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Abstract The conventional extended finite element method
(XFEM) is enhanced in this paper to simulate dynamic
crack branching, which is a top challenge issue in frac-
ture mechanics and finite element method. XFEM uses the
enriched shape functions with special characteristics to rep-
resent the discontinuity in computation field. In order to
describe branched cracks, it is necessary to set up the addi-
tional enrichment. Here we have developed two kinds of
branched elements, namely the “element crossed by two
separated cracks” and “element embedded by a junction”.
Another series of enriched degrees of freedom are introduced
to seize the additional discontinuity in the elements. A shifted
enrichment scheme is used to avoid the treatment of blend-
ing element. Correspondingly a new mass lumping method
is developed for the branched elements based on the kinetic
conservation. The derivation of the mass matrix of a four-
node quadrilateral element which contains two strong dis-
continuities is specially presented. Then by choosing crack
speed as the branching criterion, the branching process of a
single mode I crack is simulated. The results including the
branching angle and propagation routes are compared with
that obtained by the conventionally used element deletion
method.
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1 Introduction

Crack branching is a phenomenon frequently observed in
conjunction with dynamic fracture in brittle materials [1–3].
During the branching process the propagating crack often
departs from its original straight trajectory and splits into
two or more branches. This is widely observed in various
natural and engineering phenomena. For example, the crack
propagating and branching is frequently found in the earth-
quake rupture of rock faults and in the pressured gas pipeline.
The dynamic fault branching is commonly concerned and
studied [4,5]. The dynamic crack branching is an attractive
topic because of its importance in understanding the failure
of engineering structures and some natural disasters. In the
past decades, there are a number of experiments, theoretical
models, and numerical simulations performed to understand
the dynamic fracture as well as crack branching.

A lot of researches are carried out to study the theory
and mechanism of crack branching, but a generally accepted
explanation for crack branching and a reliable branching
criterion are still lacking. Fineberg [6] observes dynamic
crack propagation, and finds that cracks in brittle material
have terminal speed far below the Rayleigh wave speed.
The crack loses stability when the speed exceeds a criti-
cal value vc, which depends neither on the applied stress
nor on the geometry of the specimen. Above vc, the crack
speed has strong oscillation and the original smooth crack
surface becomes rough, consequently some micro-branches
can be found. Yoffe [7] focuses on the asymptotic stress field
ahead of a dynamic propagating crack, and the stress solu-
tion gives an explanation for crack branching, but the criti-
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cal velocity of the theoretical prediction is higher than that
from experiments. Eshelby [8] considers the energy-based
approaches and proposes that the energy flux into the two
branching crack tips equals to the energy required to open the
material and create new surfaces as a result of this propaga-
tion. Using Eshelby’s approach, Adda-Bedia [9] studies the
dynamic stress intensity factors immediately after branch-
ing under plane loading configurations, and shows that the
branching of a single propagating crack under mode I loading
is energetically possible when its speed exceeds a threshold
value. Martínd et al. [10] indicates that branching can be trig-
gered by two different mechanisms, namely the kinematics
of the strain field and back-reflected surface waves traveling
on the crack tip. Katzav et al. [11] uses the Griffith energy
criterion and the principle of local symmetry to predict the
critical velocity for branching. Though being studied for sev-
eral decades, the dynamic crack branching is still an open
question.

How to numerically model the dynamic branching is also
a challenge issue. In atomistic models, cracks can branch
without a specific criterion [12]. Particle-type models [13] are
also capable of simulating crack branching. However, these
methods are not able to capture the crack speed and predict
the branching angle correctly. Xu and Needleman [14] use
finite element with the interelement cohesive crack model to
examine multiple dynamic crack branching problems, and
give the numerical results qualitatively in according with a
variety of experiment observations on fast crack growth in
brittle solids. Ha [15] uses peridynamic analysis to study the
dynamic crack propagation and branching. In the method
no special criteria for crack propagation and branching are
used, which is obtained as a part of solution. Song and co-
workers [16] study crack instabilities in a brittle material
with a meshfree cracking particle method, and the microcrack
branching is computed. Recently a phase field model of crack
is widely used to study fracture problems. The advantage of
this method is that it does not require the numerical tracking
of discontinuity in the displacement. But this method needs a
fairly fine mesh to obtain an ideal solution. Henry [17] use a
phase field model of crack propagation to study the dynamic
branching instability in the case of in-plane loading in two
dimensions. Borden et al. [18] introduce phase field method
to study the behavior of dynamic model by performing a
number of two and three dimensional numerical experiments
including the dynamic crack branching.

The extended finite element method (XFEM), which was
put forward in 1999 [19,20], is an efficient numerical method
on solving fracture mechanics, especially the problems of
crack arbitrary propagation. The basic idea of XFEM is to
introduce the enriched shape functions with special char-
acteristics to represent the discontinuity in the calculation
field. In XFEM, the mesh boundary does not have to coin-
cide with the crack surface, so a structure mesh can be used

for a complex crack growth, and re-meshing is not neces-
sary when the crack propagates. The phantom node method
which is a simplified adaption of XFEM is also widely used
to model various 2D [21] and 3D [22] fracture problems.
The studies of crack branching modeling using XFEM are
still limited because of its complexity. Daux et al. [23] devel-
ops a methodology that constructs the enriched approxima-
tion based on the interaction of the discontinuous geomet-
ric features and calculates the stress intensity factor of static
cracks with multiple branches. While it is only used for static
branched cracks, the crack propagation and dynamic branch-
ing process are not taken into account. To deal with dynamic
branching process, the construction of mass matrix for an ele-
ment containing branched cracks is necessary. Belytschko
et al. [24] introduce the loss of hyperbolic as the criterion
of dynamic crack propagation, and use XFEM to deal with
the discrete discontinuity. The method is applied to several
dynamic crack growth problems including crack branching.
In the simulation, the element in which the branching occurs
is simply deleted because of difficulties in the enrichment.
Song et al. [25] compare three different finite element meth-
ods including XFEM for dynamic crack propagation in brittle
materials, and study the performance of these methods. Song
et al. [21] simulate crack branching using the phantom nodes
method which is a transformation of XFEM. The stress in
elements which contain more than one crack is simply set to
zero to simulate branched cracks. However, simply deleting
the elements containing branched cracks is just an expedient
and the accuracy and feasibility needs to be further demon-
strated. A new cracking node method for modeling discrete
cracks based on XFEM is also demonstrated with dynamic
fracture problems including crack branching by Song et al.
[26]. In the above all, the branching criterion, crack geometry
description and construction of mass matrix for the branched
element remain the challenge issues of modeling dynamic
crack branching by XFEM.

In this paper, an enhanced XFEM is used to simu-
late dynamic crack propagating and branching. Additional
enriched shape functions and the corresponding degrees of
freedom are introduced to seize the discontinuity in the ele-
ment which contains the junction of a branched crack. A
shifted formulation of enrichment function makes it more
convenient to deal with the blending element, but brings
more difficulties in constructing the diagonal mass matrix
for the branched element. A modified mass lumping scheme
is deduced based on the principle of kinetic energy conserva-
tion for the element with a shifted enrichment. As one of key
steps in the modeling of dynamic crack branching, the crite-
rion is necessary but not unique. To the author’s knowledge,
it is difficult to find a generally accepted crack branching cri-
terion. In this paper, according to the theoretical stress field
near a fast propagating crack tip referring to Yoffe’s solution,
we analyze the normalized circumferential stress distribution
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near the tip and propose a crack speed based branching cri-
terion. By combining the criterion and the XFEM algorithm,
the branching process of moving crack can be successfully
simulated.

The paper is organized as follows. Section 2 describes
the governing equations of the problem, and the XFEM
framework including the enrichment scheme for crack with
branches is introduced. Section 3 describes the lumping
scheme of the mass matrix. Then criterion of crack branching
used in the simulation is introduced in Sect. 4. Some numeri-
cal studies are provided in Sect. 5 to validate the accuracy and
ability of the crack branching modeling. Finally, a summary
is given in Sect. 6.

2 Governing equations and XFEM formulation

In this section, the governing equations are briefly reviewed
for linear elastic fracture mechanics. Then the formulation
of XFEM, especially the branching enrichment, is described
in detail.

2.1 Governing equations

The governing equation in the Lagrangian coordinate system
is

∂ Pji

∂ X j
+ ρ0bi = ρ0üi , in �0 (1)

where P is nominal stress, b is body force, ρ0 is density
corresponding to the initial configuration and the superposed
dots denote material time derivative. Considered the domain
� with boundary of �, it is composed of the sets �u, �t , and
�c, respectively, as shown in Fig. 1. Such that � = �u ∪
�t ∪ �c. The prescribed displacements are imposed on �u,
tractions are imposed on �t , while �c is the crack surface
and is assumed to be traction-free.

Boundary and initial conditions are given below:

Fig. 1 Initial configuration

Displacement boundary condition, ui = ui , on �u
0 ;

Force boundary condition, n0
j Pji = t̄0

i , on �t
0;

Strong discontinuity, n0+
j P+

j i = n0−
j P−

j i = 0, on �c
0;

Initial conditions, u̇i (0) = u̇i0, Pi j (0) = Pi j0.

Multiply δu on both sides of Eq. (1) and integrate on initial
configuration. The integral form of equation is obtained as∫

Ω0

δui

(
∂ Pji

∂ X j
+ ρ0bi − ρ0üi

)
dΩ0 = 0. (2)

Using integration by parts and the divergence theorem, we
obtain the weak form of the governing equation as follow∫

Ω0

(
δFi j Pji − δuiρ0bi + δuiρ0üi

)
dΩ0

−
∫

Γ t
0

δui t̄i0dΓ0 = 0 ∀δu ∈ U0 (3)

where U0 = {
δu(X)|δu(X) ∈ C0, δu(X) = 0, on �u

0, δu
discontinuous on �u

0

}
is the test function.

2.2 Discretization and XFEM

In the XFEM framework, the displacement approximation is

uh(X) =
∑

I

NI (X)uI +
∑

J

NJ (X)	J (X)qJ (4)

where I is a set of all nodes, and J is a set of the enriched
nodes. NI (X) is the standard FEM shape function, 	J (X) is
the enriched function, uI is the standard degree of freedom,
and qJ is the enriched degree of freedom associated with
	J (X). The variation of displacement is

δu =
∑

I

NI (X)δuI +
∑

J

NJ (X)	J (X)δqJ (5)

By substituting Eq. (5) into Eq. (3), the momentum equa-
tion is obtained, which is solved to get the final results.[

Muu Muq

MT
uq Mqq

](
ü
q̈

)
+
[

Kuu Kuq

KT
uq Kqq

](
u
q

)
=
(

f ext

Qext

)

(6)

where u is the standard degree of freedom, while q is the
enriched degree of freedom. f ext is the external nodal force
corresponding to u, while Qext is the external nodal forces
corresponding to q. The mass matrix M and stiffness matrix
K contain the standard term uu, the enriched term qq, and
the coupled term uq, respectively, as shown in Eq. (6), which
is solved by typical implicit Newmark − β method. More
details can be found in our previous work in Refs.[27,28].

The most important part of XFEM is to choose proper
enriched function. As mentioned above, in this method the
crack can propagate across the element arbitrarily without
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going along the element boundary, thus, some elements may
be crossed by the crack, while the others contain crack tip. As
the different position relationship between the element and
the crack, the enrichment scheme is not the same. For differ-
ent kinds of elements, the enriched function 	J has different
forms to seize the characteristics of the discontinuity.

If an element is crossed by a crack, a Heaviside function is
usually used as the enriched function. In this paper, a shifted
form is adopted. The enriched function is selected as

	J (X) = H( f (X)) − H( f (X J )) (7)

where H(ϕ) is the Heaviside function with the definition of

H(ϕ) =
{

1, ϕ ≥ 0
−1, ϕ < 0

(8)

and f (X) is a signed distance function as

f (X) = min
X∈�c

0

∥∥X − X
∥∥ · sign(n+ · (X − X)) (9)

If an element is embedded by a crack tip, the following
enriched function is used

	J (X) = b(X) − b(X J ) (10)

where b(X) is a linear combination of the following basis

b(X)=
[√

r sin
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
,
√

r cos
θ

2
sin θ

]

(11)

This basis is borrowed from the solution of linear elastic
fracture mechanics so that the singularity at the crack tip can
be obtained.

More details about the XFEM can be found in Refs.[19,
20,29,30].

2.3 Branching enrichment

In the above, the enrichment scheme of a single crack in
a two-dimensional body is introduced, while the enrichment
should be improved when it meets the branched cracks. Daux
et al. [23] introduce the discontinuous functions for mod-
eling branched cracks. A junction function is used as the
additional enriched function. Zi et al. [31] combine two step
enrichments to implement the junction of two cracks for the
problem of growing multiple cracks. Based on this idea, a
shifted form is developed in this paper and the details are
introduced in the following.

When modeling the branched cracks, two kinds of new
enriched elements are considered. They are the element
crossed by two separated cracks and the element embedded
by a junction, as shown in Fig. 2a, b, respectively. In these
two kinds of enriched elements, the approximate displace-
ment field is needed to be improved, and the description for
the additional crack is necessary.

If there are two separate cracks existing in the same ele-
ment, only one series of enriched degrees of freedom is not
enough to describe the discontinuous feature of the element
displacement field. One more enrichment is necessary to
seize the additional discontinuity in the element. Another
signed displacement function is introduced to describe the
position of the second crack. The displacement field can be
approximately expressed as

uh(X) =
4∑

I=1

NI (X)uI

+
4∑

J=1

NJ (X)
[

H( f I(X)) − H( f I(X J ))
]

qI
J

+
4∑

K=1

NK (X)
[

H( f II(X)) − H( f II(XK ))
]

qII
K

(12)

where f I(X) and f II(X) are the signed distance functions
to the first (red solid line in Fig. 2a) and second (green
dashed line in Fig. 2a) crack, respectively. qI

J and qII
K are

the enriched degrees of freedom associated with two cracks.
The first crack is enriched as if the secondary crack is absent,
and the second item of right hand side of Eq. (12) stands
for it. Similarly, the second crack is enriched almost as if
the first crack is absent, and the third item of right hand side
of Eq. (12) stands for it. By putting them together, the two
cracks in the same element can be described and modeled.

The element containing a junction is the element in which
the crack branching occurs as shown in Fig. 2b. The number
of degrees of freedom is the same as the element with two
separate cracks, and the enrichment scheme is also similar
to each other. Besides the original enrichment, a junction
function is defined in this element. The approximation of the
displacement field is expressed as

uh(X) =
4∑

I=1

NI (X)uI

+
4∑

J=1

NJ (X)
[

H( f I(X)) − H( f I(X J ))
]

qI
J

+
4∑

K=1

NK (X) [J (X) − J (XK )] qII
K (13)

where J (X) is the junction function with the definition of

J (X) =
{

H( f I(X)), on the side without branch
H( f II(X)) on the side with branch

(14)

We regard the main crack and one of the two branches
as the first crack (red solid line in Fig. 2b), and f I(X) is
the signed distance function corresponding to it. The other
branch is the second crack (green dashed line in Fig. 2b),
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Fig. 2 Distance funtions: a
element crossed by two separate
cracks; b element embedded by
a junction

( ) 0I =Xf

( ) 0I >Xf ( ) 0II >Xf

( ) 0I <Xf

( ) 0I <Xf

( ) 0II >Xf

( ) 0II <Xf

( ) 0I =Xf

( ) 0II =Xf
( ) 0II <Xf( ) 0I <Xf

( ) 0II >Xf

( ) 0II =Xf

( ) 0I >Xf

( ) 0I <Xf

(a) (b)

and f II(X) is the signed distance function corresponding to
it. It is worth mentioning that in the definition of J (X), the
side with branch refers to the region where f I(X) < 0 as
shown in Fig. 2b. The fundamental concept of the junction
function J (X) has certain similarity with the contribution
of the junction enrichment when one crack approaches and
touches another crack, which is proposed in Ref. [31]. By
applying the new enrichment to XFEM procedure, the cracks
with branches can be modeled.

It is very convenient to treat the blending element with
this shifted formulation of enrichment function. However,
it brings more difficulties in constructing the diagonal mass
matrix for the branched element since a sophisticated lump-
ing scheme for shifted formulation is still lacking at present.
A modified mass lumping scheme is deduced based on the
principle of kinetic energy conservation for the branched ele-
ment, which is discussed in the following section.

3 Lumping scheme of mass matrix

The lumped mass matrix is commonly used in the dynamic
simulation. In this section, the lumping scheme of the mass
matrix corresponding to the modified XFEM formulation is
introduced in details. It is difficult to construct the lumped
mass matrix in the discontinuous element when the shifted
multi and junction enrichments are used. Here we construct
the lumped mass by following the basic principle to guaran-
tee that the discrete kinetic energy is exact for some special
motions. The definition of the mass matrix based on shifted
enriched shape function is introduced, which is started from
one dimension (1D) and then extended to 2D problem.

3.1 One dimension problem

Firstly, take the 1D problem as an example to show the detail
of the mass lumping scheme. We assume the diagonal mass
matrix of the element is M = diag [ m1 m2 m′

1 m′
2 ],

where m1 and m2 are masses corresponding to the standard
nodes in the element, while m′

1 and m′
2 are masses corre-

1 2

discontinuity

L

L1 L2

Fig. 3 Schematic of 1D element

sponding to the enriched nodes. In order to determine M,
two motion modes are selected.

The first one is the rigid body motion with a constant
velocity of u̇, thus the velocity of the element is u̇ = u̇.
Considering one discontinuity in the element, as shown in
Fig. 3, the displacement interpolation of the element is

u(x) =
2∑

I=1

NI (x)uI +
2∑

J=1

NJ (x) [H( f (x))

−H( f (xJ ))] qJ (15)

The velocities on the nodes are supposed u̇ I = u̇ and
q̇I = 0 (I = 1, 2). The approximate kinetic energy is

T h = 1

2
u̇T Mu̇= 1

2

[
u̇ u̇ 0 0

]
⎡
⎢⎢⎣

m1 0 0 0
0 m2 0 0
0 0 m′

1 0
0 0 0 m′

2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u̇
u̇
0
0

⎫⎪⎪⎬
⎪⎪⎭

= 1

2
(m1 + m2)u̇

2
(16)

The exact kinetic energy is

T =
∫

1

2
ρu̇

2
dx = 1

2
u̇

2
∫

ρdx = 1

2
mu̇

2
(17)

where m is the mass of whole element. Let T h = T , we
obtain

m1 + m2 = m (18)

Equation (18) is the requirement of mass corresponding to
the standard nodes, and we may assume

m1 = m2 = 1

2
m (19)
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The second motion mode is described by the velocities
on the nodes as u̇ I = 0, q̇I = u̇, unfortunately it is not of
a specific physics meaning. The motion of the element is
obtained from Eq. (15) as

u̇(x) =
2∑

I=1

NI (x)u̇ I +
2∑

J=1

NJ (x) [H( f (x))−H( f (xJ ))] q̇J

=
[

H( f (x)) −
2∑

J=1

NJ (x)H( f (xJ ))

]
u̇ (20)

The approximate kinetic energy of this motion mode is

T h = 1

2
u̇T Mu̇= 1

2

[
0 0 u̇ u̇

]
⎡
⎢⎢⎣

m1 0 0 0
0 m2 0 0
0 0 m′

1 0
0 0 0 m′

2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

0
0
u̇
u̇

⎫⎪⎪⎬
⎪⎪⎭

= 1

2
(m′

1 + m′
2)u̇

2
(21)

The exact kinetic energy is

T =
∫

1

2
ρu̇2dx

=
∫

1

2
ρ

{
2∑

J=1

NJ (x) [H( f (x)) − H( f (xJ ))] u̇

}2

dx

= 1

2
u̇

2
∫

ρ

[
H( f (x)) −

2∑
J=1

NJ (x)H( f (xJ ))

]2

dx

= 1

2
m′u̇2

(22)

where m′ = ∫
ρ
[
H( f (x))−∑2

J=1 NJ (x)H( f (xJ ))
]2

dx is

the effective mass of the element in this motion mode. From
T h = T , we obtain the requirement of mass corresponding
to the enriched nodes as

m′
1 + m′

2 = m′ (23)

For deciding the assignment of the mass, we consider the
position of discontinuity in the element, and assign the mass
matrix as following as

m′
I = L I

L
m′, I = 1, 2 (24)

where L is the length of the element and L I is the distance
between the discontinuity and the I th node as shown in
Fig. 4. The effective mass depends on the position of dis-
continuity in the element. In the following example, the
motion mode and the diagonal mass are given specifically.
We assume the discontinuity in the middle of the element as
shown in Fig. 4. The shape functions are given by

N1(x) = −
(

x

L
− 1

2

)
, N2(x) = x

L
+ 1

2
(25)

node1

0 x-L/2 L/2

node2

u

u

Fig. 4 Distribution of velocity

The velocity of element is

u̇(x) = N1(x)u1 + N2(x)u2 + N1(x)[H(x) − H(x1)]q1

+N2(x) [H(x) − H(x2)] q2

= −
(

x

L
− 1

2

)
[H(x) + 1] u̇

+
(

x

L
+ 1

2

)
[H(x) − 1] u̇

=
{(

1 − 2x
L

)
u̇, x > 0(−1 − 2x

L

)
u̇, x < 0

(26)

The distribution of velocity is illustrated in Fig. 4.
In this case, the effective mass of element is

m′ =
∫

ρ

[
H( f (x)) −

2∑
J=1

NJ (x)H( f (xJ ))

]2

dx

=
L
2∫

− L
2

ρ

[
H( f (x)) − 2x

L

]2

dx

=
0∫

− L
2

ρ

(
−1 − 2x

L

)2

dx +
L
2∫

0

ρ

(
1 − 2x

L

)2

dx

= ρL

3
(27)

By using the shifted enriched function, the effective mass
of an element with discontinuity does not equal to the exact
mass of the whole element. The mass on the enriched nodes
are

m′
1 = m′

2 = m′

2
= ρL

6
(28)

The mass on standard nodes are m1 = m2 = 1
2 m = ρL

2 .
Thus the mass matrix of this element is

M =

⎡
⎢⎢⎢⎣

ρL
2

ρL
2

ρL
6

ρL
6

⎤
⎥⎥⎥⎦ (29)

3.2 Two dimension problem

Following the basic idea of 1D problem, the scheme is
extended to 2D problem. The element with two cracks is
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considered, and the element with one crack or junction can
be obtained by analogy. Four-node quadrilateral element is
used here. In this kind of element, each node is enriched
twice, so the number of degrees of freedom of the element
increases to 24, and the size of the mass matrix is 24 × 24.

Assuming the mass of the standard nodes is m J , where
J = 1, 2, 3, 4 are the index of the nodes. The mass of the first
set of enriched nodes is m′

J , J = 1, 2, 3, 4, and the mass of
the second set of enriched nodes is m′′

J , J = 1, 2, 3, 4. Three
motion modes are required to determine the mass matrix.

Motion mode one is rigid body motion u = u̇, and the
velocity on the nodes is uI = u̇, q̇I

I = 0, q̇II
I = 0, respec-

tively. The subscript I =1, 2, 3, 4 are the index of the nodes,
and the superscript I and II indicate that they are the enrich-
ments for the first and second crack inside the element,
respectively. The discrete kinetic energy is given by

T h = 1

2
(m1 + m2 + m3 + m4)u̇

2
(30)

while the exact kinetic energy is

T =
∫

1

2
ρu̇

2
dx = 1

2
u̇

2
∫

ρdx = 1

2
mu̇

2
(31)

From T h = T , we obtain

m1 + m2 + m3 + m4 = m (32)

where m is the mass of element. We assign the standard mass
on the nodes to be equal to each other as follows

m1 = m2 = m3 = m4 = m

4
(33)

Motion mode two is defined on the velocities of the nodes
as uI = 0, q̇I

I = u̇, q̇II
I = 0, respectively. The discrete kinetic

energy is

T h = 1

2
(m′

1 + m′
2 + m′

3 + m′
4)u̇

2
(34)

The exact kinetic energy is

T =
∫

1

2
ρu̇2dx

=
∫

1

2
ρ

{
4∑

J=1

NJ (X)
[

H( f I(X)) − H( f I(X J ))
]

u̇

}2

dx

= 1

2
u̇

2
∫

ρ

[
H( f I(X)) −

4∑
J=1

NJ (X)H( f I(X J ))

]2

dx

= 1

2
m′u̇2

(35)

where m′= ∫
ρ
[

H( f I(X))−∑4
J=1 NJ (X)H( f I(X J ))

]2
dx

and T h = T , we obtain

m′
1 + m′

2 + m′
3 + m′

4 = m′ (36)

x1

x2

y1

y2

12

3 4

I

II

Fig. 5 Integration point distribution

The assignment scheme of the mass is

m′
J = nint I

subJ · m′

nint
ele · nnodeI

subJ

, J = 1, 2, 3, 4 (37)

Considering the first discontinuity in the element, nintI
subJ is

the number of the integration points in the subdomain, which
contains the J th node; nint

ele is the number of integration points
in the whole element, and nnodeI

subJ is the number of nodes in the
subdomain, which contains the J th node. The mass selec-
tion is a weight assignment based on the integration points.
For example, the integration point schematic is illustrated in
Fig. 5. In this element, nint

ele = 49, nintI
sub1 = nintI

sub3 = nintI
sub4 =

45, nintI
sub2 = 4, and nnodeI

sub1 = nnodeI
sub3 = nnodeI

sub4 = 3, nnodeI
sub2 = 1.

When consider about the first crack, the second crack is
ignored.

The integral scheme is modified in each enriched element
to ensure accurate integration. For each enriched element, the
integration points are scattered uniformly and in the critical
lengths of x and y directions, there must be at least two
integration points. The critical length in x or y direction is
defined as the shortest distance from the crossing point of the
crack and element edge to the node. For example, in Fig. 5
the critical length of x direction is the minimum of x1 and
x2, while the critical length of y direction is the minimum of
y1 and y2.

Motion mode three is defined as uI = 0, q̇I
I = 0, q̇I

I =
u̇. It is similar with the condition of the first discontinuity.
We can obtain the requirement of mass on the second set of
enriched nodes as follow

m′′
1 + m′′

2 + m′′
3 + m′′

4 = m′′ (38)

where, m′′ =∫
ρ
[
H( f II(X))−∑4

J=1 NJ (X)H( f II(X J ))
]2

dx .

The assignment of the mass on each node is based on the fol-
lowing formula and idea is the same as the former.

m′′
J = nint II

subJ · m′′

nint
ele · nnodeII

subJ

, J = 1, 2, 3, 4 (39)

where nint II
subJ and nnodeII

subJ are the number of integration points
and the nodes of the subdomain cut by the second discon-
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x1

x2

crack
θ

Fig. 6 Crack tip configuration

tinuity, respectively. At this time, the first discontinuity is
ignored.

4 Criterion of crack branching

The crack propagation criterion and some fundamental con-
cept of dynamic fracture mechanics are reviewed in this sec-
tion. The criterion for dynamic crack branching is used based
on the solution of Yoffe [7], which is applied for initiating
crack branching and predicting branching angle.

4.1 Crack propagation criterion

In the quasi-static crack propagation for a mixed mode crack,
as shown in Fig. 6, the maximum circumferential stress cri-
terion is generally used. It assumes that the crack propagates
perpendicular to the direction of the maximal circumferen-
tial stress, when the effective stress intensity factor along that
direction reaches the fracture toughness.

For dynamic crack propagation, which is numerically sim-
ulated here, the propagation criterion has similar basic idea
with the static condition. Firstly, we must check whether
the crack is going to propagate using the criterion shown
in Eq. (40).

if K dyn
θ < K I c, then V = 0

else K dyn
θ = K I D(V ), V > 0 (40)

where V is the propagation speed of the crack. If the effective
stress intensity factor K dyn

θ does not reach the fracture tough-
ness K I c, the crack will not propagate, so the crack speed is
zero; while if it reaches the critical value, the crack may start
to propagate. For a steady propagating crack, the dynamic
stress intensity factor equals to the dynamic fracture tough-
ness K I D(V ), which is related with the propagation speed
of the crack. The direction of the maximum circumferen-
tial stress θc is calculated from Eq. (41). It is deduced from
the stress field distribution near a steady moving crack tip,
which is similar with the static case. Thus, the effective stress
intensity factor K dyn

θ on that direction can be obtained from
Eq. (42).

θc =2 arctan
1

4

⎛
⎜⎝K dyn

I

K dyn
I I

−sign
(
K dyn

I I

)√√√√
(

K dyn
I

K dyn
I I

)2

+8

⎞
⎟⎠ (41)

K dyn
θ = cos3

(
θc

2

)
K

dyn
I − 3

2
cos

(
θc

2

)
sin θc K dyn

I I (42)

The stress intensity factors can be calculated numerically
by interaction integral method, and details can be found in
Ref. [32]. The dynamic fracture toughness is obtained by
the experiments. Unlike the static fracture toughness, the
dynamic one is not constant, but varies with the crack speed
V . As an approximation, we have the following equation
describing the relationship between the dynamic fracture
toughness and the crack propagation speed [30]

K I D(V ) = K I c

1 − (V/cR)m (43)

where cR is the Rayleigh wave speed. Here we choose m =
1, and obtain the following formula to estimate the crack
propagation speed.

V =
(

1 − K I c

K dyn
θ

)
cR (44)

4.2 Crack branching criterion

Yoffe [7] gave the theoretical solution of displacement and
stress field near the fast moving crack tip. The stress field
distribution depends on the crack speed. For a moving mode
I crack, the main terms of the stress field are given by

σxx = K I (V )√
2π

1 + α2
2

4α1α2 − (
1 + α2

2

)2

[(
1 + 2α2

1 −α2
2

) cos θ1
2√

r1

− 4α1α2

1 + α2
2

cos θ2
2√

r2

]
(45)

σyy = K I (V )√
2π

1 + α2
2

4α1α2 − (
1 + α2

2

)2

[
−
(

1 + α2
2

) cos θ1
2√

r1

+ 4α1α2

1 + α2
2

cos θ2
2√

r2

]
(46)

σxy = K I (V )√
2π

1 + α2
2

4α1α2 − (
1 + α2

2

)2

[
2α1

(
sin θ1

2√
r1

− sin θ2
2√

r2

)]

(47)

where, α1 =
(

1 − V 2

c2
1

)1/2

, α2 =
(

1 − V 2

c2
2

)1/2

, tan θ1 =
α1 tan θ, tan θ2 = α2 tan θ, r1 = r cos θ

cos θ1
, and r2 = r cos θ

cos θ2
,

respectively. From the expression (45)–(47), the relationship
between the stress and crack speed is revealed. The crack
propagation criterion suggests that the circumferential stress
plays an important role in the crack moving process. By
transforming the coordinates, the circumferential stress is
obtained,
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Fig. 7 Curves of
σθ

√
2πr/K I ∼ θ on variable

propagation speeds
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σθ = K I (V )√
2π

1 + α2
2

4α1α2 − (
1 + α2

2

)2 sin2 θ
[
(1 + 2α2

1

−α2
2)

cos θ1
2√

r1
− 4α1α2

1 + α2
2

cos θ2
2√

r2

]

+ K I (V )√
2π

1 + α2
2

4α1α2−(1+α2
2

)2 cos2 θ

[
−
(

1+α2
2

) cos θ1
2√

r1

+ 4α1α2

1 + α2
2

cos θ2
2√

r2

]

+ K I (V )√
2π

1 + α2
2

4α1α2 − (
1 + α2

2

)2 (−2 sin θ cos θ) (48)

In order to analyze it qualitatively, the curves of
σθ

√
2πr/K I ∼ θ on variable propagation speeds can be

plotted for a given material. For the following given material
parameters, E = 32 GPa, ν = 0.2, and ρ = 2450 kg/m3,
the curves are plotted in Fig. 7. The Rayleigh wave speed of
the material is 2119.0m/s.

For a mode I crack, if the crack propagates quasi-statically,
the maximum circumferential stress may keep on the origi-
nal direction of θ = 0. For a dynamic propagating crack, the
situation is changed. Figure 7 apparently reveals the change
of the normalized circumferential stress distribution at differ-
ent crack speeds. It can be qualitatively found that when the
velocity is low (less than 1,400 m/s), the maximum normal-
ized circumferential stress occurs on the direction of θ = 0,
which means the crack propagates along the original direc-
tion; while as the velocity increases (beyond 1,500 m/s),
the maximum normalized circumferential stress occurs on

two symmetrical directions. Based on the viewpoint of the
maximum circumferential stress criterion, the crack branch-
ing will happen when there exists two symmetrical nonzero
directions.

The theory agrees with the fact that dynamic crack branch-
ing is related to the crack speed. When the propagation speed
is given, it provides a criterion that whether the crack may
branch or not. From the analysis of the normalized circum-
ferential stress, we can get the direction in which the max-
imum occurs. If the speed is not high enough, the direction
angle θ equals to zero, otherwise we can get a nonzero angle,
which is regarded as the branching angle. Although it is not
a physical criterion, it can provide an available criterion in
the approximate simulation.

5 Numerical examples

In this section, we apply the method introduced above to
model several crack problems that are often used as the
benchmarks to validate the capability and accuracy of the
method. The first two examples focus on the modeling of sta-
tic branched cracks and calculation of dynamic stress inten-
sity factor of a semi-infinite crack, respectively. Following
this, the dynamic crack branching is simulated for the third
example and discussed in detail.

5.1 Static branched cracks

The first example is a static edge crack with branches in a
finite plate. As shown in Fig. 8, the right edge of the plate is
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Fig. 8 A plate with the left edge crack and branches

Fig. 9 Mises stress (MPa)

fixed, and uniform tensions are applied on the top and bottom
edges. The properties of the material are E = 210 GPa and
ν = 0.3. With a structure mesh and the XFEM algorithm,
the deformed configuration and stress field are obtained as
shown in Fig. 9. From the distribution of Mises stress, we can
find that there are stress concentrations on both crack tips. At
the junction point with three cracks, the stress level is much
lower than it at the crack tip location.

Next, we consider a static branched crack in an infinite
plate under uniaxial traction as shown in Fig. 10. To have
a quantitative study, the stress intensity factors of the three
crack tips are calculated. The geometry parameters in the
simulation are θ = 45◦ and the length ratio b/a = 1.0.

In the stress intensity factor (SIF) handbook [33], we can
get the theoretical SIF of this problem, which are calculated
by the following formulas

A

C

B

Fig. 10 Geometry of a branched crack in an infinite plate

Table 1 Coefficients of stress intensity factors

Theoretical Numerical Error (%)

FI A 1.044 1.033 1.05

FI I A 0 4.916 × 10−4 –

FI B 0.5 0.488 2.49

FI I B −0.5 −0.483 3.40

FI C 0.5 0.489 2.20

FI I C 0.5 0.483 3.40

K I A = FI Aσ

√
π

c

2
, K I I A = FI I Aσ

√
π

c

2
(49)

K I B = FI Bσ

√
π

c

2
, K I I B = FI I Bσ

√
π

c

2
(50)

K I C = FI Cσ

√
π

c

2
, K I I C = FI I Cσ

√
π

c

2
(51)

where c = a + bcosθ .
In the program, we use the method of interaction integral

to calculate the SIF. The coefficient F is calculated from the
SIF using Eqs. (49)–(51). The numerical results are compared
with the theoretical value, as shown in Table 1. These results
agree well with the theoretical solutions.

5.2 Semi-infinite crack in an infinite plate

We choose the second example as a semi-infinite crack in an
infinite plate subjected to a tensile stress wave to validate the
calculation accuracy of dynamic fracture SIF. The boundary
condition is that the left and right edges are fixed in x direc-
tion and free in y direction. This is a classical benchmark
of the dynamic stress intensity factor calculation. A theoret-
ical solution of this problem is known from Ref. [34], which
is compared with our numerical result. Here two main cases
are considered, namely a stationary crack and a moving crack
under a given speed. The geometry and loading conditions
are described in Fig. 11. The stress wave spreads from the
top to the crack within the time of tc = h/cd , where cd is the
dilatational wave speed. The analytical solution is valid only
at time t ≤ 3tc when the reflected stress wave reaches the
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Fig. 11 Geometry and loading for the infinite plate

crack tip. Right after the stress wave reaches the crack tip,
the mode I stress intensity factor for a stationary crack can
be written as

K dyn
I (0, t) = 2σ0

1 − ν

√
cd t (1 − 2ν)

π
(52)

For a moving crack, we have

K dyn
I (V, t) = k(V )K dyn

I (0, t) (53)

where k(V ) is a function of the crack tip speed V ,

k(V ) = 1 − V/cR

1 − V/2cR
(54)

Substituting Eqs. (54) and (52) into Eq. (53), we have

K dyn
I (V, t) = 2σ0

1 − ν

√
cd t (1 − 2ν)

π

1 − V/cR

1 − V/2cR
(55)

To obtain the numerical results, we choose the plate
dimensions as h = 2 m, L = 10 m and l = 5 m, the material
properties E = 210 GPa, ν = 0.3 and ρ = 8000 kg/m3. The
tensile stress σ0 is 500 MPa. The dilatational wave speed of
the material is 5944.5 m/s and the corresponding Rayleigh
wave speed is 2859.7 m/s.

For a stationary crack, the crack does not propagate during
the calculation. The load is applied at t = 0. The mode I
SIF is normalized by σ0

√
h and the time is normalized by

tc. Various mesh densities are used to check the numerical
convergence. The simulation results are compared with the
theory solutions as shown in Fig. 12.

The numerical results have an oscillation near the theoret-
ical solution and all the three meshes give satisfying results.
It reveals that the program has the capacity to obtain the
dynamic stress intensity factor for a stationary crack. Fig-
ure 13 exhibits the Mises stress field of the plate for different
times during the spread process of stress wave. The evolution
of stress field is described apparently.

For the moving crack condition, the crack starts to propa-
gate at 1.0tc or 1.5tc, respectively, as shown in Fig. 14. The
crack speed is given as 1,980 m/s. If the crack starts to prop-
agate at 1.0tc, the stress intensity factor keeps at a low level
before the time 1.0tc, while after that the SIF increases at a
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-0.2

0.0

0.2

0.4
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t / tc
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mesh1: 51*21
mesh2: 71*29
mesh3: 91*37

K
dy

n
1

/(σ
0√

h)

Fig. 12 Stress intensity factor for a stationary crack

Mises(MPa)   50    400  750  1100 1450 1800 2150 2500

Fig. 13 Mises stress fields (MPa) (200, 500, 800 μs)

lower level than that for a stationary crack. On the contrary,
if the crack starts to propagate at 1.5tc, the SIF increases as
the case for a stationary crack before the crack moves. After
the time 1.5tc, the SIF drops to a lower level. The numerical
results seize the feature of both processes, and have a good
agreement with the theoretical solutions.
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Fig. 14 Stress intensity factors for moving cracks with a given speed

Fig. 15 Schematic of the crack branching model

5.3 Dynamic crack branching

The third example concerns a crack propagation in a pre-
notched specimen as shown in Fig. 15. The dimension of
specimen is 0.1 × 0.04 m, and the length of initial crack is
0.05m. The properties of material are E = 32 GPa, ν = 0.2
and ρ = 2, 450 kg/m3. The dilatational wave speed is cd =
3809.5m/s and the shear wave speed cs = 2332.8 m/s. The
corresponding Rayleigh wave speed is cR = 2119.0 m/s.
Tensile tractions σ = 1 MPa are applied on the top and
bottom edges as a step function in time. The numerical results
of this problem are given by Belytschko et al. [24], Song et
al. [21] and Borden et al. [18], respectively. The experimental
results with different dimensions are available in Refs. [2,6,
35–37].

In the experiments, the crack propagates along the orig-
inal straight direction with increasing crack speed before
branching. When the speed reaches the critical value, the
crack branching occurs. Besides the main branches, some
secondary micro branches are also observed. In our simu-
lation, the quadrilateral elements are used. The maximum
circumferential stress criterion is used to obtain the crack
growth paths and the theory introduced in Sect. 4 is used to
predict the crack branching. The solution given by Yoffe is
established under some assumptions which are very difficult

Mises(MPa) 1  2  3  4  5  6  7  8  9  10 11 12

Fig. 16 Crack branching paths (25, 35, 45 μs)

to be satisfied practically. Here we just use it as estimation
for branching initiation.

The propagation paths and Mises stress fields obtained
from the simulation are shown in Fig. 16. The crack starts
to propagate at about 8 μs, which is a typical mode I crack.
The initial crack grows along the original direction until the
branching criterion is reached. The single crack becomes two
branches when crack branching takes place at about 25 μs.
After that time, the two branches continue to propagate sep-
arately.

Based on the stress fields, we use the method of interaction
integral to calculate the SIF during the crack propagation. The
dynamic SIF is 3.851KIc when the crack branching occurs.
This condition is stronger than the assumption that crack
branching takes place when the energy release rete G attains
the integer multiplies of value Gc required for crack initia-
tion, for example, G = 2Gc when a single crack becomes
two.

Figure 17 exhibits the crack propagation speed obtained
from the simulation. The speed reaches the maximum value
just before the branching. The ratio of the maximum crack
speed to Rayleigh wave speed is 0.741, which is also higher
than that of 0.4 obtained from the experiment [6]. The error
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Fig. 17 Crack propagation speed

Fig. 18 Comparison of the crack propagation paths: a Enriched b Sim-
plified

may be partially attributed to the branching criterion used
in the simulation, since the critical velocity established from
Yoffe’s solution is higher than that observed in the experi-
ment.

In the simulations, we consider the enrichment method for
an element embedded by a junction or an element crossed by
two separated cracks as described in Sect. 2.3. However, in
the previous studies of this example, the branching process is
often simulated by the simply deleted element method when
the branching occurs. Here we compare the crack paths for
these two different treatments. The element deletion is real-
ized by ignoring the stiffness and nodal force contribution for
the branched elements, so that the complicated enrichment
and integration is avoided inside the element (the element in
a small red rectangular as shown in Fig. 18). But for match-
ing the degrees of freedom with the neighboring elements
and the post-process, the geometry description of the dis-
continuities is remained inside these kinds of elements. The
results obtained by the simplified treatment are compared

with the results with enrichment as shown in Fig. 18. We can
find the similar branching configurations, which are mainly
determined by the status before branching, so the simplifica-
tion does not change the branching path a lot. By the way, it
is worth mentioning that the roughness of the crack surface
and micro branches observed in the experiments are ignored
in the numerical simulation.

6 Conclusions

The new methodology and program based on XFEM is devel-
oped in this paper to simulate dynamic crack propagation
and branching. The enrichments for a branched crack are
developed. We focus on introducing the enrich scheme of
the element crossed by two separated cracks and the element
embedded by a junction. More enriched degrees of freedom
are needed in these two kinds of elements because of the addi-
tional discontinuities inside the element. The new enrichment
makes it possible to model branched cracks with structure
meshes.

The mass lumping technique based on the shifted enriched
shape function is developed to improve the efficiency of sim-
ulation. It follows a principle of kinetic energy conservation
in the special motion modes. The mass matrix of an element
contained two strong discontinuities is deduced and a new
node mass assignment technique is carried out based on the
subdomain integral weight.

The crack speed is used as the criterion of crack branching.
The process of a crack propagation and branching is modeled.
The results including the branching angle and propagation
path are compared with conventionally used element deletion
method. The branching theory used in this paper is only a
criterion of the branching initiation. The problem of dynamic
crack branching is still an open question. The further study
needs to be carried out in the near future.
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