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SUMMARY

A fifth-order accurate multistep weighted essentially non-oscillatory (WENO) scheme is constructed in this
paper. Different from the traditional WENO schemes, which are designed to have (2r � 1/th order accuracy
in the smooth regions directly from r candidate stencils, the new scheme is constructed through (r � 1/
weighting steps. In each step, only two neighboring stencils are used to construct the intermediate fluxes (or
the final flux), which are only one order higher than the fluxes obtained from the previous step. Henrick’s
mapping function is used in each step to satisfy the sufficient condition of fifth-order convergence for a
fifth-order WENO scheme; hence, the new scheme is fifth-order accurate in smooth regions. The distinctive
advantage of the new scheme is that it can improve the accuracy by one order higher than the traditional
WENO schemes at transition points (connecting a smooth region and a discontinuity point); and hence, it
improves the accuracy in the regions near discontinuities. Numerical examples show that the new scheme is
robust and is less dissipative than the traditional fifth-order WENO schemes. Copyright © 2014 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The weighted essentially non-oscillatory (WENO) schemes have been developed and widely used
in the past two decades. The basic idea of WENO scheme was firstly proposed by Liu et al. [1],
in which the smoothest stencil of the ENO schemes [2] is replaced by a convex combination of
the reconstructions on all candidate stencils. In order to obtain higher-order accuracy in smooth
regions and keep the ENO property around discontinuities, the design of the weight of each stencil is
very important.

Jiang and Shu [3] analyzed that an r th order ENO scheme can only be converted into an .r C
1/th order WENO scheme by using the smoothness indicator introduced by Liu et al. [1]. And
then a classical fifth-order WENO scheme with a general framework for designing the smoothness
indicators and weights was proposed by Jiang and Shu [3]. Henrick et al. [4] pointed out that the
smoothness indicators of Jiang and Shu fail to improve the accuracy order of WENO scheme at
critical points, where the first derivatives are zero. A mapping function is proposed by Henrick et al.
[4] to obtain the optimal order at critical points. Recently, Borges et al. [5] suggested to use the whole
five-points stencil to devise a smoothness indicator of higher order than the classical smoothness
indicator proposed by Jiang and Shu [3] and developed the WENO-Z scheme. On the other hand, a
class of WENO schemes higher than the fifth order are designed by Balsara and Shu in [6] and by
Gerolymos et al. in [7]. Wang and Chen [8] proposed optimized WENO schemes for linear waves
with discontinuities. Martin et al. [9] proposed a symmetric WENO method by means of a new
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candidate stencil; the new schemes are 2r th-order accurate and symmetric and less dissipative than
Jiang and Shu’s scheme.

Most of the aforementioned WENO schemes are designed to have (2r � 1/th or 2r th [9] order of
accuracy in the smooth regions directly from r th ENO schemes. Their focus is mainly on improv-
ing the accuracy in smooth regions, especially at the critical point (f

0

i D 0/. Hence, for a solution
containing discontinuities, these methods cannot obtain the optimal accuracy at transition points,
which connect a smooth region and a discontinuity point. For example, Shen and Zha [10] ana-
lyzed the existing fifth-order WENO schemes and found that the accuracy of those schemes is
of only third-order at transition points. This shortcoming can affect the general performance of
the fifth-order WENO schemes, for example, the reduced accuracy in simulating the local sepa-
rated flow induced by shock waves and the excessive numerical diffusion in the flows with shock/
turbulence interaction.

Because the solution at transition points is still smooth, ideally, the discretization accuracy of its
first-order derivative can achieve fourth order if and only if a smooth stencil with five points is used.
In other words, a fourth-order numerical flux can be constructed by using a smooth stencil with
four points. In [10], Shen and Zha introduced two fourth-order fluxes combined with an estimation
of smoothness/nonsmoothness of two adjacent four-point stencils to improve the accuracy. In early
works [11], Shen et al. indicated that the smoothness indicator ISk of Jiang and Shu’s WENO
scheme does not satisfy the condition ˇk D D.1 C O.�x2// at the critical point (f

0

i D 0/ and
proposed a step-by-step reconstruction to avoid the strict condition. But the method does not satisfy
the necessary and sufficient conditions for fifth-order convergence [4] at critical point.

In this paper, on the basis of the analysis [10], a new method for constructing WENO scheme
is proposed. The idea of this method is to combine Henrick’s mapping function with the idea of
improving the accuracy of WENO-Z scheme one-by-one order. The distinctive advantage of the
new constructing method is that it can improve the accuracy of WENO scheme near discontinuities
without reducing the accuracy in smooth regions. Numerical examples show that the new scheme is
less dissipative than the aforementioned fifth-order WENO schemes.

2. THE NUMERICAL ALGORITHM

For the hyperbolic conservation law in the form

@u

@t
C
@f .u/

@x
D 0 (1)

the flux function f .u/can be split into two parts as f .u/ D f C.u/C f �.u/ with df C.u/=du > 0
and df �.u/=du 6 0. The semi-discretization form of (1) can be written as

dui .t/

dt
D �

1

�x
.hiC1=2 � hi�1=2/ (2)

where the numerical flux is hiC1=2 D h
C
iC1=2

C h�
iC1=2

. In this paper, only the positive part hC
iC1=2

is described, and the superscript ‘+’ is dropped for simplicity. The h�
iC1=2

is evaluated following the
symmetric rule about xiC1=2

2.1. Weighted essentially non-oscillatory schemes [3–5]

The flux of the fifth-order WENO scheme can be written as

hiC1=2 D

2X
kD0

!kqk (3)

where qk is the third-order flux on stencil S3
k
D .xiCk�2; xiCk�1; xiCk/8̂̂

<
ˆ̂:
q0 D

1
3
fi�2 �

7
6
fi�1 C

11
6
fi

q1 D �
1
6
fi�1 C

5
6
fi C

1
3
fiC1

q2 D
1
3
fi C

5
6
fiC1 �

1
6
fiC2

(4)
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The weight !k is constructed as

!k D
˛k

˛0 C ˛1 C ˛2
; (5)

with

˛k D
ck

."C ISk/p

ISk is the smoothness indicator on stencil S3
k

. In [3], Jiang and Shu proposed ISk as

ISk D

2X
lD1

Z xiC1=2

xi�1=2

�x2l�1
h
q
.l/

k
.x/
i2
dx (6)

Taylor expansion of (6) gives8̂̂
<
ˆ̂:
IS0 D

13
12
.fi�2 � 2fi�1 C fi /

2 C 1
4
.fi�2 � 4fi�1 C 3fi /

2

IS1 D
13
12
.fi�1 � 2fi C fiC1/

2 C 1
4
.fi�1 � fiC1/

2

IS2 D
13
12
.fi � 2fiC1 C fiC2/

2 C 1
4
.3fi � 4fiC1 C fiC2/

2

(7)

c0 D 0:3; c1 D 0:6, and c2 D 0:1 are the optimal weights, which generate the fifth-order upstream
central scheme. If f

0

i D 0, Equation (7) gives ISk D D.1CO.�x// and !k D ck CO.�x/; this
will degrade the convergence accuracy of the scheme [4, 5, 11].

Henrick et al. [4] implemented a detailed truncation error analysis of Jiang and Shu’s WENO
scheme and gave the necessary and sufficient conditions for fifth-order convergence of WENO
scheme as the following,

2X
kD0

Ak
�
!C
k
� !�k

�
D O

�
�x3

�
;

!˙k � ck D O.�x
2/:

whereAk is the coefficient of third-order term (�x3/ in the Taylor series expansion of qk to the fifth-
order upstream central approximation [4]. To satisfy the aforementioned conditions and improve the
accuracy of weights !k , a mapping function gk.!/ is defined in [4] as

gk.!/ D
!
�
ck C c

2
k
� 3ck! C !

2
�

c2
k
C !.1 � 2ck/

; (8)

and an improved WENO scheme (WENO-M) is constructed by using gk.!/ to generate new
weights. WENO-M can obtain fifth-order convergence at critical points.

Borges et al. [5] proposed a sufficient condition for the fifth-order WENO scheme,

!˙k � ck D O
�
�x3

�
; (9)

and introduced a parameter �5 as

�5 D jIS0 � IS2j

to construct a new smoothness indicator IS´
k

as

IS´
k
D

ISk C "

ISk C �5 C "
(10)

Using the IS´
k

to construct the WENO scheme(called as WENO-Z), the new weights can satisfy the
sufficient condition Equation (9) at critical points.

In all formulas, the parameter " is used to avoid the division by zero, " D 10�6 is used in [3], and
" D 10�40 is used in [4, 5]. p is chosen to increase the difference of scales of distinct weights at
nonsmooth parts of the solution.
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Figure 1. The sketch of transition point.

2.2. Accuracy analysis at transition point [10]

The analysis of fifth-order WENO schemes of Shen and Zha [10] shows that the accuracy of fifth-
order WENO schemes is reduced at the transition point from smooth region to discontinuous point
and vice versa. For completeness, the analysis is briefly introduced here. Figure 1 is taken as
an example.

Points i and i C 1 are two discontinuity points. Point i � 1 is called transition point in this paper.
At point i � 1, the stencil S5

.i�1/�1=2
D .xi�4; xi�3; � � � ; xi / is a smooth stencil; hence, h.i�1/�1=2

obtained by the process of WENO-Z or WENO-JS scheme is a fifth-order flux. However, for stencil
S5
.i�1/C1=2

D .xi�3; xi�2; � � � ; xiC1/, there is a discontinuity at stencil S32 D .xi�1; xi ; xiC1/, so

IS2 >> IS0; IS1

no matter whether WENO-Z or WENO-JS is used. For calculating the flux h.i�1/C1=2, it is easy
to find

!0 !
1

7
; !1 !

6

7
; !2 ! 0

Under the cases of �x ! 0, there are

h.i�1/�1=2 D
1

30
fi�4 �

13

60
fi�3 C

46

60
fi�2 C

9

20
fi�1 �

1

20
fi

and

h.i�1/C1=2 D
1

20
fi�3 �

13

42
fi�2 C

41

42
fi�1 C

2

7
fi

Applying Taylor series expansion, there is

1

�x
.h.i�1/C1=2 � h.i�1/�1=2/ D f

0

i�1 CO.�x
3/ (11)

That is, at the transition point i � 1, the fifth-order WENO scheme only gives third-order accuracy.
Similarly, it can be proven that the (2r�1/th-order WENO scheme only gives r th-order accuracy

at points i � r C 2; i � r C 3; � � � ; i � 1. For example, the seventh-order WENO scheme only gives
fourth-order accuracy at points i � 2; i � 1.

Because the solution at transition point is still smooth, ideally, the discretization accuracy of its
first-order derivative can achieve fourth order if and only if a smooth stencil with five points is used.
In other words, a fourth-order numerical flux can be constructed by using a smooth stencil with
four points.
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To improve the accuracy at transition point, in [10], a new method is constructed as

hiC1=2 D

8̂<
:̂
q40 ; if �04 6 min.ISk/ and �14 > min.ISk/

q41 ; if �04 > min.ISk/ and �14 6 min.ISk/

hWENO�Z ; otherwise

(12)

where ´
q40 D

1
12
.fi�2 � 5fi�1 C 13fi C 3fiC1/

q41 D
1
12
.�fi�1 C 7fi C 7fiC1 � fiC2/

are two fourth-order fluxes, which can be written as the combination of the third-order fluxes qk in
Equation (4) as the following, ´

q40 D c
4;0
0 q0 C c

4;0
1 q1

q41 D c
4;1
0 q1 C c

4;1
1 q2

The constant coefficients c4;l
k
.k D 0; 1I l D 0; 1/ are determined as

c
4;0
0 D 0:25; c

4;0
1 D 0:75I c

4;1
0 D 0:5; c

4;1
1 D 0:5:

�04 and �14 are defined as �04 D jIS0 � IS1j and�14 D jIS1 � IS2j, respectively.
Although the estimation of a transition point introduced in (12) is not so accurate, the scheme

(12) is effective to improve the accuracy at transition point and keep the ENO property [10].

2.3. Multistep weighting method for WENO scheme

Different from the aforementioned method (12), in this paper, a new constructing method for WENO
scheme is proposed by combining Henrick’s mapping function [4] and the idea of improving the
accuracy of WENO-Z scheme one-by-one order [11]. Figure 2 can be used to illustrate the method.

In the first step, two fourth-order weighted fluxes are constructed as the following,´
h40 D !

4;0
0 q0 C !

4;0
1 q1

h41 D !
4;1
0 q1 C !

4;1
1 q1

(13)

Figure 2. Multistep constructing process.
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The weights !4;l
k
.k D 0; 1I l D 0; 1/ are calculated by combining the method of WENO-Z scheme

and mapping function,

!
4;l
k
D

gk

�
 
4;l
k

�
P
k

gk

�
 
4;l
k

� ;  4;l
k
D

˛
4;l
kP

k

˛
4;l
k

; ˛
4;l
k
D c

4;l
k

 
1C

� l4
ISlCk C "

!
; � l4 D jISlC1 � ISl j:

The optimal weights c4;l
k
.k D 0; 1I l D 0; 1/ are the same as in Equation (12).

In the second step, the final fifth-order weighted flux is obtained as the following

hiC1=2 D !0h
4
0 C !1h

4
1 (14)

where !k D
gk. k/P
k

gk. k/
;  k D

˛kP
k

˛k
; ˛k D c5

k

�
1C �5

IS2kC"

�
; �5 D jIS2 � IS0j:c

5
0 D 0:4 and

c51 D 0:6 are the optimal weights, which make the linear combination of the two fourth-order linear
fluxes (q40 and q41 in Equation (12)) to the fifth-order upstream central flux.

Now, let us analyze the accuracy of the new methods (13) and (14). Using Taylor expansion,
there is

� l4 D jf
0

i f
000

i j�x
4 CO.�x5/;

so there is

 
4;l
k
D

´
c
4;l
k
CO.�x2/; if f

0

i ¤ 0

c
4;l
k
CO.�x/; if f

0

i D 0 and f
00

i ¤ 0

Applying the property of mapping function gk.!/

gk

�
 
4;l
k

�
D c

4;l
k
C

�
 
4;l
k
� c

4;l
k

�3
c
4;l
k
�
�
c
4;l
k

�3 C � � � ;
it is easy to find that

!
4;l
k
D

´
c
4;l
k
CO

�
�x6

�
; if f

0

i ¤ 0

c
4;l
k
CO

�
�x3

�
; if f

0

i D 0 and f
00

i ¤ 0
(15)

Similarly, there is

!k D

²
c5
k
CO.�x9/; if f

0

i ¤ 0

c5
k
CO.�x3/; if f

0

i D 0 and f
00

i ¤ 0
(16)

That means, in the aforementioned two steps, the sufficient condition of (9) is always satisfied no
matter whether f

0

i ¤ 0 or f
0

i D 0 and f
00

i ¤ 0. Hence, there is no accuracy reducing in the
multistep process; the method of (13) and (14) is fifth-order accurate in smooth regions.

If xi is a transition point (for example, the discontinuity is between xiC1 and xiC2/, then in the
first step, the fourth-order flux h40 is obtained from Equation (13). In the second step, the final flux
hiC1=2 is approximated as hiC1=2 ! h40 because of IS2 >> IS0 and !1 ! 0 in Equation (14).
Hence, the fourth-order accuracy at the transition point is obtained.

It should be noted that the calculation of (13) and (14) is more expensive than WENO-M and
WENO-Z schemes because six weights are calculated by using the techniques of both WENO-M
and WENO-Z schemes. However, because the multistep processes are only necessary near discon-
tinuities, some efficient methods can be used to reduce the expensive calculation. For example,
using a shock-detecting method to detect nonsmooth stencil, a hybrid scheme can be constructed
as following,

hiC1=2 D

´
h
present

iC1=2
; if stencil S5i is a non-smooth stencil

hother
iC1=2

; otherwise
(17)
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Table I. Comparison of accuracy, T = 2.

Scheme N L1 error L1 order L1 error L1 order

WENO-Z 40 0.217102e-3 — 0.677211e-4 —
80 0.649393e-5 5.063 0.237405e-5 4.834

160 0.204882e-6 4.986 0.785200e-7 4.918
320 0.748874e-8 4.774 0.250232e-8 4.971
640 0.364893e-9 4.359 0.779779e-10 5.004

WENO-M 40 0.210766e-3 — 0.672781e-4 —
80 0.648426e-5 5.023 0.225867e-5 4.897

160 0.204671e-6 4.986 0.720345e-7 4.971
320 0.640983e-8 4.997 0.226830e-8 4.989
640 0.200631e-9 4.998 0.710974e-10 4.996

Present 40 0.203332e-3 — 0.714827e-4 —
80 0.649369e-5 4.969 0.229242e-5 4.963

160 0.204635e-6 4.988 0.724031e-7 4.985
320 0.640982e-8 4.997 0.227140e-8 4.994
640 0.200642e-9 4.998 0.711126e-10 4.997

where, hpresent
iC1=2

denotes the present multistep WENO scheme, hother
iC1=2

can be other schemes con-
structed within the stencil S5i , for example, different WENO schemes, upstream central scheme, and
compact schemes. In [12], Shen and Zha proposed a parameter-free shock-detecting method, that
is, if jIS2 � IS0j > min.ISk/, then S5i is regarded as a nonsmooth stencil. This shock-detecting
method is verified to be robust and effective [12]. Following the idea of Equation (17), it is promising
to develop various high efficiency and high-order low diffusion schemes.

3. NUMERICAL EXAMPLES

In this paper, the fourth-order Runge–Kutta-type method [13] is used for the time integration.

3.1. Linear transport equation

The linear transport problems are controlled by²
@u
@t
C @u

@x
D 0; �1 6 x 6 1

u.x; 0/ D u0.x/; periodic boundary
(18)

1. Initial solution u0.x/ D sin
�
�x � sin.�x/

�

�
This solution has two critical points. Table I gives the errors and accuracy order. It can be

seen that, for the smooth solution, the present scheme obtains the same fifth-order accuracy as
WENO-M and WENO-Z schemes.

2. Initial solution

u0.x/ D

²
� sin.�x/ � 1

2
x3; �1 < x 6 0

� sin.�x/ � 1
2
x3 C 1; 0 < x 6 1 (19)

Figure 3(a) shows the numerical solutions with N = 200 at t D 6. It can be seen that, near the
discontinuity, the present method obtains more accurate solution than WENO-Z and WENO-
M schemes. Figure 3(b) provides the comparison of the present scheme and the seventh-order
WENO scheme (WENO-7) of Balsara and Shu [6]. As shown in this figure, the present scheme
is even more accurate than WENO-7 scheme near discontinuity. This agrees with the analysis
in Section 2.2, that is, at transition point i�1 (in the sketch Figure 1), both schemes are fourth-
order accurate, but at the point i � 2, WENO-7 scheme is only fourth-order accurate, whereas
the present scheme is fifth-order accurate.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:231–249
DOI: 10.1002/fld



238 Y. SHEN, L. LIU AND Y. YANG

x

u

-0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

exact
WENO-Z
WENO-M
present

0

-1

x

u

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

exact
WENO-7
present

(a)

(b)

Figure 3. Numerical results with the initial solution Equation (19), t = 6.

3. Initial solution

u0.x/ D

8̂̂̂
<̂
ˆ̂̂̂:

1
6
.G.x; ˇ; ´ � ı/CG.x; ˇ; ´C ı/C 4G.x; ˇ; ´// ; �0:8 6 x 6 �0:6

1; �0:4 6 x 6 �0:2
1 � j10.x � 0:1/j; 0 6 x 6 0:2
1
6
.F.x; ˛; a � ı/C F.x; ˛; aC ı/C 4F.x; ˛; a// ; 0:4 6 x 6 0:6

0; otherwise

(20)

where

G.x; ˇ; ´/ D e�ˇ.x�´/
2

; F .x; ˛; a/ D
p

max.1 � ˛2.x � a2/; 0/

the constants are taken as a D 0:5´ D �0:7; ı D 0:005, and ˇ D log 2=36ı2. The solution
contains a smooth combination of Gaussians, a square wave, a sharp triangle wave, and a half
ellipse. Figure 4(a) and (b) gives the comparison of the results of the fifth-order WENO-Z
scheme, WENO-M scheme, and the present method. The grid number is N = 200. It can be seen
that the new method improves the accuracy near discontinuities as well as at critical points. The
comparison of the present scheme and WENO-7 scheme is also given in Figure 5(a) and (b).
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Figure 4. (a) Numerical results with the initial solution Equation (20), t = 6. (b) Locally enlarged plot of
Figure 4(a).

Same as in the previous case, for the regions containing discontinuities as well as the ellipse
wave, the present scheme obtains more accurate solution than WENO-7 scheme.

3.2. Nonlinear transport equation

The nonlinear transport equation

@u

@t
C u

@u

@x
D 0; 0 6 x 6 2� (21)

is solved with initial and boundary conditions:

u0.x/ D 0:3C 0:7 sin.x/0 6 x 6 2�; periodic boundary:

The flux splitting f ˙ D .f ˙ au/=2 is applied, wheref D u2=2 and a D max.ui /. Figure 6
shows the results at t = 2 with grid number of N = 80. It can be seen that, near the shock, the
solution calculated by the present scheme is closer to the discontinuous solution than WENO-Z and
WENO-M schemes.
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Figure 5. (a) Numerical results with the initial solution Equation (20), t = 6. (b) Locally enlarged plot of
Figure 5(a).

3.3. One-dimensional shock tube problems

The one-dimensional Euler equations of gas dynamics is solved. The first-order global Lax–
Friedrichs flux [5, 6, 14] is used as the low-order building block for the high-order reconstruction of
various WENO schemes.

One-dimensional Euler equations are written as

@U
@t
C
@F
@x
D 0 (22)

where U D

2
4 ��u
�e

3
5 ;F D

2
4 �u�u2 C p
.�e C p/u

3
5 ; p D .� � 1/.�e � �u2=2/; � D 1:4.

1. Sod problem
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Figure 6. Numerical results of nonlinear transport equation (21), t = 2.

Figure 7. Density, Sod problem.

The initial conditions are

.�; u; p/ D

²
.1; 0; 1/; x < 0

.0:125; 0; 0:1/; x > 0

The solution with N=200 at t D 0:14 is given in Figure 7. It can be seen that, near shocks, the
present method is more accurate than both WENO-Z and WENO-M schemes.

2. Lax problem
The initial conditions are

.�; u; p/ D

²
.0:445; 0:698; 0:3528/; x < 0

.0:500; 0:000; 0:5710/; x > 0

The solution with N = 200 at t D 1:3 is given in Figure 8. As in the sod problem, the new
scheme is more accurate than the other fifth-order WENO schemes near shock waves.
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Figure 8. Density, Lax problem.

Figure 9. Density, Shu–Osher problem.

3. Shu–Osher problem
The initial conditions are

.�; u; p/ D

²
.3:857143; 2:629369; 10:33333/; when x < �4
.1C " sin 5x; 0; 1/; when x > �4

This case [15] represents a Mach 3 shock wave interacting with a sine entropy wave. The
results with N = 200 at time t D 1:8 are plotted in Figure 9. The ‘exact’ solutions are the
numerical solutions of WENO-Z scheme with grid points ofN D 2000. It can be seen that,
even in the smooth region, the present scheme are more accurate than WENO-Z and WENO-
M schemes. This indicates that, if the solution varies dramatically, the new method is less
dissipative than the other two schemes.
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Figure 10 gives the results of the present method with three different meshes of N = 200,
400, and 800. It can be seen that the results with N = 800 agree well with the ‘exact’ solutions.
It is also shown that the new method has good convergence behavior for complex problems.

4. Interacting blast waves
The initial conditions are

.�; u; p/ D

8<
:
.1; 0; 1000/; 0 6 x < 0:1
.1; 0; 0:01/; 0:1 6 x < 0:9
.1; 0; 100/; 0:9 6 x 6 1:0

The solution with N = 400 at t D 0:038 is plotted in Figure 11. The comparison demonstrates
that the present scheme can capture strong shock structures very well and is better than the
other schemes.

3.4. Two-dimensional advection equation

The two-dimensional advection equation²
@u
@t
C @u

@x
C @u

@y
D 0; �1 6 x; y 6 1

u.x; y; 0/ D u0.x; y/
(23)

is used to test the accuracy of the schemes in the 2D case. The equation (23) is semi-discretized as

dui;j .t/

dt
D �

1

�x
.hiC1=2;j � hi�1=2;j / �

1

�y
.hi;jC1=2 � hi;j�1=2/ (24)

where the numerical fluxes hiC1=2;j and hi;jC1=2 are constructed by the 1-D methodology along
the grid lines of x-wise and y-wise, respectively. The initial condition is u0.x; y/ D sin.�.xCy//,
and the periodic boundary conditions in both x-wise and y-wise are applied. Table II shows the
convergence rate of different schemes. For the smooth solution, three schemes achieve the fifth-order
accuracy as similar as in 1-D case.

3.5. Two-dimensional linear conservation law with variable coefficients

The two-dimensional linear conservation law with variable coefficients
@u

@t
C
@.�yu/

@x
C
@.xu/

@y
D 0; �1 6 x; y 6 1 (25)

Figure 10. Density, present method with different meshes, Shu–Osher problem.
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Figure 11. Density, interacting blast waves.

Table II. The accuracy in 2-D case, T = 2.

Scheme Nx �Ny L1 error L1 order L1 error L1 order

WENO-Z 20 � 20 0.342283E-03 — 0.214133E-03 —
40 � 40 0.102111E-04 5.067 0.637584E-05 5.746
80 � 80 0.314224E-06 5.022 0.199111E-06 5.680
160 � 160 0.979186E-08 5.004 0.622505E-08 5.658
320 � 320 0.305789E-09 5.001 0.194579E-09 5.653

WENO-M 20 � 20 0.314390E-03 — 0.210032E-03 —
40 � 40 0.995888E-05 4.980 0.636855E-05 5.625
80 � 80 0.312491E-06 4.994 0.199092E-06 5.644
160 � 160 0.977631E-08 4.998 0.622500E-08 5.650
320 � 320 0.305630E-09 4.999 0.194578E-09 5.652

present 20 � 20 0.312598E-03 — 0.201245E-03 —
40 � 40 0.995287E-05 4.973 0.635348E-05 4.985
80 � 80 0.312471E-06 4.993 0.199062E-06 5644
160 � 160 0.977603E-08 4.998 0.622479E-08 5650
320 � 320 0.305600E-09 5.000 0.194560E-09 5.651

with periodic boundary conditions is solved. The initial condition is chosen as the characteristic
function of a circle with radius 0.5. The problem represents a solid body rotation and is used to
investigate the grid orientation effect as in Refs.[16, 17]. The results of the present method at t D 2
with a mesh of 200� 200 points are shown in Figure 12(a). It can be seen that the orientation effect
is not strong. Figure 12(b) gives the comparisons along lines of x D �0:02;�0:48 and �0:52; it
can be seen that the present method is the best one among the tested three schemes.

3.6. Two-dimensional shock vortex interaction

The two-dimensional governing equations can be written as

@U
@t
C
@F
@x
C
@G
@y
D

ı

Re

�
@Fv
@x
C
@Gv

@y

�
(26)
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Figure 12. (a) Numerical results of Equation (25), present scheme. (b) Comparisons along lines of x D
�0:02;�0:48, and �0:52, Equation (25).

where UD

2
64
�
�u
�v
�e

3
75 ; FD

2
64
�u

�u2 C p
�uv
.�eC p/u

3
75 ; GD

2
64
�v
�uv

�v2 C p
.�eC p/v

3
75 ; FvD

2
64
0
�xx
�xy
u�xx C v�xy C qx

3
75 ;

Gv D

2
64
0
�xy
�yy
u�xy C v�yy C qy

3
75 ; �xx D

2
3
�.2ux � vy/; �xy D �.uy C vx/; �yy D

2
3
�.2vy � ux/;

qx D �Tx=Œ.� � 1/M
2Pr�; qy D �Ty=Œ.� � 1/M

2Pr�; p D .� � 1/.�e � �u2=2/; � D 1:4.
If ı D 0, Equation (26) is the two-dimensional Euler equations; If ı D 1, Equation (26) is the
two-dimensional Navier–Stokes equations.

A two-dimensional shock vortex interaction problem taken from Ref. [3] is solved by using Euler
equations (26). This problem describes the interaction between a stationary shock and a vortex. The
computational domain is taken to be Œ0; 2� � Œ0; 1�. A stationary Mach 1:1 shock is positioned at
x D 0:5 and normal to the x-axis. Its left state is .�; u; v; p/ D .1; 1:1

p
�; 0; 1/. A small vortex

is superimposed to the flow on the left of the shock and is centered at .xc ; yc/ D .0:25; 0:5/. The
vortex is described as a perturbation to the velocity .u; v/, temperature(T D p=�/, and entropy
(S D ln.p=�� // of the mean flow and denoted by the tilde values:
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8̂̂̂
<
ˆ̂̂:
Qu D "�e˛.1��

2/ sin �
Qv D �"�e˛.1��

2/ cos �

QT D � .��1/"
2e2˛.1��

2/

4˛�
QS D 0

where � D r=rc and r D
p
.x � xc/2 C .y � yc/2; " indicates the strength of the vortex, ˛ controls

the decay rate of the vortex, and rc is the critical radius for which the vortex has the maximum
strength. As in Refs. [3, 12], " D 0:3; rc D 0:05, and ˛ D 0:204 are adopted in this paper.

The time step is taken as follows [18]

�t D 	
�tx�ty

�tx C�ty
; with �tx D

�x

maxi;j .jui;j j C ci;j /
; �ty D

�y

maxi;j .jvi;j j C ci;j /
(27)

where c is the speed of sound and 	 D 0:5 is the Courant-Friedrichs-Lewy number.
Figure 13 is the pressure contours at t D 0:60 calculated by the present scheme. Figure 14(a)–

(c) is the comparison of the pressure along the center line of y D 0:5. In order to show the accuracy
of the new scheme, the results obtained by the WENO-Z scheme with a refined mesh of 2001� 401
is given as the ‘exact’ solution. The results with the coarse mesh of 251 � 101 are compared. It
can be seen that, behind the shock wave, the new scheme obtains almost the same maximum as the
exact solution, and in the valley region, the present scheme is also more accurate than the other two
WENO schemes.

Figure 15 shows the results of the present method with three different meshes of 251�101; 501�
201, and 1001 � 401. It can be seen that, with refined meshes, the solutions converge to the ‘exact’
solution very well. Meanwhile, little difference between the maximal pressures calculated with
different meshes shows that the present scheme is less dissipative even when the coarse meshes
are used.

3.7. Shock/shear layer interaction

A shock/shear layer interaction problem from [19] is calculated to further demonstrate the low
dissipation of the new scheme. The two-dimensional Navier–Stokes equations (26) are solved for
this problem.
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0.6
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Figure 13. The pressure contours of present scheme, shock/vortex interaction problem.
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(a) (b)

(c)

Figure 14. (a) The pressure distribution along the center line of y D 0:5, (b) locally enlarged plot of
Figure 14(a), and (c) locally enlarged plot of Figure 14(a).

Figure 15. The pressure distribution along the center line of y D 0:5, present method.
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Figure 16. The density contours, shock shear layer interaction problem, t D 120.

In this problem, the vortices arising from shear layer instability are forced to pass through a
shock wave. An oblique shock with angle � D 12o is made to impact on a spatially developing
mixing layer at an initial convective Mach number of 0.5. The computation domain is taken to be
Œx; y� D Œ0; 200� � Œ�20; 20�. The inflow is specified with a hyperbolic tangent profile,

u D 2:5C 0:5 tanh.2y/

For the upper stream inflow, �u D 1:6374; pu D 0:3327; for the lower stream inflow, �l D
0:3626; pl D 0:3327. The upper boundary condition is taken from the flow properties behind the
oblique shock. The lower wall uses a slip condition.

Fluctuations are added to the v-component of velocity of the inflow as

v0 D

2X
kD1

ak cos.2�kt=T C 
k/ exp.�y2=b/

with period T D �=uc , wavelength � D 30, convective velocity uc D 2:68; b D 10; a1 D a2 D
0:05; 
1 D 0 and 
2 D �=2. The Prandtl number Pr is set to 0.72, and the Reynolds number Re is
chosen to be 500.

The fourth-order central difference scheme [20] is used for the viscous terms. The uniform grids
with the same grid number of 321 � 81 in [19] are used. The time step is also determined by
Equation (27). The density contours are shown in Figure 16. It can be seen that three tested schemes
can resolve the shock wave very well. But for the vortices, especially for the last four ones, the
present scheme captures more clear vortex structures than the other two schemes.

4. CONCLUSION

By combining Henrick’s mapping function and the idea of improving the accuracy of WENO-Z
scheme one-by-one order, a new method for constructing WENO scheme is developed. In each
step of weighting process, the sufficient condition for fifth-order convergence is kept, and hence,
the final scheme can obtain fifth-order accuracy in smooth regions even containing critical points.
The distinctive advantage of the new scheme is that it improves the accuracy of WENO scheme
at transition points, and hence, its numerical dissipation near discontinuities is smaller than other
fifth-order WENO schemes. Numerical examples show that the new scheme is accurate and robust.
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