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We analytically present the characteristic dimensional limit below which the
thermal shock failure of ceramics never occurs. This limit, together with the
critical temperature difference, separates the state space of the ceramics under
thermal shock into two parts – the cracked and the uncracked. Based on the
water-quench tests of ceramics, we experimentally proved that when the states
of ceramics are in the uncracked region, the ceramics do not produce any
cracks during thermal shock. The results provide a guide to prevent thermal
shock failure in ceramic.

Keywords: thermomechanical; ceramics; fracture; thermal shock

1. Introduction

Thermal shock failure of ceramics widely occurs in the thermostructural applications
of ceramics. More than one-third of the rejections of ceramic components are caused
by thermal shock [1]. Previous studies point out that besides the properties of
materials, two external factors of ceramics, the characteristic dimension and the tem-
perature difference, play a key role in the thermal shock failures of ceramics [2–7].
For example, the thermal shock resistance of ceramics increases with the decrease of
characteristic dimensions [2–4], and ceramics are prone to thermal shock failures at
higher temperature differences [2–4,7]. However, the quantitative effects of the two
factors on the thermal shock failures of ceramics have not been understood very
well [8]. In this study, firstly, we obtained a relationship between the two critical
external factors of ceramics and thermal shock failures based on the theories of heat
transfer and thermal stresses. Then, from the water quench tests of alumina, the rela-
tionship presented here proved to be in good agreement with the experimental
results.

2. Experimental details

The ceramics studied here were alumina balls (purity 99.5%, Xiongdi material Co.,
Jiyuan, China) with the radius of 0.11, 0.35, 0.56, 1 and 2.1 mm, respectively. The
balls were made of Al2O3 powder (particle size 0.5 μm, Xiongdi material Co.,
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Jiyuan, China) and subsequently sintered at 1650 °C for 2 h without pressure. The
porosity of ceramics was calculated by measuring its dimension and weight, and the
porosity value was about 4.9%.

The balls as-sintered were used in thermal shock. Six specimens in each size group
were heated at a rate of 10 °C/min to a preset temperature and were held at this temper-
ature for 20 min. After that the heated specimens were dropped by free fall within five
seconds into a water bath which was maintained at 20 °C by a thermostat. After being
taken out and dried at 80 °C for 2 h, the specimens were then impregnated with a blue
dye (Shanghai ink factory, Shanghai, China) to observe the cracks formed during ther-
mal shock. Afterwards, the crack patterns were studied using stereo microscope (SZ66,
Chongqing ott optical instrument Co., Ltd, Chongqing, China).

3. Results and discussion

Thermal shock cracks on the surfaces of the spheres with different radii R at
different temperature differences ΔT are shown in Figure 1(a)–(e). As indicated, the
cracks occur on the surface of the sphere with R = 2.1 mm only when the ΔT
between ceramic and water bath is greater than 240 K; and in the case of
R = 0.35 mm, ΔT > 620 K is needed; however, even if ΔT = 1280 K, the sphere with
R = 0.11 mm still has no crack. As a result, the occurrence of crack increases with
increasing ΔT, but decreases with decreasing R.

Based on experiments, we consider a ceramic sphere of radius R, with a uniform
initial temperature T0. At the initial time, the surface of the sphere is suddenly exposed
to a convective medium with a uniform temperature T∞, as shown in Figure 2.

The temperature field change in the sphere T = T (r, τ) satisfies the equation of heat
conduction

@T

@s
¼ a

r

@2

@r2
ðrTÞ; (1)

Figure 1. (colour online) Thermal shock cracks on the surfaces of the spheres with different radii,
R = 2.10, 1.00, 0.56, 0.35 and 0.11 mm (from top to bottom), at the temperature differences
ΔT = (a) –280 K; (b) –380 K; (c) –580 K; (d) –780 K; and (e) –1280 K.

2648 Y.F. Shao et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 0

0:
03

 0
2 

Se
pt

em
be

r 
20

14
 



where r is the coordinate, the origin of which is accorded with the centre of the sphere;
τ is the time; a = k/ρcp is the thermal diffusivity of the material of the sphere; and k, ρ
and cp are the thermal conductivity, the density and the specific heat at constant
pressure for the material, respectively.

The initial and boundary conditions that Equation (1) satisfied are written by

Tðr; 0Þ ¼ T0; (2)

@T

@r

����
r¼0

¼ 0; (3)

and

�k
@T

@r

����
r¼R

¼ hðT � T1Þ; (4)

where h is the surface heat transfer coefficient between the sphere and the medium.
Assuming that the properties of the material do not vary with temperature, we can

use the standard separation-of-variables technique to solve Equation (1) and obtain the
following [9]

T � T0
T1 � T0

¼ 1�
X1
n¼1

An expð�b2n � f Þ
sinðbn � r�Þ
bn � r�

; (5)

where

An ¼ 2 � sinðbnÞ � bn cosðbnÞ
bn � sinðbnÞ cosðbnÞ

; (6)

Figure 2. (colour online) A ceramic sphere with radius R and initial temperature T0 was suddenly
exposed to a convective medium of temperature T∞.
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and f = aτ/R2 is Fourier’s number that describes the dimensionless time of heat conduc-
tion; r* = r/R stands for the dimensionless coordinate; and βn are the roots of the equation

1� bn cotðbnÞ ¼ b; (7)

where β = hR/k is the Biot number, which is treated as a dimensionless constant in the
traditional theories of heat transfer and thermal stresses.

According to the theory of thermal stresses [10], we readily write the thermal stress
field in the sphere as

rrðr; sÞ ¼ 2aE
1� m

� 1

R3

Z R

0
ðT � T0Þr2dr � 1

r3

Z r

0
ðT � T0Þr2dr

� �
; (8)

rhðr; sÞ ¼ r/ðr; sÞ ¼ aE
1� m

� 1

R3

Z R

0
ðT � T0Þr2dr þ 2

r3

Z r

0
ðT � T0Þr2dr � ðT � T0Þ

� �
;

(9)

where E, ν and α are Young’s modulus, Poisson’s ratio and coefficient of thermal
expansion of the material, respectively.

For the convenience of comparing the values of thermal stresses, the dimensionless
thermal stress is then defined as [11]

rn � ðr; sÞ ¼ rnðr; sÞ � ð1� mÞ
aE(T1 � T0)

; (10)

where the subscripts, n = r, θ and φ stand for the three directions of the actual stresses
in the sphere, respectively.

From Equations (5) and (8)–(10), the dimensionless thermal stress fields that occur
in the sphere during the rapid heating or cooling of the surface are readily calculated,
as shown in Figure 3(a) and (b). The results indicate that the thermal stresses generated
on the surface are tensile during cooling, whereas the thermal stresses presented at the
centre are tensile during heating.

In addition, under the condition of the same absolute value of temperature differ-
ence, |T0 – T∞|, the surface tensile stresses during cooling are much greater than the
central tensile stresses during heating. Generally, ceramics are much weaker in tension
than in compression, this failure often occurs on the surface during cooling. Accord-
ingly, in the following, we only focus on the tangential tensile thermal stresses on the
surface. Let r = R, substituting Equations (5) and (9) into Equation (10) gives the
tangential stress on the surface

r�hðR; sÞ ¼
X1
n¼1

An � sin bn
bn

þ 3 cos bn
b2n

� 3 sin bn
b3n

 !
� exp �b2n �

as
R2

� �
; (11)

where both βn and An involve Biot number of the sphere, and so naturally, they are
associated with the radius of the sphere R. Obviously, in terms of the ceramic spheres
with both the same material and service condition, Biot numbers of the spheres are
completely determined by their radius. Thus, Equation (11) indicates the evolutions of
the thermal stresses that occur on the surfaces of the spheres with different radii during
thermal shock, as shown in Figure 4, and the data of h and k are from Table 1 in the
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temperature range 20–600 °C. Note that in order to make calculation consistent with the
real situation, the properties of alumina are considered to be temperature dependent and
average parameters in temperature range are used as a compromise approach. In

Figure 3. (colour online) The evolutions of the stress fields in the sphere during rapid cooling,
(a) the tangential stresses and (b) the radial stress, where the Biot number was taken as β = 20.

Figure 4. (colour online) The dimensionless stress at the surface of the sphere during thermal
shock with different radii R, where the magnitude of r�hmaxðRjÞ increases with R.
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addition, the available data of h are dispersed, ranging from 104 to 105Wm−2 K−1 [15–17].
In this paper, we use a more stringent condition, in which h is roughly regarded as a
constant and has a value of 80,000Wm−2 K−1.

Each of the curves in Figure 4 has a maximum value, which is readily determined
according to Equation (11). Let @r�h=@s ¼ 0, we obtain

X1
n¼1

An � sin bn
bn

þ 3 cos bn
b2n

� 3 sinbn
b3n

 !
� �b2n �

a

R2

� �
� exp �b2n �

as
R2

� �
¼ 0: (12)

Equation (12) stands for the implicit relation between an arbitrary radius R and the time
τ. Therefore from Equation (12), we can determine a relation, τ = τ (R), namely, the time
that the thermal stress occurred on the surface of the sphere of radius R reaches its
maximum value. Substituting Equation (12), i.e. τ = τ (R), into Equation (11) gives the
form of the maximum stress,

r�hmaxðRÞ ¼
X1
n¼1

An � sin bn
bn

þ 3 cos bn
b2n

� 3 sin bn
b3n

 !
� exp �b2n �

a � sðRÞ
R2

� �
; (13)

as shown in Figure 4.
Combining Equation (13) with Equation (10), we obtain the actual maximum ther-

mal stress on the surface of the sphere

rhmaxðDT ;RÞ ¼ aE � DT
1� m

X1
n¼1

An � sin bn
bn

þ 3 cos bn
b2n

� 3 sin bn
b3n

 !
� exp �b2n �

a � sðRÞ
R2

� �
;

(14)

where ΔT = T∞ – T0. This is an indication that the maximum surface thermal stress of
the sphere is linearly proportional to the temperature difference and nonlinearly associ-
ated with the characteristic dimension of the sphere, as shown in Figure 5(a). In
particular, under the condition of the same temperature difference, the larger the
characteristic dimension, the greater the maximum surface thermal stress of the sphere;
while under the condition of the same characteristic dimension, the higher the
temperature difference, the greater the maximum stress, as shown in Figure 5(b) and
(c). Here, we employ the average data of alumina in the temperature range 20–600 °C
as given in Table 1.

Table 1. The average mechanical and thermal parameters of alumina used in calculation.

Temperature
range (°C)

Young
modulus
E (GPa)
[12]

Poisson’s
ratio ν

Strength
σ0
(MPa)
[12]

Convective
heat transfer
coefficient h
(Wm−2 K−1)

Thermal
conductivity
k (Wm−1

K−1) [13]

Coefficient of
thermal
expansion α
(10−6 K−1)
[14]

20–300 383 0.22 386 80,000 24.9 7.0
20–400 382 0.22 374 80,000 22.2 7.3
20–600 380 0.22 358 80,000 18.4 7.7
20–800 378 0.22 347 80,000 15.7 8.0
20–1300 348 0.22 324 80,000 12.0 8.7
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Figure 5. (colour online) (a) The maximum surface stress as a function of R and ΔT; the projec-
tion of the maximum surface stress on the plane perpendicular to the axis (b) ΔT and (c) R,
respectively, where σ0 is the inherent strength of the material.
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Further, when the maximum surface thermal stresses during heat transfer are greater
than the inherent strength of the material of a sphere, the cracks will occur on the sur-
face of the sphere. Thus, according to Equation (14), we obtain the critical curve

rhmaxðDTc;RcÞ ¼ r0; (15)

where σ0, ΔTc and Rc are the inherent strength of material, the critical temperature dif-
ference and the characteristic dimensional limit, respectively. This critical curve sepa-
rates the region of ΔT – R into two parts whether the cracks occur on the surface or not,
as shown in Figure 6. This is an indication that as long as the states (ΔT, R) locate
under the critical curve, the thermal shock failure of the materials never occurs; no mat-
ter how large the characteristic dimension R is and no matter how high the temperature
difference ΔT is. Even if an alumina sphere is heated to approach its melting
temperature, Tm = 2054 °C, the cracks do not occur as long as the radius of the sphere
R < 66 μm, as shown in Figure 5(b). Likewise, as long as ΔT < 96 K, the cracks never
occur no matter how large the radius of the sphere is, as shown in Figure 5(c). For
comparison, we also calculate the critical curves using average parameters in different
temperature ranges, as shown in Figure 6. We can clearly see that the critical curve
gradually moves down with the increase in temperature range.

To verify the results obtained from Equation (15), we compare the experimental
data with the theoretical results and find that they have the same tendency. However,
for the theoretical results which separate the regions of the crack and the uncracked,
only the results using parameters of temperature ranges of 20–400 °C and 20–600 °C
are consistent with the experimental results, as shown in Figure 6. This can be ascribed
to the fact that the surface heat transfer coefficient largely depends not only on the ini-
tial quenching temperature, but also on their evolution in quenching media [18], which
affect the theoretical results. In addition, it is generally recognized that alumina has
obvious plastic deformation at temperatures higher than 1300 °C and that ceramic speci-
men of small volume has high strength in statistic [19,20]. According to the critical
curve that employs the data in the temperature range 20–600 °C, as shown in Figure 6,

Figure 6. (colour online) The critical curves using parameters of different temperature ranges
separate the regions of the crack and the uncracked, and the marks around the curve stand for the
experimental data corresponding to Figure 1. The solid marks represent the crack and the hollow
marks represent the uncracked regions.
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it can be easily derived that in the case of melting temperature, the cracks do not occur
as long as the radius of the sphere R < 66 μm.

4. Conclusions

Based on the theories of heat transfer and thermal stresses, the characteristic dimen-
sional limit of ceramics together with the critical temperature difference in thermal
shock failure is analytically presented. The relation indicates that ceramics become
insensitive to thermal shock as soon as the material size becomes smaller than the
dimensional limit, or the temperature difference is lower than the critical one. By taking
alumina as an illustration, we experimentally demonstrate the relation.
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