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This paper aims to develop an integrated method to extract elastic–plastic parameters from a single
instrumented spherical indentation curve. The expression of unloading work is chosen to be
combined with the previous work [P. Jiang, T.H. Zhang et al, J. Mater. Res. 24(3), 1045 (2009)].
An extensive numerical study was performed to examine the effectiveness of the method. Refitting
Jiang’s similarity solution based on the numerical study was also performed to simplify the form of
the expression and improve the accuracy of the elastic–plastic parameters extracted. The results
show that the error of our solution was less than 65%. We also examined its sensitivity by
assessing levels of artificial error introduced into the testing parameters used in the method.
These results show that this method can provide reasonable estimates of the elastic–plastic
parameters for most common metals.

I. INTRODUCTION

In mechanical analysis, metallic materials are commonly
modeled by the elastic-Hollomon power-law hardening
hypothesis, in the form of

r ¼ Ee e#ey
� �

r ¼ ken ¼ Ee1�n
y en e > ey

� � :

�
ð1Þ

This form contains three material parameters: the elastic
modulus E, the yield strain ey, and the hardening exponent n.
Traditionally, uniaxial tension tests are often used to
determine these three parameters, in which specially shaped
specimens such as dog-bone specimens are needed.

Instrumented indentation tests (IIT) have been recog-
nized as versatile experimental techniques that can provide
microdestructive and in situ mechanical testing over
multiple scales. In these tests, a specially shaped specimen
is not required—only a smooth and flat surface is needed,
making the technique convenient and valuable for many
applications.

In microscale tests, inhomogeneity of the surface
(caused by factors such as different orientations of

crystal grains) creates discrepancies when tests are
performed over different locations on the surface. Thus,
the ability to determine elastic–plastic parameters from
a single test is necessary.
Sharp-tipped indenters have been used in IIT more

often than other types. However, some investigations
have shown that the stress–strain curve cannot be deter-
mined by a single sharp-tipped indenter test.1 Therefore,
various researchers have investigated test methods that use
spherical indenters.
Unfortunately, in most cases, the elastic–plastic param-

eters were studied separately. Only a few methods have
been used to determine elastic–plastic parameters from
a single load–depth curve.2–4

Some of the previous studies aimed to obtain the
stress–strain curve from a load–depth curve.2 However,
Liu et al. argued that it was impossible to obtain a unique
solution without specific type of work-hardening function.5

In other studies, many fitting parameters were involved.3

In this case, it was easy to determine the relationship
between the mechanical parameters and the measurement
parameters tested. However, these methods led to com-
plex formulations and the parameters lacked theoretical
background. Ogasawara et al. obtained elastic–plastic
parameters from measurements at several depths, a process
that mimics the dual/plural sharp indentation method.4
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However, the expressions for thismethod at different depths
were similar, which may lead to instability of the solution.
Moreover, the contact stiffness (used in Ogasawara’s
method) is determined by the differential method
(S ¼ dF=dhð Þjh¼hm

), so the accuracy needs to be discussed.
Based on the expanding cavity models, Jiang and

Zhang et al. developed a method for determining plastic
parameters.6 Two response parameters, the total work
Wt and the Meyer’s coefficient m, were used.Wt is related
to elastic–plastic parameters as

Wt ¼
2pEe2yc

3

3n nþ 1ð Þ
c

a

� �3n
� 1

� �
þ n� 1ð ÞpEe2ya3

3 nþ 1ð Þ
c

a

� �3
� 1

� �

þ pEe2yc
3

3
:

ð2Þ
where Wt is the total work, E is the elastic modulus, ey is
the yield strain, n is the hardening exponent, a is the radius
of the hemispherical hydrostatic core, and c is the radius of
the hemispherical hydrostatic plastic zone. m is related to
plastic parameters following

m ¼ ð�792:59n2 þ 1675:9n� 962:01Þe2y
þ ð68:187n2 � 112:78nþ 57:84Þey
� 1:4569n2 þ 2:8637nþ 1:7178 ;

ð3Þ

where m is the Meyer’s coefficient, ey is the yield strain,
and n is the hardening exponent.

When E is known, the plastic parameters can be cal-
culated by solving the two equations. To determine the
elastic–plastic parameters at the same time, Jiang et al.
combined the expressions for Wt and m with the
Oliver–Pharr method.7,8

However, the deviations of the yield strength and
elastic modulus obtained from certain indentation tests
were at 640% (mostly within 625%).7 To improve the
accuracy of the extracted elastic–plastic parameters, in this

paper we develop an integrated method. A new equation
related to the elastic–plastic parameters is combined with
Jiang’s method. By solving Eqs. (2) and (3) and the new
equation, all three elastic–plastic parameters can be
obtained.

II. FORWARD ANALYSIS

A. Unloading work

During the process of unloading, little plastic deforma-
tion occurs in the material being tested, and this behavior
has been confirmed by finite element analysis.9 Based on
this behavior, we assume in this paper that only elastic
deformation occurs during unloading. According to the
assumption of spherical symmetric of the strain distribution
in Johnson’s expanding cavity model,10 the stress p acting
on the edge of the spherical cavity [Fig. 1(b)] is reduced to
zero during unloading. This behavior means that an elastic
stress field caused by �p is added to the elastic–plastic
stress field at the end of loading. The elastic stress field can
be described by Lamé’s solution11

r�
r ¼ �p a3

r3

r�
h ¼ r�

u ¼ p a3

2r3

(
; ð4Þ

where a is the radius of the hemispherical hydrostatic core,
which can be described as a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh� h2

p
, where R is the

radius of the spherical indenter and h is the indentation
depth.

The spherical stress tensor (r�
m) and equivalent stress

(~r�) can be described as

r�
m ¼ 1

3rkk ¼ 1
3 r�

r þ r�
h þ r�

u

� �
¼ 0

~r� ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2 sijsij

q
¼ 3

2
a3

r3 p

8<
: ; ð5Þ

where rkk is the first stress invariant and sij is deviator
stress tensor.

FIG. 1. Expanding cavity model in which the deformation area below the indenter is divided into three parts. The effect of pile-up or sink-in is
equivalent to some fraction of hydrostatic core volume displaced by indenter. (a) The process of loading, which is equivalent to (b) the stress p acting
on the edge of the spherical cavity.
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The density of elastic energy (we) can be described as

we ¼
Z sij

0

1
2G

sijdsij þ
Z rm

0

3 1� 2mð Þ
E

rmdrm

¼ 1
2G

1
2
2
3

3
2
sijsij


 �����
sij

0

þ 3 1� 2mð Þ
E

1
2
r2
m

����
rm

0

¼ 1þ m
3E

~r2 þ 3 1� 2mð Þ
2E

r2
m ;

ð6Þ

where G is shear modulus, m is Poisson’s ratio, and E is
elastic modulus.

Substituting Eq. (5) into Eq. (6), the density of elastic
energy can then be described as

we ¼ 1þ m
3E

~r�ð Þ2 þ 3 1� 2mð Þ
2E

r�
m

� �2 ¼ 3 1þ mð Þ
4E

a6

r6
p2 :

ð7Þ
Integrating we over the plastic and the elastic zones

(Fig. 1) yields the unloading work,

We ¼
Z ‘

a
2prwedr ¼ p 1þ mð Þ

2E
a3p2 : ð8Þ

Based on the assumption of elastic unloading, the
unloading work Wu is the elastic energy released during
unloading. Thus,

Wu ¼ We ¼ p 1þ mð Þ
2E

a3p2 : ð9Þ

The stress p comes from the end of loading,

p ¼ �rrjr¼a ¼ � 2E
en�1
y

Z
~en

r


 �
dr

�����
r¼a

: ð10Þ

The relationship between the equivalent strain ~e and r
has been clarified by Yang et al.,12

~eþ 4 1� 2mð Þ
3en�1

y

~en ¼ 7� 8mð Þey
3

c3

r3
: ð11Þ

In Eq. (11), c is the edge of the plastic region, which can
be determined by6

c ¼
ffiffiffiffiffi
V
pey

3

q
¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 3R�hð Þ

3ey
3

q
j ¼ � 0:0077n2 þ 0:0534n� 0:0304ð Þ log2 ey

� �
þ 0:3717n2 � 0:1331n� 0:0774ð Þ log ey

� �
þ 0:4950n2 � 0:3016nþ 1:0627

8>>><
>>>:

;

ð12Þ

where R is the radius of the spherical indenter and h is the
indentation depth.

Obtaining an explicit equation of p is impossible by
substituting Eq. (11) into Eq. (10). We presume that the
second part of Eq. (11) on the left-hand side can be
ignored. Thus, Eq. (11) can be reduced to

~e ¼ 7� 8mð Þey
3

c3

r3
a : ð13Þ

To prove this simplification, we plot the relationship
between ~e and r described by Eqs. (11) and (13), respec-
tively (Fig. 2). This figure shows little difference between
the values of ~e calculated by Eqs. (11) and (13). Moreover,
in Eq. (10), the integration of ~e is used, which reduces the
difference between Eqs. (11) and (13).

Substituting Eq. (13) into Eq. (10), an explicit equation
for the unloading work can be obtained,

W�
u ¼ p 1þ mð ÞEe2ya3

2
7� 8m

3


 �n 2
3n

c3n

a3n
� 1


 �
þ 1

� �2
:

ð14Þ
To confirm the accuracy of this function, we performed

finite element calculations using ABAQUS for different
combinations of plastic parameters, with E 5 200 GPa,
ey ranging from 0.0015 to 0.006, and n ranging from
0.05 to 0.3. These parameters encompass those of most
metallic materials. The spherical indenter tip was assumed
to be rigid. Coulomb’s friction law was applied with a
value of 0.15 and Poisson’s ratio was fixed at 0.3. Both of
these parameters are minor factors in the indentation
analysis. The relationship betweenWu=W�

u and n is shown
by Fig. 3, here,Wu is the unloading work determined from

FIG. 2. Relationships between the equivalent strain ~e and r described
by Eq. (11) (~e0) and Eq. (13) (~e). For r=c > 0:4, the deviation is less than
62% and can be ignored.
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finite element analysis and W�
u is determined from

Eq. (14). The result appears to be a quadratic function,
which we fit to the following function:

Wu

W�
u

¼ 242:62ey � 4:6663
� �

n2 þ �268:30ey þ 3:1253
� �

n

þ 57:053ey þ 0:56730
� �

:

ð15Þ
The amended function of unloading work is

Wu ¼ k
p 1þmð ÞEe2ya3

2
7�8m
3

� �n 2
3n

c3n

a3n � 1
� �

þ 1
h i2

k ¼ 242:62ey � 4:6663
� �

n2 þ �268:30ey þ 3:1253
� �

n

þ 57:053ey þ 0:56730
� �

8>><
>>: :

ð16Þ

B. Similarity solution

The Meyer’s coefficient m can be determined by6

m ¼ log F0:6=F0:7ð Þ
log 0:6R=0:7Rð Þ ¼ 14:9 log

F0:6

F0:7


 �
; ð17Þ

where F0.6 andF0.7 are the indentation forces corresponding
to a 5 0.6R and a 5 0.7R, respectively.

The relationship between m and the plastic parameters
has been given by Jiang et al.5 as

m ¼ ð�792:59n2 þ 1675:9n� 962:01Þe2y
þ ð68:187n2 � 112:78nþ 57:84Þey
� 1:4569n2 þ 2:8637nþ 1:7178 : ð18Þ

This relationship appears somewhat complicated and
increases the instability of the results of reverse analysis.

Therefore, we refitted the similarity solution. According
to these results of finite element analysis, the Meyer’s
coefficients for various materials are shown in Fig. 4. A
simple linear relationship appears to describe the relation-
ship between m and the plastic parameters. The refitted
function of m is given as

m ¼ �70:436ey þ 2:1866
� �

nþ 49:355ey þ 1:8547
� �

:

ð19Þ

C. Integrated method

Equation (19) is the function of unloading work and the
Meyer’s coefficient. Combined with the function of
loading work determined by Jiang, the integrated method
used for determining elastic–plastic parameters of linear-
elastic power-hardening materials has been given as

Wt ¼ 2pEe2yc
3

3n nþ1ð Þ
c3n

a3n � 1
h i

þ n�1ð ÞpEe2ya3
3 nþ1ð Þ

c3

a3 � 1
h i

þ pEe2yc
3

3

Wu ¼ k
p 1þmð ÞEe2ya3

2
7�8m
3

� �n 2
3n

c3n

a3n � 1
� �

þ 1
h i2

m ¼ �70:436ey þ 2:1866
� �

nþ 49:355ey þ 1:8547
� � :

8>>><
>>>:

ð20Þ
For a given spherical indentation test with a specific

range of h/R (0 , h/R , 0.3), Wt and m can be obtained
from the loading process of load–depth curve and Wu can
be obtained from the unloading process. As an explicit
form of analytical expressions, the elastic–plastic param-
eters (E, ey, and n) can be solved using Newton’s iteration
method. To obtain a stable solution, we suggest that
Wu=Wt can be combined with m and E can be eliminated.
Thus, ey and n can be solved. Then, substitute ey and n into
the expression of either Wt or Wu to solve E.

FIG. 3. Relationship between Wu=Wu0 and n. By fitting the curve, the
correction factor of unloading work can be obtained.

FIG. 4. Relationship between the Meyer’s coefficient m and the
hardening exponent n according to the results of finite element analysis.
By fitting the curve, a new expression of the Meyer’s coefficient can be
obtained.
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III. REVERSE ANALYSIS

A. Effectiveness

Numerical indentation simulations are used to examine
the effectiveness of the reverse analysis algorithm.
Different plastic parameters for the materials were chosen
from the following range: ey of (1.5–6.0)� 10�3 and n of
0.05–0.3, which encompass most engineering metals.
Poisson’s ratio was fixed at 0.3. The elastic modulus
was fixed at 210 GPa because numerical simulations are
dimensionless and the effect of the elastic modulus is
linear. To make these simulations consistent with reality,
we chose to approximate the elastic modulus of steel by
using a value of 210 GPa.

Finite element method (FEM) was carried out using
ABAQUS to verify these methods. Combinations of param-
eters (E, ry, n) were inputted into FEM, and the load–depth
curves were used to obtain the indentation parameters
(Wt, Wu, m). The results are shown in Fig. 5, where E0,
ry0, and n0 represent the input, whereas E, ry, and n are the
results predicted by the reverse analysis. By comparing the
solution obtained by our new method with the input, it was
found that the maximum error is65%, which shows that our
new method is fairly reliable and has satisfactory accuracy.

B. Sensitivity

To determine the error of the test results caused by
errors in the test parameters, we introduced artificial error
into the testing parameters inputted into our method. The
elastic–plastic parameters in Sec. III. A were substituted in
Eq. (20), and theoretical values of the test parameters were

obtained. We then added relative error of 63% to Wt and
Wu, as well as 62% to m, and used those parameters with
artificial error to determine elastic–plastic parameters.
After this, we compared the determined elastic–plastic
parameters with the default values. The results of this
comparison are shown in Fig. 6. An error of 63% in
Wt and Wu leads to an error of ;67% in E and ry, as
well as 615% in n. An error of 62% in m leads to an
error ;65% in E, 620% in ry, and 650% in n.

C. Experimental verification

To confirm the reliability of our new method, we
selected ten typical materials (Iron DT4, Steel IF, Steel
Gr.D, Steel 1045, Al 2024, Al 5083, Al 7075, Copper
C11000, Brass C28000, and Ti Grade5), upon which we
performed ultrasonic immersion tests, tensile tests, and
indention tests.7 Ultrasonic immersion provided reference
elastic parameters, whereas the uniaxial tensile tests
provided reference plastic parameters.

1. Ultrasonic immersion tests

The elastic moduli of the ten materials were determined
by ultrasonic immersion tests performed at Research
Center for Non-Destructive Testing & Evaluation, Beijing
University of Technology.13 Cylindrical specimens with
diameters of ;20 mm and heights of ;31 mm were used.
The diameter D, height H, density q, and elastic modulus
E0 for each material are shown in Table I. Here, E0 is the
mean value of the results of our tests, which will be used
as a reference.

FIG. 5. Relative deviation of estimated elastic–plastic parameters using the integrated method from the input values. The maximum error is 65%.
This result supports that the integrated method is fairly reliable and has satisfactory accuracy.
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2. Uniaxial tensile tests

Three dog-bone specimens with square cross sections
(5 � 5 mm) made from each of the ten materials con-
sidered in this paper were tested by Jiang et al.7 The elastic
modulus E, yield strength ry0, and standard deviations for

each material are shown in Table II. ry0 is used as a
reference value in the present work.

These tensile tests show that some materials cannot be
fit well by the ideal power-law expression. It is difficult to
obtain an exact result for the hardening exponent by
fitting a different range of the r–e curve. Therefore, we
cannot give a reference value for the hardening exponent.
However, the mechanical parameters obtained by the
integrated method can be used to predict the r–e curve.
Thus, we can confirm the accuracy of the hardening
exponent by comparing the predicted r–e curve with
those obtained from the tensile tests.

3. Instrument indentation tests

Spherical indentation tests were performed using a
Nano Indenter XP (MTS) by Jiang et al.7 Averaged load–
depth curves from indentation tests are used in this paper.

IV. RESULTS AND DISCUSSION

For a given spherical indentation test, Wt andWu can be
calculated by integrating over the loading and unloading

FIG. 6. Sensitivity distribution observed when determining the elastic–plastic parameters with uncertainties of (a) 13% and �3% in Wt,
(b) 13% and �3% in Wu, and (c) 12% and �2% in m.

TABLE I. Dimensions of samples and mean elastic moduli obtained
from ultrasonic immersion tests.

Material D (mm) H (mm) q (g/cm3) E0 (GPa)

Steel Gr.D 31.53 21.02 7.82 209.11
Steel 1045 31.56 21.01 7.79 209.19
Steel IFa 51.71 0.93 7.84 203.30
Iron DT4 31.60 20.82 7.84 210.11
Al 5083 31.58 17.16 2.64 72.627
Al 7075 31.57 16.18 2.74 72.414
Al 2024 31.61 19.28 2.77 73.589
Ti Grade5 31.55 19.92 4.41 120.10
Copper C11000 31.55 21.11 8.91 129.08
Brass C28000 31.61 16.62 8.36 107.83

aSteel IF and other materials were tested at different times, so the sizes were
different. All the tests were performed in the same laboratory.
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portions of the load–depth curves, respectively. The value
of m can be obtained by fitting the gradient of the linear
regression of log F and log a for 0:2,h=R,0:3. Extracted
values of Wt, Wu, and m for each material are shown in
Table III. By substituting Wt, Wu, and m into Eq. (20), we
can calculate E, ry, and n, as shown in Table IV.

The relative deviations between the indentation tests
and the reference values for the ten materials are shown

in Fig. 7. In this figure, the reference value of E0 is
obtained from ultrasonic immersion tests, whereas that of
ry0 is obtained from uniaxial tensile tests. The elastic
modulus E is obtained by the Oliver–Pharr method
and the integrated method in this paper. The yield
strength ry is obtained by Jiang’s method and the
integrated method in this paper. The deviations for
the values calculated using the integrated method are all
within 613%. This result is better than those calculated
using the Oliver–Pharr method and Jiang’s method, from
which the deviations are about 625%.

The obtained parameters (E, ry, and n) can be used to
recreate the stress–strain curves by using the power-law
hardening relationship in Eq. (1). Figure. 8 shows com-
parisons of the predicted stress–strain curves by Jiang’s
method and those by the integrated method in this paper
with those obtained from tensile tests. The slope of the
linear portion represents the elastic modulus, the intersec-
tion of the linear and nonlinear portions represents the yield
stress, and the nonlinear portion represents the hardening
exponent.

Our integrated method is based on a type of linear-
elastic power-law hardening relationship. However,
it can be shown that not all of the materials tested
(such as Iron DT4) fit the power-law relationship.
Thus, attention should be paid when using this
method to evaluate unknown materials. More research
is needed to determine whether this method can be
used to judge the type of work hardening used on a
given material.

As suggested by Liu et al.,5 deep spherical indentation
is necessary to guarantee a unique solution. However, in
this case the scale of indentation may be equal to that of
one crystal grain, and the influence of crystal grains has
not been discussed.

TABLE II. Elastic moduli and yield strengths obtained from tensile
tests.7

Material

E0 (GPa) ry0 (MPa)

Mean SD Mean SD

Steel Gr.D 209.1 1.2 329.7 7.7
Steel 1045 205.1 0.85 394.0 12
Steel IF 185.4 0.73 149.7 2.7
Iron DT4 205.7 2.7 193.4 5.3
Al 5083 74.00 1.9 172.3 2.0
Al 7075 70.81 0.53 410.0 13
Al 2024 72.91 0.57 384.7 3.6
Ti Grade5 120.5 0.99 896.4 8.1
Copper C11000 111.6 3.2 301.5 4.2
Brass C28000 100.6 1.9 173.4 1.6

TABLE III. Wt,Wu, and m for each material obtained from indentation
tests.

Material Wt (�10�9 J) Wu (�10�9 J) m

Steel Gr.D 807.75 44.65 2.210
Steel 1045 943.91 75.03 2.780
Steel IF 358.78 11.90 2.139
Iron DT4 565.40 20.09 2.040
Al 5083 320.59 17.53 2.366
Al 7075 575.18 61.20 2.184
Al 2024 528.70 45.56 2.312
Ti Grade5 1211.7 172.6 2.341
Copper C11000 424.96 21.48 2.039
Brass C28000 394.88 34.76 2.242

TABLE IV. Mechanical parameters obtained by indentation tests with
the integrated method.

Material E (GPa) ry (MPa) n

Steel Gr.D 184.8 309.3 0.185
Steel 1045 219.7 393.6 0.183
Steel IF 200.3 163.1 0.136
Iron DT4 205.5 176.6 0.087
Al 5083 77.20 173.4 0.191
Al 7075 63.09 416.1 0.066
Al 2024 64.75 360.0 0.173
Ti Grade5 104.9 929.3 0.083
Copper C11000 126.2 334.2 0.015
Brass C28000 115.0 177.2 0.191 FIG. 7. Comparison of elastic modulus and yield strength from indenta-

tion tests and the reference values of ten materials.
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V. CONCLUSION

In this paper, we established an integrated method to
determine the elastic–plastic parameters of materials that
harden with a linear-elastic power-law relationship, by

combining a function of unloading work (rather than the
Oliver–Pharr method) and an existing method for plastic
parameters. Only one spherical indenter is needed in our
method, and thus the indentation test is greatly simplified.

FIG. 8. Comparison of true stress–strain curves obtained from indentation and tensile tests for ten metals.
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Ten typical metals were selected for experimental verifi-
cation, and the results of these experiments showed that
this method can provide reasonable estimates of the
elastic–plastic parameters for most common metals.
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