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a b s t r a c t

The biochemical adsorption on a resonator sensor can result in the changes of both stiffness and mass. If
the effect of stiffness is not considered, the resonator response will be wrongly interpreted. Determining
the adsorbate stiffness and mass by the shifts of resonant frequency formulates an inverse problem. The
inverse problem is solved by varying the adsorbate thickness and measuring the corresponding shifts
of resonant frequencies. With the technique of solving the inverse problem, a micro/nanomechanical
eywords:
esonator

nverse problem
ass

tiffness

resonator can be used to identify what kind of material an adsorbate is, which is more than a mass
resonator sensor.

© 2014 Elsevier B.V. All rights reserved.
aterial identification

. Introduction

Micro/nanomechanical resonator provides a label-free, high
hroughput and rapid detection of biological and chemical

olecules [1,2]. When a resonator structure is scaled down in size,
he resonant frequency increases, which also leads to a higher
ensitivity [3]. The micro/nanomechanical resonators with the
apability of detecting the presence of a biomolecule [2], a cell [4],
virus [5], a protein [6] and a gold atom [7], have been devel-

ped. A recent record of sensitivity was achieved by a carbon
anotube (CNT) based nanomechanical resonator, which can detect
he mass of a single proton [8]. The sensing mechanism of all above

icro/nanomechanical resonators [1–8] is based on the following
quation

�ω

ωo
≈ −1

2
�m

m
, (1)

here ωo is the circular resonant frequency without adsorption
nd �ω is the resonant frequency shift due to adsorption; m is the
known) effective sensor mass and �m is the (unknown) effective

dsorbed mass. Once ωo and �ω are measured, �m is uniquely
etermined by the above equation. The implicit assumption of
q. (1) is that adsorption only induces the mass addition; the
esonator based on Eq. (1) is a mass resonator sensor. However,

∗ Tel.: +86 10 82543970.
E-mail address: zhangyin@lnm.imech.ac.cn

ttp://dx.doi.org/10.1016/j.snb.2014.05.059
925-4005/© 2014 Elsevier B.V. All rights reserved.
the mass information only is insufficient to provide fundamental
insights into the resonator-based molecular detection [9]. In gen-
eral, the appropriate properties of a detected material including its
mechanical properties as well as the mass must be considered when
interpreting the resonator data [10]. A vivid example is that in their
pioneering experiment, Ramos et al. [11] found that the adsorp-
tion of the Escherichia coli (E. coli) bacteria on a silicon resonator
causes the increase of resonant frequency. According to Eq. (1), the
mass addition due to adsorption can only decrease the resonant fre-
quency. The increase of resonant frequency can only mean that the
stiffness of the bacteria plays a more important or even a dominant
role [11,12]. Similarly, the adsorption of organic molecules (alka-
nethiol) also causes the increase of resonant frequency [12]. Even
for the resonant frequency decreasing cases, if the stiffness effect
is not considered, the mass can be significantly underestimated
[12,13]. Furthermore, in the adsorption tests of various proteins,
it has also been found that the mass addition alone cannot explain
the (anomalous) shifts of the resonant frequencies [14,15].

When adsorption occurs, the stiffness, mass and damping of the
system change and the resonant frequency is given as follows [16]

ω′ =
√

k + �k

m + �m

√
1 − (C + �C)2

4mk
, (2)

ω′ is the circular resonant frequency after adsorption

(�ω = ω′ − ωo). k, m and C are the effective spring stiffness,
mass and damping of a resonator, respectively. �k, �m and �C are
those corresponding changes due to adsorption. The mechanisms
for the damping variation are rather complex and still unclear
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or micro/nanomechanical resonator [16,17]. When a resonator
otion is measured in an experiment, C and �C can be extracted

y the half-power method [18]. The reason for the mass change
n an adsorption process is obvious. The stiffness change is mainly
aused by two mechanisms: the adsorbate stiffness [11,12] and
urface stress [19,20]. The adsorbate stiffness always increases the
esonant frequency. Because surface stress can be either tensile
r compressive [21,22], it can either increase or decrease the
tiffness [19,23,24]. It is worth mentioning here that the heated
ebates on whether surface stress can be modelled as an axial

oad on a cantilever beam, which can thus change the stiffness, are
till being exchanged [23,25,26]. However, in a clamped-clamped
eam, there is no doubt that surface stress can result in the
tiffness change [25,26]. There are other scenarios which can
lso cause the stiffness change. For example, because a coating
olymer layer absorbs vapor molecules, which results in swelling
nd thus compressive force, the resonator stiffness decreases
ignificantly [27]. In the forward problem in which �k, �m and
C are given, ω′ is uniquely determined by Eq. (2). However, in the

eal application of a resonator, ω′, k, m, C and �C are the (known)
easured quantities; �k and �m are the two unknown quantities

o be determined. For a given/measured ω′, there are infinite
ombinations of �k and �m. Therefore, in order to characterize
ore properties of adsorbate, we encounter the following inverse

roblem in practice: How to use the shifts of resonant frequencies
o determine the stiffness and mass of adsorbate? A similar inverse
roblem was also raised by Chen et al. [28]. Because of the forma-
ion of amalgamation in the mercury adsorption test [28,29] and
he formation of hydride in the hydrogen adsorption test, the stiff-
ess and mass of a micromechanical sensor often change together

n those vapor adsorption tests and the inverse problem thus arises
aturally. In contrast, in the mass resonator case, there is no such

nverse problem because �m is the only unknown variable, which
s uniquely determined by the resonant frequency shift.

In Ramos’ experiment [11], they counted the total E. coli bacte-
ia number (about 4200) and calculated the mass; the bacteria
tiffness was then obtained by curve-fitting, which in essence is

till a forward problem. They changed the adsorption location to
ry to “uncouple” the effects of stiffness and mass of the bacteria
11]. As shown later in this study, the methods including shifting
dsorption location, multiple resonant frequencies and changing

L
bc

tc

(b)

(a) z

x

y

taxs

xe

ig. 1. (a) Schematic diagram of a cantilever resonator with molecules adsorbed
n its surface and the coordinate system. Ec , Ea and �c , �a are the Young’s moduli
nd densities of the resonator and adsorbed layer, respectively. lc , bc and tc are
he resonator length, width and thickness, respectively. (b) The adsorbed layer is
assumed) uniformly distributed from xs to xe with a thickness of ta and a width of
a = bc .
s B 202 (2014) 286–293 287

the adsorption length can not be used to solve the inverse prob-
lem. By varying the adsorbate thickness and utilizing a geometric
approximation, a solution method to the inverse problem is pre-
sented and its accuracy is also demonstrated. The advantages of
solving the inverse can be the following two: (1) the application of
a micro/nanomechanical resonator can be extended beyond mass
sensing. (2) Because the stiffness and mass of adsorbate are among
the most difficult quantities to be measured in the resonator appli-
cation, our method, which only requires the measurement of the
resonant frequency and adsorbate thickness, is expected to reduce
extra experimental instruments and relieve some laborious efforts.

2. Model development

Fig. 1(a) is a schematic of a cantilever beam with an adsorbate
layer ranging from xs to xe. The governing equation is thus divided
into three domains as follows [11,12]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m
∂2

w1

∂t2
+ D

∂4
w1

∂x4
= 0, 0 ≤ x ≤ xs

(m + �m)
∂2

w2

∂t2
+ (D + �D)

∂4
w2

∂x4
= 0, xs ≤ x ≤ xe

m
∂2

w3

∂t2
+ D

∂4
w3

∂x4
= 0, xe ≤ x ≤ L

(3)

where wi (i = 1, 2, 3) is the beam deflection in different domains
and L is the beam length; m is the beam mass per unit length and
m = �cbctc (�c, bc and tc are the mass density, width and thickness of
the beam, respectively). �m is the mass per unit length of the adsor-
bate layer and �m = �abata (�a, ba and ta are the mass density, width
and thickness of the adsorbate layer, respectively). D = Ecbct3

c /12
is the beam bending stiffness and Ec is the beam Young’s modulus.
�D is the stiffness change due to the adsorbate layer, which is given
as the following [11,12]

�D = bc

12
E2

c t4
c + E2

a t4
a + 2EcEa(2t2

c + 3tcta + 2t2
a )

Ectc + Eata
− D. (4)

Here Ea is the Young’s modulus of the adsorbate layer, which is
assumed to have the same width as that of the beam. Here the
stiffness change due to surface stress is not considered. Because
the surface of the silicon resonator is not functionalized, the sur-
face stress induced by the adsorbate materials as discussed in
this study is very small [11,12]. Surface stress is the sensing
mechanism for many receptor-based sensors [21,22]. However,
the receptor–ligand binding is highly selective for identifying
an adsorbate/ligand; the challenges for developing robust and
stable recognition methods through functionalized coatings (i.e.,
the receptor materials) and even interpreting the responses of
receptor-based sensor still remain [30]. The development for the
receptor-less or receptor-free sensors, which bypass the chemistry
of receptor–ligand binding and capitalize on the intrinsic material
properties of adsorbate, has been called for [30]. Here the mass
density (related with mass) and Young’s modulus (related with
stiffness) are the intrinsic material properties, which can be used
to identify the material of an adsorbate.

By introducing � = x/L, � =
√

EI/(mL4)t and W = w/L [23,24], Eq.
(3) is nondimensionalized as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨

∂2
W1

∂�2
+ ∂4

W1

∂�4
= 0, 0 ≤ � ≤ �s

∂2
W2 ∂4

W2
⎪⎪⎪⎪⎪⎪⎪⎩
(1 + ˇ)

∂�2
+ (1 + ˛)

∂�4
= 0, �s ≤ � ≤ �e

∂2
W3

∂�2
+ ∂4

W3

∂�4
= 0, �e ≤ � ≤ 1

(5)
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here �s = xs/L and �e = xe/L; ˛ and ˇ are the dimensionless quanti-
ies defined as follows

= �D

D

= (Ea/Ec)2(ta/tc)4 + (Ea/Ec)(ta/tc)[3 + 6(ta/tc) + 4(ta/tc)2]
1 + (Ea/Ec)(ta/tc)

,

= �m

m
= �ata

�ctc
. (6)

hysically, ˛ and ˇ are the stiffness and mass ratios of the adsorbate
ayer to the beam, respectively. Here ˛ and ˇ are constants, which is
ased on the following two assumptions: (1) the adsorbate layer is
niformly distributed along �s ≤ � ≤ �e. (2) The inkjetted biological
nd chemical samples are in a stable equilibrium state. It can take
inutes or even hours for the samples to reach an equilibrium state

31]. During the transient state, the adsorbate layer experiences the
onformation changes, which often leads to the variations of sur-
ace stress and the layer stiffness because different layer structures
re formed [20,31].

Due to the presence of the adsorbate layer, the mode shapes of
he system vary as a function of the layer dimensions and loca-
ions. In the numerical methods such as Rayleigh–Ritz method
11,12] and Galerkin method [23,24], the accuracy of the com-
uted eigenfrequencies depends on the accuracy of the mode shape
23]. A tiny deviation from the exact mode shape causes a tiny rel-
tive error in the eigenfrequency computation. However, even a
iny computation error is unacceptable in the micro/nano mass
esonator application. One of great advantages of the micro/nano
ass resonator sensor is to detect the tiny fractional change. For

he micro/nanoresonator with the eigenfrequency of giga-Hertz
109 Hz) or higher [32], the tiny relative error means the mega-
ertz or kilo-Hertz difference, which is absolutely large enough.
urthermore, as shown later, because the organic and biological
aterials usually have very small Young’s modulus, the (relative)

esonant frequency shifts are very small. A tiny computation error
ay lead us to a wrong interpretation of data. Here we present the

xact solution to the eigenfrequency, which eliminates the error
ue to the deviation of mode shape.

By assuming W = U(�)eiω� (ω is the dimensionless circular fre-
uency) and substituting it into Eq. (5), U(�) is solved as follows

(�) =

⎧⎪⎨
⎪⎩

U1(�) = A1 sin(�1�) + B1 cos(�1�) + C1 sinh(�1�) + D1 cosh

U2(�) = A2 sin(�2�) + B2 cos(�2�) + C2 sinh(�2�) + D2 cosh

U3(�) = A3 sin(�1�) + B3 cos(�1�) + C3 sinh(�1�) + D3 cosh

here �1 = √
ω, �2 = 4

√
(1 + ˇ)/(1 + ˛) × √

ω; Ai, Bi, Ci and Di (i = 1,
and 3) are the twelve unknown constants in total. To formulate

n eigenvalue problem, twelve equations are needed. The boundary
onditions of a cantilever give the following four:

1(0) = 0,
dU1

d�
(0) = 0,

d2U1

d�2
(1) = 0,

d3U1

d�3
(1) = 0 (8)
he matching conditions at �s and �e give the following eight equa-
ions [33]:

1(�s) = U2(�s),
dU1

d�
(�s) = dU2

d�
(�s),

d2U1

d�2
(�s) = d2U2

d�2
(�s),

d3U1

d�3
(�s) = d3U2

d�3
(�s) (9)
s B 202 (2014) 286–293

), 0 ≤ � ≤ �s

), �s ≤ � ≤ �e

), �e ≤ � ≤ 1

(7)

and

U2(�e) = U3(�e),
dU2

d�
(�e) = dU3

d�
(�e),

d2U2

d�2
(�e) = d2U3

d�2
(�e),

d3U2

d�3
(�e) = d3U3

d�3
(�e) (10)

The eight matching conditions at �s and �e are to guarantee the
continuity of displacement, slope, moment and shear force [33].
Now by substituting Eq. (7) into the above twelve equations of Eqs.
(8)–(10), the following eigenvalue problem is formed

KV = 0. (11)

where V is the vector defined as VT = (A1, B1, C1, D1, A2, B2, C2, D2, A3,
B3, C3, D3) and K is a 12 × 12 matrix as given in Appendix A. When ˛,
ˇ, �s and �e are given, the eigenfrequency ω is computed by Eq. (11),
which is a transcendental equation. The Newton–Rhapson method
[34] is used here.

3. Results and discussion

In all the figures and results discussed here, the beam is made
of silicon with Ec = 169 GPa and �c = 2330 kg m−3 [12]; its dimen-
sions are fixed as L × bc × tc = 100 �m ×20 �m×1 �m [12]. When
˛ = ˇ = 0, which is the no adsorbate case, the cantilever first two
(dimensionless) resonant frequencies are given as follows [35]:

ω0
1 = 1.8751042 = 3.5160153, ω0

2 = 4.69409112 = 22.0344916.

(12)

When �s = 0 and �e = 1, which is the case that the beam is fully cov-
ered with an adsorbate layer, it is not hard for us to derive the
following equation:

ωi =
√

1 + ˛

1 + ˇ
ω0

i (13)

where ωi is the ith resonant frequency with the presence of an
adsorbate layer and ω0

i
is the ith resonant frequency with no adsor-

bate layer. It is worth pointing out that Eq. (13) applies to all
resonant frequencies, which is somewhat surprising. As discussed
later, this fact has the implication that the method of multiple res-
onant frequencies [23,24] cannot be used here to solve the inverse

problem. The relative frequency shift is defined as (ωi − ω0
i
)/ω0

i

and (ωi − ω0
i
)/ω0

i
versus ta/tc is plotted in Fig. 2. Because ˛ and ˇ

defined in Eq. (6) vary with ta/tc, the resonant frequencies changes.
Two adsorbate materials are used: one is the organic layer of alka-
nethiol with Ea = 12.9 GPa and �a = 675 kg m−3 [12] and the other is
the biological layer of myosin with Ea = 0.7 GPa and �a = 183 kg m−3

[12]. The solid line in Fig. 2 is obtained for the myosin layer by set-
ting ˛ = 0, which is to show its mass effect only. Clearly, when the
stiffness effect is ignored, the actual adsorbate mass can be signif-
icantly underestimated for a given frequency shift. The same plot
as Fig. 2 was also presented by Tamayo et al. [12]. Our results have
(almost) no difference from theirs, which verifies Eq. (13). Further-
more, when ˛1 � 1 and ˇ1 � 1, Eq. (13) can be approximated as a

linear one [19]√

1 + ˛

1 + ˇ
− 1 ≈ ˛

2
− ˇ

2
= ωi − ω0

i

ω0
i
.

. (14)
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Fig. 2. Relative resonant frequency shifts (%) versus ta/tc .

he more general scenario is that the beam is partially covered by
n adsorbate layer [11,12]. In Fig. 3, the myosin layer ranges from
s = 0.7 to �e = 0.9 with ta/tc = 0.1. Therefore, ˛ = 1.5070698 × 10−3

nd ˇ = 8.206278 × 10−3 are calculated by Eq. (6). By substituting
he values of �s, �e, ˛ and ˇ into Eq. (11), the first and sec-
nd resonant frequencies are computed as ω1 = 3.5110114 and
2 = 22.0305723. Both resonant frequencies decrease after the
eam is covered with the myosin layer. Compared with ω0

1 and

0
2 as given in Eq. (12), the relative shifts of ω1 and ω2 are
0.142% and −0.018%, respectively. Unlike the full coverage sce-
ario that all resonant frequencies have the same the relative
hift of

√
(1 + ˛)/(1 + ˇ) − 1 as indicated by Eq. (13), in the

00
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0.02
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22.03

22.04

ω
1

ω
2

β

β

ω1=3.5110114

ω2=22.0305723

(a)

(b)

ig. 3. (a) Variation of the first resonant frequency (ω1) as a function of ˛ and ˇ. The level
f the two planes is marked with a solid line. (b) Variation of the second resonant freque
requency of ω2 = 22.0305723. For both (a) and (b), ta/tc = 0.1, �s = 0.7 and �e = 0.9 are fixed
s B 202 (2014) 286–293 289

partial coverage scenario the relative shifts are different for dif-
ferent resonant frequencies. However, (˛, ˇ) = (1.5070698 × 10−3,
8.206278 × 10−3) is not the only combination which causes
the two resonant frequencies to change to ω1 = 3.5110114 and
ω2 = 22.0305723. Fig. 3(a) plots the changes of the first resonant
frequency (ω1) as ˛ ranges from 0 to 8 × 10−3 and ˇ ranges from
0 to 0.02. Clearly, ω1 increases monotonically along the ˛-axis
and decreases monotonically along the ˇ-axis. It is easy to under-
stand because the increase of stiffness/mass always results in the
increase/decrease of resonant frequencies. The level plane is the
one with the fixed value of ω1 = 3.5110114. The intersection of
the two planes is marked as a solid line, which physically indi-
cates that the combinations of ˛ and ˇ resulting in ω1 = 3.5110114
are infinite. Similarly, in Fig. 3(b), the level plane is the one with
the fixed value of ω2 = 22.0305723; the intersection of the two
planes leads to a line indicating the ˛-ˇ combinations of result-
ing in ω2 = 22.0305723. If the two lines obtained in Fig. 3(a) and
(b) are projected into the ˛ − ˇ plane, they are the same. We can
continue the same procedure for other higher resonant frequen-
cies, which will generate the same intersection line, too. This fact
in essence is to say that the method of using the shifts of different
resonant frequencies [23,24] to solve the inverse problem does not
work here. The method [23,24] works because the responses of dif-
ferent resonant frequencies to surface stress (modeled as an axial
load) are different. Now let us explain why the method does not
work for the inverse problem here. In practice, �s, �e, ω0

i
and ωi are

the measured quantities; for a given adsorbate layer, ˛ and ˇ are
fixed but unknown. Therefore, according to Eq. (13) for the full cov-
erage scenario, no matter how many ωis are measured, they all lead
to the same one equation of

√
(1 + ˛)/(1 + ˇ) = ωi/ω0

i
and math-
ematically, two unknown variables (˛ and ˇ) cannot be solved by
one equation. Similarly, in the partial coverage scenario, the effects
of two parameters of ˛ and ˇ are combined into one parameter of
�2 as given in Eq. (7).

2
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x 10
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plane is the one with a fixed resonant frequency of ω1 = 3.5110114. The intersection
ncy (ω2) as a function of ˛ and ˇ. The level plane is the one with a fixed resonant
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ne with a fixed resonant frequency of ω1 = 3.50895999. ta/tc = 0.1, �s = 0.5 and �e = 0

Ramos et al. [11] used the position shift technique to “uncou-
le” the stiffness and mass effects of E. coli bacteria by inkjetting
hem at different positions. We then shift the position of adsorption
ayer to see if the inverse problem can be solved. In Fig. 4(a), the
ame myosin layer with ta/tc = 0.1 is used; the position is shifted
owards the clamping end as �s = 0.5 and �e = 0.7. Now the first res-
nant frequency becomes as ω1 = 3.513955, which is the −0.059%

maller than ω0

1. The same procedure is applied again: ω1 is com-
uted for various ˛-ˇ combinations and the level plane is now set
ith ω1 = 3.513955. The same intersection line is obtained, which

0 1 2 3 4 5 6 7
x 10-3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

β

α

(α, β)=(1.5071e-3, 8.2063e-3)

ig. 5. When the four intersecting lines obtained in Figs. 3 and 4 are projected into
he ˛ − ˇ plane, the four lines overlap. The real (˛, ˇ) = (1.5071 × 10−3, 8.2053 × 10−3)
s on the line, which is marked as a circle.
is to say that the position shifting method can not solve the inverse
problem, either. Besides shifting the position of a gold coating layer,
Lee et al. [13] also systematically varied the layer length to see
how the resonant frequencies change. In Fig. 4(b), we double the
layer length by setting �s = 0.5 and �e = 0.9 to see if the inverse
problem is solvable. Now the first resonant frequency becomes as
ω1 = 3.50895999, which is −0.2% smaller than ω0

1. Again, by set-
ting level plane of ω1 = 3.50895999, the same intersection line is
obtained. In summary, for a given layer with a fixed thickness,
the methods of multiple resonant frequencies, shifting the layer
position and changing the layer length cannot solve the inverse
problem though they can be used to identify the maximum mass
and stiffness effects [11,13]. The methods all lead to the same line
as presented in Fig. 5. Although these methods narrow down all the
possible ˛-ˇ combinations into a line, it is still an infinite combi-
nation. In Fig. 5, the real combination of (˛, ˇ) = (1.5070698×10−3,
8.206278×10−3) is a point (marked as a circle) on the line.

To solve the inverse problem, we vary the layer thickness and
utilize its geometry. Two adsorbate layers with different thickness
of ta1 and ta2, have two corresponding (˛1, ˇ1) and (˛2, ˇ2). The
following relations are derived from Eq. (6):

f1 = ˛2

˛1
= r3

2 + 3(r2 + 2r2
2 + r3

2)/[1 + (Ea/Ec)r2]

r3
1 + 3(r1 + 2r2

1 + r3
1)/[1 + (Ea/Ec)r1]

≈ 3r2 + 6r2
2 + 4r3

2

3r1 + 6r2
1 + 4r3

1

, f2 = ˇ2

ˇ1
= r2

r1
= ta2

ta1
, (15)

where r1 = ta1/tc and r2 = ta2/tc. The above approximation can
be taken because the Young’s moduli of many organic and

biological materials are very small compared with silicon
(Ec = 169 GPa). For example, Ea/Ec = 4/169≈ 2.367 % (alkanethiol),
Ea/Ec = 1.3/169≈ 0.769 % (E. coli) and Ea/Ec = 0.7/169≈ 0.414 %
(myosin). The two parameters of f1 and f2 only depend on the
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ayer thickness (as tc is fixed). In this method, the thickness of
dsorbate layer needs to be measured. However, the thickness
easurement is much easier than that of stiffness (Young’s
odulus) or mass. For example, the adsorbate layer thickness of

lkanethiol [21] and DNA [22] was measured by ellipsometry; the
hickness of a membrane protein (FhuA) [36] and gold film [13]
as measured by atomic force microscope (AFM). It can be even
uch simpler in a well-controlled inkjetting deposition procedure,

n which the volume and spreading shape/area are precisely
ontrolled/monitored [37] and the thickness can thus be easily
alculated.

For the myosin layer with ta1 = 0.1 	m and ta2 = 0.2 	m,
he exact values of ˛ and ˇ are calculated by Eq. (6) as
˛1, ˇ1) = (1.5070698 × 10−3, 8.206278 × 10−3) and (˛2,
2) = (3.6088722 × 10−3, 1.641256 × 10−2). For the full cover-
ge scenario, the following two equations can be obtained by
e-arranging Eq. (13)√

1 + ˛1

1 + ˇ1
− 1 = ω1 − ω0

1

ω0
1

,√
1 + ˛2

1 + ˇ2
− 1 =

√
1 + f1˛1

1 + f2ˇ1
− 1 = 
1 − ω0

1

ω0
1

(16)

here ω1 = 3.5043144 and 
1 = 3.4937996 are the first resonant
requencies with (˛1, ˇ1) and (˛2, ˇ2), respectively. Once the thick-
ess is measured, f1 = 2.416 and f2 = 2 are calculated by Eq. (15)
ith r1 = ta1/tc = 0.1 and r2 = ta2/tc = 0.2. Because f1 is obtained by

n approximation, it is overestimated by 0.87%. Again, in practice,
0
1, ω1 and 
1 are the measured quantities. With the help of
q. (15), the four unknowns are now reduced to the two (˛1
nd ˇ1). Eq. (16) is solved by the Newton–Rhapson method [34],
hich gives the computed values of (˛c

1, ˇc
1) = (1.5209758 ×

0−3, 8.2163459 × 10−3). Compared with the real values of (˛1,
1) = (1.5070698 × 10−3, 8.206278 × 10−3), the errors are 0.92%
nd 0.12%, respectively. The computed (˛c

2, ˇc
2) = (f1˛c

1, f2ˇc
1) =

3.6436563 × 10−3, 1.6432692 × 10−3). Compared with the real
alues of (˛2, ˇ2) = (3.6088722 × 10−3, 1.641256 × 10−2), the errors
re 0.96% and 0.12%, respectively.

When ˛1 � 1 and ˇ1 � 1, the following two approximate linear
quations are obtained from Eq. (14)

1
2

˛1 − 1
2

ˇ1 = ω1 − ω0
1

ω0
1

,

f1
2

˛1 − f2
2

ˇ1 = 
1 − ω0
1

ω0
1

.

(17)

he solutions are easily obtained as ˛1 = 2(Q2 − Q1f2)/(f1 − f2)
nd ˇ1 = 2(Q2 − Q1f1)/(f1 − f2), in which Q1 = (ω1 − ω0

1)/ω0
1 and

2 = (
1 − ω0
1)/ω0

1. Compared with the real values of (˛1,
1)=(1.5070698 × 10−3, 8.206278 × 10−3), the errors of ˛1 and ˇ1
alculated by Eq. (17) are 13.16% and 1.89%, respectively.

In the partial coverage scenario, when �s and �e are given, Eq.
11) actually has the function form of F(ω, ˛, ˇ) = 0. Here �s = 0.7
nd �e = 0.9 are given. Similar to the full coverage scenario, the
ollowing two equations are given for two different thickness cases

F(ω1, ˛1, ˇ1) = 0,

F(
1, ˛2, ˇ2) = F(
1, f1˛1, f2ˇ1) = 0.
(18)

ere f1, f2, (˛1, ˇ1) and (˛2, ˇ2) are with the same values as those in
he full coverage scenario. Because the adsorbate layer length is sig-

ificantly reduced, the two first resonant frequencies now change
o ω1 = 3.5110114 and 
1 = 3.5064902. Again, by substituting these
wo frequency values into Eq. (18), there are two equations for two
nknowns of ˛1 and ˇ1. The two transcendental equations of Eq.
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(18) are solved by the Newton–Rhapson method [34]. The com-
puted (˛c

1, ˇc
1) = (1.503461 × 10−3, 8.2026451 × 10−3) are with

the errors of −0.24% and −0.04%, respectively; the computed
(˛c

2, ˇc
2) = (f1˛c

1, f2ˇc
1) = (3.6016978 × 10−3, 1.640529 × 10−2) are

with the errors of −0.2% and −0.04%, respectively.
For both the full and partial coverage cases, the two first res-

onant frequencies with two different adsorbate layer thicknesses
are used to solve the inverse problem. Because the higher mode has
higher sensitivity to detect the frequency shifts [38], the method
can be easily applied to the higher mode case by substituting the
(measured) resonant frequencies of higher mode into Eq. (16) or
(18). The computation is carried out only for a cantilever beam.
A clamped-clamped beam has higher resonant frequencies and
higher sensitivity [8]. The method can be easily extended to the
other type of the beam structure by simply changing the bound-
ary conditions of Eq. (8). Damping is not considered in the model.
Small damping is a much sought-after property in the application
of micro/nanomechanical resonator. Small damping means high
quality factor, which significantly enhances the resonator sensitiv-
ity [10,38]. The quality factor of a resonator vibrating in a vacuum
can be as high as 104 to 105 [10]. Therefore, the damping effect
is ignored in many modelings of the resonator vibration in air
or vacuum [11–13]. A generalized eigenvalue problem formula-
tion of a beam with the damping effect is presented in reference
[39].

Although the method of solving the inverse problem requires
the measurement of the adsorbate thickness, it actually gives us a
way to identify what kind of material the adsorbate is. The above
method only detect the mass and stiffness changes due to the adsor-
bate layer, which are also related with its size. With the knowledge
of the layer size/thickness, the mass density and Young’s modulus
of an adsorbate can be easily determined by Eq. (6), which are the
intrinsic material properties. A lot of materials can be identified by
these two material properties.

4. Summary

The method for solving the inverse problem, which is to use the
shifts of resonant frequency to determine the stiffness and mass,
is presented. By varying the adsorbate layer thickness and using a
geometric approximation, two independent equations are obtained
to solve the two unknowns: stiffness and mass. Because of the
small Young’s modulus and thickness of biochemical adsorbate,
the shifts of the resonant frequencies are very small. To mini-
mize the computation error, an analytical solution is derived for
the full coverage scenario and an exact method for the resonant
frequency computation is presented for the partial coverage sce-
nario. Although the numerical computation is still required by
the exact method, it eliminates the error caused by the mode
shape deviation. The computation error of the method are from
three sources: (1) the geometric approximation of Eq. (15); (2)
the Newton–Rhapson method of solving the nonlinear equations;
(3) for Eq. (14), the error is mainly due to the linear approxima-
tion. The accuracy of the method is also demonstrated. As the
inverse problem is solved for the no damping case, damping should
be considered to achieve a higher accuracy in a real application.
The method should be of some help to the resonator application
by extracting more information from the shifts of resonant fre-
quency.
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ppendix A. Definition of K

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k1,2 0 k1,4 0 0 0 0 0 0

k2,1 0 k2,3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 k3,9 k3

0 0 0 0 0 0 0 0 k4,9 k4

k5,1 k5,2 k5,3 k5,4 k5,5 k5,6 k5,7 k5,8 0 0

k6,1 k6,2 k6,3 k6,4 k6,5 k6,6 k6,7 k6,8 0 0

k7,1 k7,2 k7,3 k7,4 k7,5 k7,6 k7,7 k7,8 0 0

k8,1 k8,2 k8,3 k8,4 k8,5 k8,6 k8,7 k8,8 0 0

0 0 0 0 k9,5 k9,6 k9,7 k9,8 k9,9 k9

0 0 0 0 k10,5 k10,6 k10,7 k10,8 k10,9 k1

0 0 0 0 k11,5 k11,6 k11,7 k11,8 k11,9 k1

0 0 0 0 k12,5 k12,6 k12,7 k12,8 k12,9 k1

k1,2 = 1, k1,4 = 1

k2,1 = 1, k2,3 = 1

k3,9 = − sin �1, k3,10 = − cos �1, k3,11 = sinh �1, k3,12 = cosh �1

k4,9 = − cos �1, k4,10 = sin �1, k4,11 = cosh �1, k4,12 = sinh �1

k5,1 = sin(�1�s), k5,2 = cos(�1�s), k5,3 = sinh(�1�s), k5,4 = cosh(�1�s), k5,5 = − sin(�

k6,1 = cos(�1�s), k6,2 = − sin(�1�s), k6,3 = cosh(�1�s), k6,4 = sinh(�1�s), k6,5 = − �2

�1
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2

�2
1
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�3
1
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