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ABSTRACT In the present research, a simple quasi-continuum model, the Cauchy-Born rule
model, is used to investigate the size effects of elastic modulus for fcc metals. By considering
a nanoplate model and calculating the strain energy for the nano-sized plate under tension and
bending, the relationship between the elastic modulus and the plate thickness is found. Size effects
of the elastic modulus are displayed by the relative differences of the elastic modulus between
the nano-sized plate sample and the bulk sample. By comparing the present results with those
of others, the effectiveness of the Cauchy-Born rule model in studying the size effects of material
properties are shown.
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I. INTRODUCTION
The micro-/nano-structured materials or materials at the micro-/nanoscale possess superior mechan-

ical, physical and chemical properties, and have been widely investigated[1–3]. At the micro-/nanoscale,
the size effects of mechanical properties of materials become prominent, and are usually considered to
be partly from the surface effect, and partly from the interior micro-structured effect which usually
is homogenized into the strain gradient effect displayed in the improved constitutive relations. The
surface effect is usually associated with the surface energy and becomes significant when a geometrical
parameter, called the specific surface area (ratio of surface area to volume for a sample), becomes
relatively high[4]. The strain gradient effect is important for both cases: sample with small size and
material with nano-scale structures, such as nanocrystalline materials[5].

A lot of researches have been performed to investigate the size-dependence of the Young’s modulus
and other mechanical properties. When measuring Young’s modulus variation for material tungsten
using the tensile test by considering a W/Cu multilayers, Villain et al.[6] found that the Young’s
modulus measured with the 3 nm-layer thick sample is obviously larger than that of bulk material,
while the Young’s modulus measured with the 24 nm-layer thick sample is smaller than that of the
bulk one. Similarly, for material Gold, Renault et al.[7] found that the Young’s modulus of a 260 nm-
thick film is 23% larger than that of the corresponding bulk material by using the tensile test. On the
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other hand, Miller and Shenoy[8] developed a simple theoretical model incorporating the surface stress
effect to predict the size-dependence of the effective elastic modulus for nano materials. Duan et al.
also took into account the surface/interface stress effect and showed the size-dependence of effective
elastic constants for nano-inhomogeneity solid[9]. Sun and Zhang[10] applied a semi-continuum model
to analysis of the size effect of plate-like nanostructured materials, and concluded that the predicted
Young’s modulus is dependent on the number of atom layers in the thickness direction. Furthermore, by
employing a combination model of molecular static and ab initio calculation, Zhou and Huang[11] found
that a solid surface may soften or stiffen elastically relative to its bulk counterpart, depending on the
competition between electron redistribution and lower coordination of the surface atoms. Dingreville
et al.[12] investigated the effect of surface energy on the elastic stiffness for nano-films, and their results
showed that the overall elastic stiffness of a nano-film may be either reduced or increased by as much as
60% relative to that of the bulk case when film thickness varies in the nanometer ranges, depending on
the material and surface orientations. They developed a semi-analytical method to compute the surface
elastic properties of crystalline materials[13]. Wang et al.[14], and Zhu and Zheng addressed the strain
gradient effect and modified the elastic properties of nanostructures[15].

The popularly used approaches for investigating the size effects mainly include the atomistic
simulation[11,16], the continuum methods[8,9,17], as well as the multi-scale analysis[18]. In the present
study, we intend to adopt a simple quasi-continuum model, the Cauchy-Born rule (CBR) model, to in-
vestigate the size effects of material properties. The CBR is usually used to develop the quasi-continuum
model in simulating the overall mechanical behavior for discrete systems, which is based on the early
work of Born and Huang[19] and then is further developed by Ericksen et al.[20], etc.. Based on the CBR,
Park and Liu[21] presented a multiple-scale method to couple atomistic simulation to continuum simula-
tion, which needed a much smaller computational cost than that of atomistic simulation. By proposing
a temperature-related Cauchy-Born rule implemented in nanoscale continuum approximations, Xiao
and Yang[22] studied temperature dependent physical phenomena of crystalline solids. Steinmann et
al.[23] investigated the validity of the CBR by direct comparison of continuum with atomistic simulation.
Recently, Park et al.[24–26] applied CBR to the lower-dimension surface problem and developed a surface
Cauchy-Born model.

In current investigations, the size effects of elastic modulus due to the surface effect are studied for
several typical fcc-metals by using the CBR model, and the relaxationprocess near the surface atom layers
of the nano-sized plate sample is considered. The size effects of the elastic modulus are characterized by
analyzing two basic mechanical issues, tension and bending of nano-sized plates. Moreover, in order to
compare the results of the elastic modulus of nano-sized plate samples with those of the bulk material
case, we also use the CBR model to analyze the bulk material case for three typical deformation states,
i.e., volume expansion, uniaxial tension and pure shearing, and to obtain three independent elastic
constants.

II. FUNDAMENTAL RELATIONS
2.1. The Cauchy-Born Rule

The Cauchy-Born rule is a quasi-continuum technique in describing the state of an atomic cluster,
which can get information from the atom system across to the continuum system[23]. By the CBR,
the distances between each atom and others before and after atom movement in an atomic cluster are
assumed to satisfy the relation

rij = F · Rij (1)

where Rij and rij are the vectors of distances between atom i and atom j in the initial state and
current state, respectively, F is the deformation gradient tensor of the atomic cluster, providing that
the atomic cluster can be homogenized as a continuum system. By means of both Eq.(1) and atomic
potential (see below), the CBR can be used to simulate material mechanical properties.

2.2. Potential

In the present research, we intend to use the AEAM (analytical embedded-atom method) potential[27]

to investigate the size effects of materials modulus. By the AEAM potential, the total energy Et (rij)
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Table 1. Parameters of AEAM for fcc metals from Ref.[27].

Parameter Au Pt Pd Cu Al

η 1.04 0.980 0.960 0.600 0.563
α/eV 0.0048 0.0051 0.00093 0.0032 0.00018
Ec/eV 3.81 5.84 3.89 3.49 3.39
F0/eV 2.91 4.64 2.59 2.32 2.75
k0/eV 1.1566 −0.5866 1.7549 1.4995 −1.1175
k1/eV −0.4510 1.4604 −0.6746 −0.6502 1.2149
k2/eV 0.0541 −0.5196 0.0767 0.0977 −0.3608
k3/eV 0.00006 0.0020 0.0001 −0.00006 0.0012
k4/eV 0.0803 0.134 0.118 0.0988 0.0502
k5/eV −0.9523 −0.7491 −1.443 −1.178 0.1116

of an atomic system can be expressed as[27]
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where Fi (ρi) is the embedding energy, φ (rij) is the pair potential, Mi (Pi) is the modified term, rij is
the distance between atom i and atom j in the current configuration, r1e is the nearest distance from
an atom to its nearest neighbors in equilibrium, Ω is the volume of one atom, ρe and Pe are the values
of ρ and P in equilibrium, respectively. Other parameters are presented in Table 1. The cutoff radius of
φ (rij) is rcφ = r5 +0.75 (r6 − r5), while for f (rij) it is rcf = r6 +0.75 (r7 − r6), ri is the distance from
one atom to its ith nearest neighbors. By employing the CBR and referring to Eq.(1), the total energy
can be expressed as Et (rij) = Et (F ; Rij). At the initial state, F = I, where I is the identity matrix.
The corresponding total energy can be expressed as Et = Et (F = I), while after the deformation,
given deformation gradient F , the total energy can be expressed as Et = Et (F ). Consequently, the
material strain energy can be expressed as

W = Et(F ) − Et(F = I) (4)

III. DETERMINATION OF ELASTIC CONSTANTS
In order to verify the validity of the CBR model in determining the elastic constants and to pave a

way for studying the size effects of elastic modulus in the next section, in this section we use the CBR
model to calculate the elastic constants for a bulk material case.

The material stress-strain relation in matrix form is given by

σi = Cijεj (i = 1, 6; j = 1, 6) (5)

whereCij is the elastic constant, σi and εi are stress and strain components, respectively. There are three
independent non-zero elastic constants: C11, C12, C44, for fcc metals. According to the elasticity theory,
these constants can be determined by three independent equations corresponding to three deformation
states, volume expansion, uniaxial tension and pure shearing.
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In the case of volume expansion[28], the unit cell is expanded uniformly along the three coordinate
directions, while bulk modulus K can be expressed as

K = V0

(
∂2Et

∂V 2

)
V0

(6)

where Et is the potential function, V0 and V = V0 (1 + εV )
3

are the initial and current volumes of the
cell, respectively, εV is the average strain.

In the case of uniaxial tension, the unit cell is only stretched along the direction of the lattice d,
and C11 can be calculated by

C11 =
1

d0

(
∂2Et

∂d2

)
d0

(7)

where d0 and d = d0 (1 + εT) are the initial and current crystal constant, respectively, and εT is the
tensile strain. According to the characteristics of the cubic crystal, C12 can be obtained by

C12 =
1

2
(3K − C11) (8)

In the case of pure shearing, C44 can be found via

C44 =
1

d3

(
∂2Et

∂θ2

)
θ0

(9)

where θ is the shear angle.
In the present investigation, the corresponding deformation gradients F for three deformations states

(volume expansion, uniaxial tension, and pure shearing) can be expressed respectively as follows:

F expand =

⎡⎣1 + εV

1 + εV

1 + εV

⎤⎦ (10)

F tension =

⎡⎣ 1 + εT
1

1

⎤⎦ (11)

F shear =

⎡⎣1 θ
1

1

⎤⎦ (12)

where the applied external strain should be chosen to maintain elastic deformation of the system,
(−0.6%∼0.6%) being taken in the present research.

In the present calculations based on the CBR model, the results of elastic constants for five fcc-
metals, Au, Pt, Pd, Cu and Al, are presented in Table 2. Other scholars’ theoretical and experimental
results[29–32] are also given in Table 2 for comparison. The theoretical results by others[29,30] are based
on an improved lattice mechanical model and embedded-atom-method, respectively. It can be seen
from Table 2 that the present results agree well with those of others, especially with the theoretical
results[30] and the experimental results[31]. The relative error between them is within 5%, while for Al
the relative error is a little larger than other metals, which may be caused by the choice of the empirical
atomistic potential, polynomial fitting accuracy and so on. From Table 2, through comparison of the
present results based on the very simple CBR model with those based on theoretical models[30] and
experiments by others, clearly the CBR model is an effective method of determining the elastic constants
of materials.

IV. SIZE EFFECTS OF ELASTIC MODULUS
For micro-/nano-structured materials or materials at the micro-/nanoscale, such as nanowire,

nanoplate, etc., the material properties are different from those of bulk material cases due to sur-
face effects. In the present research, we use the CBR model to investigate the size effects of elastic
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Table 2. Elastic constants for several typical fcc-metals (eVÅ−3)

Fcc-metals Elastic constants Present Others’ results Experiments

Au

C11 1.198 0.938[29], 1.163[30] 1.144[31], 1.260[32]

C12 1.015 0.804[29], 0.981[30] 0.994[31], 1.060[32]

C44 0.265 0.439[29], 0.263[30] 0.281[31], 0.284[32]

Pt

C11 2.216 2.006[29], 2.169[30] 1.894[31], 2.169[32]

C12 1.671 1.525[29], 1.569[30] 1.706[31], 1.569[32]

C44 0.457 0.694[29], 0.478[30] 0.425[31], 0.478[32]

Pd

C11 1.380 1.513[29], 1.463[30] 1.363[31], 1.446[32]

C12 1.099 1.088[29], 1.100[30] 1.150[31], 1.100[32]

C44 0.432 0.541[29], 0.445[30] 0.406[31], 0.445[32]

Cu

C11 1.049 0.851[29], 1.063[30] 1.044[31], 1.101[32]

C12 0.763 0.749[29], 0.766[30] 0.775[31], 0.781[32]

C44 0.468 0.468[29], 0.474[30] 0.475[31], 0.511[32]

Al

C11 0.633 0.737[8] 0.714[31]

C12 0.392 0.389[8] 0.387[31]

C44 0.160 0.229[8] 0.198[31]

modulus. The present results will be compared with other scholars’ results based on the atomistic
calculations and theoretical models.

Elastic modulus E can be calculated by analyzing the nano-sized plate under tension and bending,
respectively. For a nanoplate model, the specific surface area is relatively high, so that the surface effects
become important. The major difference between the surface atoms and bulk atoms is that the status of
atoms for both cases differs from atom to atom; bulk atoms are fully coordinated, while surface atoms
are under-coordinated. Therefore, surface relaxation must be considered for the nanoplate model. The
strain gradient effect[33] is not considered in the present research. The nano-sized plate is assumed to be
homogeneous and infinite length in-plane, compared with its small thickness, only several nanometers,
as shown in Fig.1(a). It is also assumed that relaxation occurs only in the direction perpendicular to
the plane[13]. The relaxation process is as usual one of considering an initial configuration of surface
atom layer, and calculating the minimum energy of several atom layers near the surface, one can realize
a relaxed surface. After relaxation and near a typical surface, atom layer spaces a0i relative to bulk
atom layer space a0 are slightly changed, as shown in the sketch Fig.1(b) and in Table 3 for several
typical fcc-metals. Because of the surface relaxation process, the initial distance between atom i and
atom j near surface, Rij , adopted in the calculation using the CBR model, varies slightly relative to
the internal atoms.

4.1. Plate under Tension

For the nano-sized plate, the coordinate axes are located as follows, the directions 1, 2, 3 coincide
with the [100], [010], [001] crystal orientations, respectively. The plate considered in the present research
is subjected to the uniaxial tension along the direction 1, as shown in Fig.2(a). The deformation gradient
corresponding to the tension is shown in Eq.(11). The strain energy density w is given by

Table 3. Atom layer spaces near surface after surface relaxation, a0i, compared with the bulk atom layer space a0 for
several typical metals. Present results are compared with the results from Ref.[30]

Ratio Au Pt Pd Cu Al

a01/a0

0.940 0.941 0.972 0.998 0.974

0.937[30] 0.931[30] 0.956[30] 0.986[30]

a02/a0

1.008 1.002 0.998 0.998 1.014

1.005[30] 1.006[30] 0.999[30] 0.997[30]
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Fig. 1. (a) Schematic geometry of the nano-sized plate, and periodic boundary conditions are used in the ‘x1’ and ‘x3’
directions; (b) atom layer spaces near surface after surface relaxation, a0i, is compared with the bulk atom layer space,
a0.

Fig. 2. (a) Schematic geometry of the plate in uniaxial tension (one dimensional deformation mode); (b) schematic geometry
of the plate in bending.
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w =
1

2
λEε2T (13)

whereE is the elastic modulus, λ = (1 − υ)/[(1 + υ) (1 − 2υ)], and υ = C12/(C11 + C12) is the Poisson’s
ratio. E can be calculated by

E =
1

λ

∂2w

∂ε2T
(14)

It is worth noting that w contains the surface effects. And E can be also calculated by Ec =
C11 − 2C2

12

/
(C11 + C12) in continuum mechanics without considering surface effects.

4.2. Plate under Bending

For the plate bending case, as shown in Fig.2(b), ρ is the radius of curvature of the deformed plate,
M is an applied moment, and the relations between the coordinates x in the current configuration and
X in the reference configuration can be expressed with the curvature κn (κn = −1/ρ) as

x1 =

√
1 + 2κnX2 sin(κnX1)

κn

, x2 =

√
1 + 2κnX2 cos(κnX1) − 1

κn

, x3 = X3 (15)

The deformation gradient F is calculated by F = ∂x/∂X:
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⎤⎥⎥⎥⎥⎦ (16)

The strain energy can be expressed asW = EILκ2
n/2, where I is inertia moment of plate cross-section

and L is the length of the plate in direction 1. Thus E can be calculated by

E =
1

IL

∂2W

∂κ2
n

(17)

With the strain kept at zero in direction 3, the plane-strain case, E can also be calculated by
Ec = C11 − C2

12/C11 in continuum mechanics without considering the surface effects.
The strain energy or strain energy density versus the applied strain can be fitted by a quadratic

polynomial in elasticity, based on Eqs.(14) and (17), and E can be obtained for different thicknesses of
nanoplates in tension and bending and compared with the conventional results based on the classical
mechanics model.

In order to investigate the size effects of material properties at nanoscale, such as the size effect of
elastic modulus, we applied the above Eqs.(1)-(4) to Eqs.(14)-(17), and obtained the elastic constants
and variation relations of the elastic modulus.

V. RESULTS AND DISCUSSION
A series of elastic modulus values are obtained for different plate thicknesses. The relative difference

of the elastic modulus, (E − Ec) /Ec, between the nanoplate result E considering surface effect and the
conventional bulk result Ec without surface effect is shown in Fig.3. Five types of fcc-metals, Al, Au,
Pt, Pd and Cu, are investigated in the present research. To ensure the applicability of the CBR model,
the plate thickness is taken greater than five layers of atoms. Thepresent results are also compared with
those of others based on both the atomistic calculation and the surface stress theoretical model[8,34],
respectively.

The relative difference of elastic modulus based on the surface stress theoretical model[8] is expressed
as follows:

For plate tension case,
D −Dc

Dc
=
E − Ec

Ec
= 2

S

Ec

1

h
(18)

where D = Eh and Dc = Ech.
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Fig. 3. The relative differences of elastic modulus with nano-plates thickness for Al: comparison between present model
predictions with atomistic simulation[8] and the surface stress theoretical model[8].

For plane-strain plate bending case,

D −Dc

Dc
=
E − Ec

Ec

= 6
S

Ec

1

h
(19)

where D = EI and Dc = EcI, S is surface elastic modulus obtained from atomistic simulations[8,34],
and the S values for the above five typical metals are shown in Table 4. Also the values of the coefficients,
2S/Ec and 6S/Ec, are presented in Table 5, while for Al are both in the plane-strain case.

Table 4. S Values for several fcc-metals along (001) crystal face (eVÅ−2)

S Al Au Pt Pd Cu

Relaxed −0.495[8]
−0.329[34]

−0.555[34]
−0.402[34]

−0.260[34]

Table 5. Values of coefficients in surface stress theoretical model[8] for fcc-metals (Å)

Coefficient Al Au Pt Pd Cu

2S/Ec −1.86 −2.47 −1.43 −1.97 −1.28

6S/Ec −5.58 −5.85 −3.49 −4.75 −3.15

In Figs.3(a) and (b), the relative differences of elastic modulus varying with the nanoplate thickness
for single crystal Al are shown, which are based on the plate tension and bending analysis models,
respectively. Obviously, the elastic modulus is size-dependent and decreases with a decrease in the
thickness of nanoplates at the nanoscale, and when thickness of plate is less than 4 nm it drops sharply.
For a very thin plate (about 1 nm), the relative difference of elastic modulus is about 20% in the tension
case, while it is about 40% in the bending case. In the tension case, the relative difference of elastic
modulus is about 5% when the thickness is at about 4 nm, then it gradually tends to zero with increasing
thickness. In the bending case, the relative difference of elastic modulus approaches zero very quickly
with an increase in the plate thickness.

The present results are compared with those of others based on the surface stress theoretical model
(described in Eqs.(18) and (19)) and the atomistic calculations[8], respectively, as shown in Figs.3(a)
and (b). By comparing Figs.3(a) with (b), we can find that the results based on the CBR model, a
very simple model, are very consistent with those based on atomistic simulations. For the plate tension
case, the results based on all three models are consistent with each other, while for the plate bending
case the result based on the surface stress theoretical model[8] deviates from the predictions based on
the other two models. However, the predictions of the relative difference of elastic modulus based on
three models have the same trends. It has been found from a comparison with the atomistic simulation
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Fig. 4. The relative differences of elastic modulus with nano-plates thickness for other metals in both tension and bending
cases: comparison between present model predictions with the surface stress theoretical model[8].

model that the CBR model, as a simple quasi-continuum model, is effective in describing the size effect
of material properties.

In order to verify the reliability of the CBR model, further investigation is made on the size effects
of elastic modulus for other single crystal metals, such as Au, Pt, Pd and Cu. For these materials, we
also investigate the relations of the relative difference of elastic modulus with nanoplate thickness by
considering the same typical mechanics problems as before, plate tension and bending.

The relative differences of elastic modulus between the present results based on the CBR model
considering the surface effect and the conventional results without considering the surface effect are
shown in Figs.4(a), (b), (c) and (d), for single crystal metals Au, Pt, Pd and Cu, respectively. Shown in
the figures are the results for both the tension case and the bending case, respectively, as are comparisons
of the present results based on the CBR model with those based on the surface stress theoretical model[8].
From Figs.4(a) and (b), the predicted relative differences of elastic modulus for Au and Pt based on
both models are very consistent. Obviously, for both materials, two different results of relative difference
of elastic modulus are obtained in the tension case and the bending case, respectively. However, from
Figs.4(c) and (d), for materials Pd and Cu, similar results of relative difference of elastic modulus based
on the CBR model are obtained for each material in the tension case and the bending case, respectively,
and the result is consistent with the prediction of the surface stress theoretical model[8] in the tension
case. The prediction result based on the surface stress theoretical model[8] in the bending case has
a considerable deviation from the results based on the CBR model. This is because first, the CBR
is a homogenization technique which assumes all atoms move in the same deformation gradient. For
simple tensile deformation gradient, the CBR can well simulate the atomic motion; while the bending
deformation gradient is relatively complex, the CBR could not be used to simulate the atomic motion
very well as deviation of the results may occur. Second, the results may have something to do with the
property of the metals. In addition, the results of Au and Pt in Figs.4(a) and (b) agree well with the
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theoretical model, while the results for both Pd and Cu in Figs.4(c) and (d) do not agree well with
those of the theoretical model.

VI. SUMMARY
A very simple quasi-continuum model, the CBR model, has been used to study the size effects of

elastic modulus of nano-scale materials. Based on the CBR model and the analytical embedded-atom
potential, the elastic constants for several typical fcc-metals, Au, Pt, Pd, Cu and Al, have been predicted
by considering three deformation states. The size effects of the elastic modulus for the above metals
have been also investigated using the CBR model with the surface effect taken into account to analyze
the plate tension and plate bending of two simple problems. The results obtained from the relative
modulus based on the present method agree well with those based on the atomistic simulation and the
surface stress theoretical model.

In the present research, through the use of the CBR model to investigate the size effects of the
elastic modulus for several typical fcc-metals considering the surface effect, the effectiveness of the CBR
model is shown. One can expect to use the simple model to describe the size effects of other material
properties in the future.
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