham-Hagen-Poiseuille flow is more stable than Hagen-Poiseuille flow for both
the energy stability and non-modal stability problems. Moreover, the azimuthal wavenumbers of the
optimal disturbance in the form of initial conditions are different for these two cases.
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