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Abstract Eddy-dampingquasinormal Markovian (EDQNM)
theory is employed to calculate the resolved-scale spectrum
and transfer spectrum, based on which we investigate the
resolved-scale scaling law. Results show that the scaling
law of the resolved-scale turbulence, which is affected by
several factors, is far from that of the full-scale turbulence
and should be corrected. These results are then applied to
an existing subgrid model to improve its performance. A
series of simulations are performed to verify the necessity of
a fixed scaling law in the subgrid modeling.

Keywords Scaling law · Large-eddy simulation · CZZS
model

1 Introduction

Kolmogorov introduced the 2/3 scaling law for the second-
order structure function in isotropic turbulence, which is
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usually named K41 theory. As one of the most important
basic theories, the scaling law have attracted plenty of re-
searches in the past seventy years. In order to clarify the
background of this paper, we would like to briefly present
three important directions in the research of the scaling law:
(1) Scaling law in inertial range has been always in the cen-
ter of the turbulence research. In Kolmogorov 1941 (K41)
theory the 2/3 scaling law was obtained by the dimensional
analysis, however, it was doubted by Landau and Lifshitz [1]
and led to researches on the anomalous scaling law. The
anomalous scaling law is usually considered to be gener-
ated by the intermittency of the small-scale turbulence. Kol-
mogorov et al. [2, 3] introduced their corrected scaling laws,
which have been proved in lots of experiments and numerical
simulations. In addition, Benzi et al. [4] introduced the ex-
tended scale-similarity (ESS) theory to improve the scaling
law at low Reynolds number, which regarded the (anoma-
lous) skewness of velocity increment as a constant. There are
also several researchers who doubted the anomalous scaling
law. Qian [5, 6] argued that the anomalous scaling law might
be a finite Reynolds effect (FRE), while K41 theory should
be satisfied at infinite Reynolds number. Barenlatt [7] argued
that the relative scaling exponent in ESS theory should not be
an anomalous number 0.70 but should remain 2/3. There is
still no conclusion on these arguments, and in the modern re-
searches the main trend is still the anomalous scaling law and
intermittency. (2) Both K41 theory and anomalous scaling
law can be employed only in inertial range of high Reynolds
turbulence. These theories are not valid when the two-point
distance is close to the dissipation scale or energy-containing
scale. In order to investigate the scaling law outside inertial
range, one method is to combine the Kolmogorov equation
with ESS theory. ESS theory can more or less extend the
scaling law, however, it is still not valid for studying the
transition between dissipation range and inertial range un-
less some models are introduced on the skewness [8]. Not
considering this transition range and only solving the differ-
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ence equations in dissipation range and inertial range seper-
ately can lead to the scaling law of series [9]. There is still
no good theoretical result to describe the transition between
dissipation range and inertial range, while the most accurate
result should be the interpolation equation by Batchelor [10].
Although this equation is semi-empirical, it is in good agree-
ment with the experimental and theoretical results [9, 11, 12].
In addition, the transition between inertial range and energy-
containing range depends on the large-scale structures and
still lacks investigations. (3) Besides, some researchers fo-
cus on the sclaing law in anisotropic turbulence such as the
wall-bounded turbulence. Since in this paper we only dis-
cuss the isotropic turbulence, we would not talk more about
these advances.

The large-eddy simulation (LES) method has been
widely employed in the engineering projects. The core prob-
lem of LES is the development of the subgrid-scale (SGS)
models which denote some physical relationship between
scales. In subgrid modeling, the scaling law can be an im-
portant tool to describe the multi-scale properties of turbu-
lence [13, 14]. However, it should be emphasized that, in
LES we only know the information of the resolved-scale tur-
bulence and can not directly employ the full-scale scaling
law.

We have introduced plenty of researches in the para-
graphs above, the analysis of the resolved-scale scaling law
after filtering is still lacking. Indeed, the necessity of the
resolved-scale scaling law for a SGS model is still unclear.
This resulted in some confused applications in the existing
SGS models. For instance: the original form of the Cui–
Zhou–Zhang–Shao (CZZS) model does not fix the resolved-
scale scaling law, while in this paper we will show that it
is unstable in calculations; one modification of the CZZS
model directly used the full-scale scaling law for the re-
solved part [13], we will point out their great error in this
paper; some preliminary analyses were made to support the
improved velocity increment (IVI) model by Fang et al. [14],
but there was no quantitative result.

In this regard, a comprehensive correction for the
resolved-scale scaling law should be necessary, which can
provide a more reliable tool for LES. This correction is
mainly concerned with three factors: Firstly, the ratio of two-
point distance to filter width; Secondly, the LES Reynolds
number which can explicitly represent the filter effect (sim-
ilar to the FRE effect for full-scale turbulence) in the
SGS models; Thirdly, the effect of different types of fil-
ters. Berland et al. [15] used the eddy-damping quasinormal
Markovian (EDQNM) theory to investigate the filter effect
on the subgrid stress , but the investigation of the resolved-
scale scaling law is still lacking.

We have mentioned in the first paragraph that schol-
ars still have some arguements on the anomalous scaling
law. Note that the main point of this paper is neither sup-
port nor oppose the anomalous scaling law. We suppose
that the correct full-scale scaling law has been obtained (by

EDQNM theory for example), which satisfies either K41 law
or anomalous law in inertial range. Then we investigate the
effect of the filtering operation in LES and the corrections
needed. These corrections would be important in LES mod-
eling.

The paper is organized as follows: In the next section,
we obtain the resolved-scale energy spectrum and transfer
spectrum by using EDQNM theory. Based on these spectra,
we analyze the resolved-scale scaling law for the second-
and third-order structure functions. In Sect. 3, we employ
these results in the subgrid modeling. The CZZS model in
different forms will be employed for LES of the free-decay
isotropic turbulence to verify the necessity of a fixed correct
scaling law in the subgrid modeling. At last, we will further
discuss some problems we mentioned in the previous para-
graphs.

2 Resolved-scale scaling law

2.1 Energy spectrum and energy transfer spectrum of
resolved-scale turbulence

In order to investigate the resolved-scale scaling law, we
need the resolved-scale structure functions. Since the
resolved-scale structure functions cannot be simply obtained
by the full-scale structure functions, we must calculate the
resolved-scale energy spectrum and energy transfer spec-
trum, and then transform them to the resolved-scale second-
and third-order structure functions.

There are some simple analytical models for the energy
spectrum, such as Pope’s model [16] and Pao’s model [17].
However, there are no corresponding models for the transfer
spectrum. Some statistical models, such as direct interaction
approximation (DIA) [18] and test field method (TFM) [19],
can provide both energy spectrum and transfer spectrum, but
they still have some defects in describing the physical prop-
erties of turbulence. The most common analytical model
should be EDQNM model [20, 21], which assumes a quasi-
normal closure between the second- and fourth-order spec-
tral correlation tensors. In this paper we choose EDQNM
theory as the main tool of investigation. The feasibility of
this idea could be found in the recent work of Bos et al. [22]
and Tchoufag et al. [23].

The resolved energy spectrum can be obtaind by the
full-scale spectrum E(k) and the filter kernel G(k)

E<(k) = G2(k)E(k). (1)

The resolved transfer spectrum is more complicated. We
write T (k) as an integral of the triad interactions T (k) =∫∫

dpdqT (k, p, q), which is a function of E(k) from

EDQNM theory

T (k, p, q) = θkpq
k
pq

b(k, p, q)E(q)(k2E(p) − p2E(k)), (2)

where θkpq and b are functions of wave numbers k, p, and q.
When we introduce the filter kernel G(k), the resolved triad
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interaction reads

T<(k, p, q) = θkpq
k
pq

b(k, p, q)G2(q)E(q)

×(k2G2(p)E(p) − p2G2(k)E(k)), (3)

while the resolved transfer spectrum is

T<(k) =
∫∫

dpdqT<(k, p, q). (4)

Figure 1 shows the EDQNM results at Taylor-based
Reynolds number Reλ ≈ 33 000. Both spectra indicate that
the wavenumber of filter kc locates in inertial range. From

the energy spectra in Fig. 1a, we find that only the cutoff
filter produces a “clean” truncation, while for the other fil-
ters there still remains a part of higher-wavenumber energy.
However, the resolved-scale transfer spectrum is not simply
a truncation of the full-scale one, as could be clearly ob-
served in Fig. 1b. The energy which should dissipate in dis-
sipative range now accumulates around the filter. Therefore,
it is reasonable to consider the effect of the filter as reduc-
ing the dissipation wavenumber to the wavenumber of filter.
In addition, the resolved transfer spectrum of the cutoff fil-
ter has a strong interruption around kc because of the high
gradient of the resolved-scale energy spectrum.

Fig. 1 Non-filtered and filtered spectra from EDQNM theory. Wavenumber of filter kc = 20. Taylor-based Reynolds number Reλ ≈ 33 000.
LES Reynolds number ReΔ ≈ 41. a Energy spectrum; b Transfer spectrum

In order to better understand the importance of the filter
in LES, we define an “LES” Reynolds number as [17]

ReΔ =
1
√

15

(kc

ke

)2/3
, (5)

where ke is the energy-containing wavenumber, and in this
case ke = 0.01. ReΔ should be an important parameter
in LES since it denotes the location of the filter compared
with energy-containing scale. Although we expect ReΔ to
be implemented in LES, most of the existing SGS models
are based on the infinite Reynolds assumption and the ef-
fect of ReΔ can not be explicitly found in these models [24].
This implies that in most existing SGS models the influence
of energy-containing information, which can affects both the
energy-decaying rate [25] and the spectrum evolution [23], is
not explicitely taken into account. In the following parts of
this paper we will show that ReΔ is related with the resolved
scaling law, and can then be incorporated into several SGS
models.

2.2 Analysis of resolved-scale scaling law

With the resolved-scale energy spectrum and energy transfer
spectrum obtained from EDQNM theory, we can calculate
the corresponding resolved-scale structure functions with the
transform equations derived by Qian [5, 6].

The transform equation between the second-order
structure function DII(r) and the energy spectrum E(k) is [6]

DII(r) = 4
∫ ∞

0
E(k)
[1
3
+

cos(kr)
(kr)2

− sin(kr)
(kr)3

]
dk. (6)

The transform equation between the third-order struc-
ture function DIII(r) and the energy transfer spectrum T (k)
is [5]

DIII(r) = 12r
∫ ∞

0
T (k)
[
−

sin(kr)
(kr)3

−
3cos(kr)

(kr)4

+
3 sin(kr)

(kr)5

]
dk. (7)

The scaling law of the second- and third-order structure
functions can then be obtained by

n(2) =
dDII(r)

dr
r

DLL(r)
(8)

and

n(3) =
dDIII(r)

dr
r

DIII(r)
. (9)

Note that Eqs. (6)–(9) are all based on the full-scale tur-
bulence. The corresponding resolved-scale transform equa-
tions and scaling law could be simply obtained by replacing
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the full-scale quantities with the resolved-scale ones.
Our investigations focus on the effect of the two-point

distance r and the LES Reynolds number ReΔ on the scal-
ing exponents n(2) and n(3). We observe the evolution of
the scaling exponents for different values of r and ReΔ while
keeping the other parameters unchanged.

When Reλ ≈ 33 000 and kc = 20, the scaling ex-
ponents for different r/Δ can be found in Fig. 2. In this
case Δ locates in inertial range, and the energy-containing
scale is about 1500Δ. Thus, r is in inertial range when
1 � r/Δ � 1 500. The full-scale second-order scaling ex-
ponent (the “non-filtered” line) is almost the same as its ana-
lytical value 2/3, though there is still a little difference. This
difference could be explained either by the anomalous scal-
ing law [2] or by the FRE [9]. Similarly, the full-scale third-
order scaling exponent is almost the same as its analytical
value 1.

These scaling exponents change after the filter is intro-
duced. Although the values in the large scale (the magnitude
of the energy-containing scale) are still the same, in the small
scale r/Δ < 10 the resolved scaling exponents are evidently

far from their analytical values in the full scale. This phe-
nomenon is caused by the filter, and different filter brings
different scaling exponents in this region. For r = Δ, the
resolved second-order scaling exponent with the cutoff fil-
ter is about 1.79, while with the tophat and Gauss filter it is
1.51 and 1.24, respectively. The resolved third-order scal-
ing exponent with the cutoff filter is about 2.47, which is in
agreement with Fang’s proposition 2.5 in the IVI model [14],
while with the tophat and Gauss filter it is 2.03 and 1.65,
respectively. These values are all far from their analytical
values in the full scale.

When Reλ ≈ 33 000, the scaling exponents with dif-
ferent ReΔ (by changing kc) are shown in Figs. 3 and 4 for
r = Δ and r = 2Δ, respectively. These figures are useful
since in most of LES applications we set r = Δ or r = 2Δ.
It is found that the scaling exponent is nearly constant in the
region 10 < ReΔ < 70. When ReΔ is very large, both Δ and r
locate in dissipative range. Since in LES the filter scale can-
not locate in dissipative range, and the LES Reynolds num-
ber cannot be large because of the computational cost, it is
meaningless to discuss the situation under large LES Rey-

Fig. 2 Scaling exponents from EDQNM theory. Wavenumber of filter kc = 20. Taylor-based Reynolds number Reλ ≈ 33 000. LES
Reynolds number ReΔ ≈ 41. a Scaling exponent of second-order structure function n(2); b Scaling exponent of third-order structure
function n(3)

Fig. 3 Scaling exponents from EDQNM theory. Taylor-based Reynolds number Reλ ≈ 33 000. Two-point distance r = Δ = π/kc. a Scaling
exponent of second-order structure function n(2); b Scaling exponent of third-order structure function n(3)
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Fig. 4 Scaling exponents from EDQNM theory. Taylor-based Reynolds number Reλ ≈ 33 000. Two-point distance r = 2Δ = 2π/kc.
a Scaling exponent of second-order structure function n(2); b Scaling exponent of third-order structure function n(3)

nolds number. In contrast, we find that when ReΔ < 10 the
scaling exponents increase with the LES Reynolds number.
Thus, we should do the correction on the resolved-scale scal-
ing law in this region. In order to explain the effect of the
LES Reynolds number more clearly, we analyze an example
as follows. Considering an LES case with 483 grids, since
the energy-containing scale should not be larger than the size
of the computational domain, the ratio of energy containing
scale to filter scale cannot be greater than 48, which corre-
sponds to ReΔ ≈ 3.4. The correct value of the scalings can
then be found from Figs. 3 and 4 for this LES case, with ReΔ
taken into account.

2.3 Analytical expression of the resolved-scale scaling law

Results in the previous subsection reveal the effect of differ-
ent parameters on the resolved-scale scaling law, such as the
type of filter, the ratio of two-point distance to filter width
r/Δ and the LES Reynolds number ReΔ. In practical LES
applications, the scaling exponent may change from time to
time. In order to obtain a more precise value of the scaling
exponent under different conditions, we need an analytical
expression considering the parameters listed above. We as-
sume a simple model for the resolved-scale energy spectrum
as follows

E<(k) =

⎧⎪⎪⎨⎪⎪⎩
Ak−5/3, ke < k < kc,

0, otherwise.
(10)

With Eqs. (6) and (8) we can calculate the resolved second-
order scaling exponent as

n(2) =

3
∫ xc

xe

x−5/3
(
− sin x

3x
− cosx

x2
+

sin x
x3

)
dx

∫ xc

xe

x−5/3
(1
3
+

cosx
x2
− sin x

x3

)
dx

, (11)

where xe = ker, xc = kcr.
Note that n(2) is a function of r/L and r/Δ. L is the in-

tegral length scale which represents the length scale of large
eddies in the flow. Thus, we consider the effect of the LES

Reynolds number ReΔ in this analytical expression of the
resolved-scale scaling law.

This analytical expression could be rewritten as

n(2) =
F (xc) − F (xe)
H (xc) −H(xe)

, (12)

in which

F (x) = − 9
11

sin x
x11/3

+
9

11
cos x
x8/3

+
6

55
sin x

x5/3

+
9

55
cos x
x2/3

− 9
220
T (x),

H (x) = − 1
2x2/3

+
3

11
sin x

x11/3
− 3

11
cos x

x8/3

+
9

55
sin x

x5/3
+

27
110

cos x
x2/3

− 27
440
T (x),

T (x) = (1 +
√

3ι)Γ(1/3, ιx)

+(1 −
√

3ι)Γ(1/3,−ιx),

(13)

where ι =
√
−1. Γ(s, x) is the incomplete Gamma function

Γ(s, x) =
∫ ∞

x
ts−1e−tdt.

Considering the fact that the flows in engineering ap-
plications generally have a high Reynolds number, it is rea-
sonable to further simplify the analytical expression of n(2)
with the infinite Reynolds assumption ke = 0

F (x) =
9

11
(−1)m

(mπ)8/3
+

9
55

(−1)m

(mπ)2/3
− 9

110
T (mπ),

H (x) =
27

110
(−1)m

(mπ)2/3
− 1

2(mπ)5/3

− 3
11

(−1)m

(mπ)8/3
− 27

220
T (mπ),

(14)

where m = r/Δ ∈ N∗. In LES we often fix the ratio of two-
point distance to filter width r/Δ as an integer. The corre-
sponding scaling exponents are shown in Table 1. In prac-
tical LES applications with high Reynolds number, we may
approximately use these values.
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Table 1 Scaling exponents from Eq. (12) with ke = 0

r/Δ 1 2 3 4 5

n(2) 1.742 7 1.246 7 0.999 6 0.932 7 0.877 5

r/Δ 6 7 8 9 10

n(2) 0.850 5 0.825 9 0.811 0 0.796 8 0.787 2

Unfortunately, it is difficult to obtain an analytical ex-
pression of the resolved third-order scaling exponent n(3),
since we have no simple model for the energy transfer spec-
trum T (k), not to mention the resolved one [23]. When n(3)
is needed in practical LES applications, we could refer to
Figs. 2b, 3b, and 4b for an approximate value.

3 Applications of resolved-scale scaling law in LES

An appropriate choice of subgrid model would affect the
resolved-scale behavior [26–28] as well as the time corre-
lation statistics [29]. Besides, in the simulation of heavy
particles, it is also found that the choice of subgrid model
is related to the computational accuracy of particles [30–34].
The aim of the research on resolved-scale scaling law is to
provide a better tool for the subgrid modeling in LES. In
this section, we will elaborate its application to the CZZS
model [13], a typical SGS model based on the structure func-
tions.

The CZZS model is derived from the resolved-scale
Kolmogorov equation. With the eddy-viscosity assumption,
its original form is

νt =
−5D<III(r)

8〈S <i jS
<
i j〉r − 30dD<II(r)/dr

. (15)

We can further simplify the model with the resolved-
scale scaling law by introducing Eq. (8). The modified form
reads

νt =
−5D<III(r)

8〈S <i jS
<
i j〉r − 30n(2)D<II(r)/r

, (16)

where n(2) is the scaling exponent of the resolved-scale
second-order structure function.

It should be emphasized that both forms of the CZZS
model contain the information of the resolved-scale scal-
ing law. For the modified form (16), the information is in-
volved explicitely in the resolved second-order scaling ex-
ponent n(2). The value of n(2) could be determined either
by the figures or by its analytical expression derived in the
previous section. In contrast, the information is involved im-
plicitely in the original form (15), which could be clearly
observed if we rewrite the model as

νt =
−5D<III(r)

8〈S <i jS
<
i j〉r − 30

(dDII(r)
dr

r
DII(r)

)
D<II(r)/r

. (17)

The original form (15) is equivalent to the modified form
(16) with n(2) determined dynamically by its definition. In
other words, the resolved-scale scaling law that we utilize in

the original form of the CZZS model is determined dynam-
ically, while in the modified form we fix a resolved-scale
scaling law which is derived in the previous section. In the
following simulations, the results will show their difference
and reveal the importance of fixing a correct scaling law.

We employ the CZZS model in different forms for LES
of the homogeneous isotropic turbulence. Our LES cases
correspond to the free-decay turbulence at high Reynolds
number by setting the molecular viscosity to a very small
value. The discussion about free-decay turbulence and forc-
ing turbulence can be found in Sect. 4.3. These simulations
are performed on 323, 483, 643, 963, 1283, and 2563 grids,
respectively. Only the results of 323, 643, and 1283 are pre-
sented, since they show the same variation tendency with the
resolution. The spectral method is applied in these cases.
The initial field is generated by using Rogallo’s method [35]
with randomly distributed velocity phases. Some computa-
tional parameters are showed in Table 2. In order to assess
the performance of the SGS model, the spectra will be taken
to compare with the ones computed from the Métais–Lesieur
model [36]. The normalized time denoted as t∗ in all figures
is based on a characteristic time τ of the free-decay turbu-
lence defined as [37]

τ =

√
3
2

kt

ε
, (18)

where kt and ε correspond to the turbulent kinetic energy and
dissipation rate of the initial field, respectively.

Table 2 Parameters implemented in numerical simulations

Molecular viscosity ν 10−9m2/s

Time step Δt 0.000 1 s

Length of computational domain H 2π

3.1 CZZS model with dynamically-determined scaling law

As discussed above, the original form of the CZZS model
utilizes a dynamically-determined scaling law. It is reason-
able to consider that the resolution has an effect on the per-
formance of the model.

Figures 5a, 6a, and 7a show the spectra computed from
the Métais–Lesieur model. The spectra are in good agree-
ment with the −5/3 power law of inertial range. In these
cases the Métais–Lesieur model performs well, which makes
it possible to regard it as a reference to assess the perfor-
mance of the CZZS model.

For the cases of 323 and 643 shown in Figs. 5b and 6b,
the CZZS model performs well in the early stage. How-
ever, the energy gradually accumulates around the cutoff
wavenumber and the computations tend to diverge. A too
small eddy viscosity computed from the CZZS model may
account for these results. As for the case of 1283, a similar
phenomenon could be observed, though the result is accept-
able. Theoretically, we need an eddy viscosity decreasing
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Fig. 5 Comparison of spectra in free-decay isotropic turbulence, 323 LES runs. a Métais–Lesieur model; b CZZS model with dynamically-
determined scaling law

Fig. 6 Comparison of spectra in free-decay isotropic turbulence, 643 LES runs. a Métais–Lesieur model; b CZZS model with dynamically-
determined scaling law

Fig. 7 Comparison of spectra in free-decay isotropic turbulence, 1283 LES runs. a Métais–Lesieur model; b CZZS model with dynamically-
determined scaling law

with time for the free-decay turbulence, whereas the eddy
viscosity computed from the CZZS model decreases more
rapidly than we expect when the scaling law is dynamically

determined. The CZZS model does not show enough ability
of self-adjustment and therefore becomes unstable.

It should be emphasized that this instability may be nu-
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merical, not physical. From the comparison between differ-
ent resolutions, we observe a better result with the increase
of resolution, which makes it possible to associate these
unsatisfactory results with low resolution. Therefore from
the current test case we can conclude that, a dynamically-
determined scaling law in the CZZS model probably leads to
numerical instability.

3.2 CZZS model with fixed full-scale scaling law

In the original paper of CZZS model, the simplified model
was obtained by assuming the full-scale 2/3 scaling law [13].
In this paper, we have shown that the resolved-scale scaling
law is by no means the same as the full-scale scaling law,
and the resolved-scale scaling exponent is far from the full-
scale analytical value. The full-scale 2/3 scaling law is a
fixed scaling law but not the correct one in LES. The result
of simulation in Fig. 8 further supports our point of view.
The energy accumulating around the cutoff wavenumber has
even the same magnitude as the energy contained in energy
containing range, which could be explained by a too weak
dissipation in the subgrid scale. Finally all the test cases in
Fig. 8 diverge due to this lack of dissipation.

Fig. 8 Near-diverged spectra computed from CZZS model with
n(2) = 2/3

3.3 CZZS model with fixed resolved-scale scaling law

In Sects. 3.1 and 3.2 it is shown that CZZS model with nei-
ther a dynamically-determined scaling law nor a fixed full-
scale scaling law could obtain satisfactory energy spectra. In
this subsection, we introduce the fixed resolved-scale scal-
ing law derived in the previous section into the CZZS model
and perform the same simulations as above. The results will
show the significance of our research.

In the previous section, we obtain a value of n(2) for
r = Δ, 1.74, under the infinite Reynolds assumption. Since
our cases have a high Reynolds number, it is reasonable to
directly adopt this value as n(2). The results are showed in
Figs. 9–11. Comparing Figs. 5a, 6a, and 7a, we can conclude
that, for most of the parts in the spectra, the difference be-

Fig. 9 Energy spectra in free-decay isotropic turbulence, 323 LES
runs. CZZS model with fixed resolved-scale scaling law, n(2) =
1.74

Fig. 10 Energy spectra in free-decay isotropic turbulence, 643 LES
runs. CZZS model with fixed resolved-scale scaling law, n(2) =
1.74

Fig. 11 Energy spectra in free-decay isotropic turbulence, 1283

LES runs. CZZS model with fixed resolved-scale scaling law,
n(2) = 1.74
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tween CZZS model and Métais–Lesieur model is negligible.
The −5/3 power law of inertial range behavior can be clearly
observed. The only difference could be found around the
wavenumber of filter, where CZZS model imports a slightly
stronger dissipation and makes the spectra droop. This phe-
nomenon might be explained by the “cusp” treatment on the
spectral eddy viscosity in LES cases, which affects the ac-
curacy near the wavenumber of filter, yet is sometimes too
sensitive to the local slope of spectra [37, 38].

There still remains a question to answer: Why do we
need to fix the scaling law to obtain a satisfactory result?
We argue that a well-performed SGS model should focus on
two physical behaviors: First, a proper dissipation, which
could represent the strong dissipative effect at small scales,
is quite important for the numerical stability; second, the
multi-scale properties of turbulence, i.e., the interaction be-
tween resolved and subgrid scale, usually represent some
self-similarity behaviors in inertial subrange. In practical
LES applications, this multi-scale interaction involved in the
SGS model could be fixed or computed dynamically. A fixed
scaling law is then argued to be equivalent to a fixed multi-
scale interaction. In contrast, a dynamically-determined
multi-scale interaction employed in CZZS model may lead
to instability.

4 Discussion

4.1 Applications of scaling law in other SGS models

The scaling law is a tool to describe the multi-scale proper-
ties of turbulence, which makes it possible to be useful in the
SGS models. There are other potential applications besides
the CZZS model.

(1) IVI model. Brun et al. [39] introduced a velocity
increment (VI) model based on the same tensor properties
of the subgrid stresses tensor and the second-order VI ten-
sor. Fang et al. [14] improved the VI model by employing
the Kolmogorov equation for the filtered quantities (KEF)
to correct its near-wall behavior and to make it predict well
both forward and backward energy transfer. The coefficient
of the improved velocity increment (IVI) model reads

Cf =
2D<III(r)

4r
dD<III(ξ)

dξ

∣∣∣∣∣
ξ=r
− 4D<III(r) − D<III(2r)

. (19)

Similar to the CZZS model, there exists a derivative of
the resolved structure function. This model could be simpli-
fied by introducing the resolved third-order scaling exponent

Cf =
2D<III(r)

4(n(3) − 1)D<III(r) − D<III(2r)
. (20)

From direct numerical simulation (DNS) results of channel
flow Fang proposed approximately n(3) = 2.5, which was
already discussed in previous sections of the present paper.
From Figs. 2b, 3b, and 4b we are readily able to correct this

resolved scaling law in IVI model.
(2) Pumir’s SPH model. In the LES of smoothed par-

ticle hydrodynamics (SPH), Pumir and Shraiman proposed a
time-revesable eddy viscosity SGS model [40]. A key step
in the formulation was based on the resolved-scale second-
order scaling law, but the authors used the 2/3 full-scale scal-
ing law (see Eq. (13) of Ref. [40]). Similar to the discussion
of CZZS model, this SPH model should also be corrected
by employing the resolved scaling law, by considering the
two-point distance, the LES Reynolds number and the filter
effect.

4.2 ESS theory of resolved-scale turbulence

In practice, we sometimes use the relative scaling law instead
of the absolute one [13, 41]. In this subsection we examine
the relative scaling law (ESS theory) in the resolved-scale
turbulence. The relative scaling exponent is defined by using
the skewness of velocity increment

S k(r) =
DIII(r)

(DII(r))3/2
, S <k (r) =

D<III(r)

(D<II(r))3/2
. (21)

In ESS theory, the skewness is constant in a quite large re-
gion. However, the possibility of extending this theory to
the resolved-scale skewness still needs investigations. Since
ESS theory is a function of the two-point distance r, here we
only need to fix ReΔ and observe the effect of r. Similar to the
previous section, the spectra are obtained by using EDQNM
theory. When Reλ ≈ 33 000 and kc = 20, the skewness of
velocity increment can be found in Fig. 12a. In the full-scale
turbulence, the skewness is almost constant in inertial range
1 < r/Δ < 100. However, in the resolved-scale turbulence,
the skewness is not constant around the filter size (r/Δ ∼ 1),
and it is close to the full-scale skewness only in a small re-
gion r/Δ ≈ 100. Results show that, the applicable range of
ESS theory is reduced in the resolved-scale turbulence, and
the resolved-scale skewness should be corrected in the SGS
models.

When intermittency is considered, ESS theory is
DII(r) ∝ DIII(r)ζ(2), where ζ(2) is about 0.7. Similarly, we
can define the “intermittent skewness” of velocity increment

S i
k(r) =

DIII(r)
(DII(r))1/ζ(2)

, S i<
k (r) =

D<III(r)

(D<II(r))1/ζ(2)
. (22)

It leads to the values shown in Fig. 12b. The full-scale skew-
ness is no longer constant, but after filtering there is a region
10 < r/Δ < 100 in which the skewness is approximately
constant. This result is in agreement with the viewpoint of
the scholars who supported K41 theory [6, 7] and argued
that both absolute and relative scaling laws are caused by
FRE. We would like to mention that this preliminary result
depends on the robustness of EDQNM calculation and will
be further investigated in the future by comparing numerical
and experimental results.
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Fig. 12 Skewness of velocity increment from EDQNM theory. Wavenumber of filter kc = 20. Taylor-based Reynolds number Reλ ≈ 33 000.
LES Reynolds number ReΔ ≈ 41. a Intermittency is not considered; b Intermittency is considered

4.3 Energy budget of free-decay turbulence and forcing tur-
bulence for CZZS model

We have simulated the free-decay turbulence here by apply-
ing the CZZS model. Indeed, if we review the derivation of
the CZZS model, it can be found that the model is based on
the stationary assumption of small-scale structures, and the
temporal term has been neglected. A question then arises:
Can the CZZS model be appropriate for simulating the free-
decay turbulence, which is definitively not statistically sta-
tionary?

In order to clarify this question, a corresponding energy
budget should be convincing. The CZZS model is based on
the filtered Kolmogorov equation by neglecting several terms

D<III − 6TI,II +
4
5
εfξ = 0, (23)

where the terms on the left hand side are the resolved-scale
third-order structure function, the non-linear interactions and
the subgrid dissipation, respectively. Here we use ξ to repre-
sent the two-point distance. The neglected temporal term is
the local integration of dD<II/dt. The application of the CZZS
model requires that the error, defined as

T error = D<III − 6TI,II +
4
5
εfξ (24)

should be negligible. We then perform an a priori test in two
DNS databases, which are free-decay turbulence and forcing
turbulence, respectively. The instantaneous Reynolds num-
ber of free-decay turbulence is Reλ = 50, while it is Reλ = 70
for the forcing one. In the test, the filter size is fixed as
Δ = 8h, which is about 15.2η in the free-decay turbulence
and 26.3η in the forcing turbulence. The energy budget of
the two-point energy transfer with different two-point dis-
tances is shown in Fig. 13. It can be found that in both cases,
the error term is small and negligible in the region where the
two-point distance ξ � Δ. This supports the current applica-
tions of using the CZZS model in free-decay turbulence. In
fact, according to our previous analysis, when both the filter
size and the two-point distance are in inertial range, the tem-

poral derivation dD<II/dt is always negligible as compared to
other terms.

We would also like to explain the reason why choose
the free-decay turbulence in the present paper instead of
the forcing one. In the free-decaying process, the Reynolds
number is not constant, which requires the dynamic behavior
of the SGS model. In contrast, the forcing turbulence corre-
sponds to statistically constant Reynolds number. Therefore,
a free-decay test case should be more convincing to verify
the current model improvement.

Fig. 13 Exact two-point energy transfer budget in homogeneous
isotropic turbulence. Filter size Δ = 8h. Solid line: Free-decay
turbulence; Dashed line: Forcing turbulence

5 Conclusion

The spirit of LES is to seperate a velocity field into multi-
ple scales and then to formulate SGS models based on their
multi-scale similarity. For SGS models in physical space,
this multi-scale similarity is usually represented by the scal-
ing law of velocity structure functions. However, this was
usually misused in SGS models, where the full-scale scaling
law should be replaced by the resolved-scale scaling law. In
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the present paper we investigate the behavior of the resolved-
scale scaling law from an EDQNM calculation. Several fac-
tors which are important for this scaling law are considered
as follows.

(1) Ratio of the two-point distance to the filter size r/Δ. This
is similar to the function of r/η in traditional investiga-
tions on full-scale scaling laws where the filter size could
be approximately regarded as an “enlarged dissipative
scale”. One corresponding phenomenon is that when a
filter is employed, the inertial range observed from scal-
ing laws becomes narrower (see Figs. 2 and 12, where the
plateau ranges are narrower with filters). This is similar
to the FRE but the mechanism is different. The narrower
inertial range leads to a cusp phenomenon near r ∼ Δ,
which results in a necessary correction in LES applica-
tions. For instance, the traditional value 2/3 on the full-
scale second-order structure function shoule be replaced
by about 1.79 in the resolved case with a cut-off filter,
while for the third-order structure function the scaling
law should be approximately 2.47 instead of 1.

(2) “LES” Reynolds number ReΔ. Inspired from the FRE
studies, we propose this concept by considering the filter
size as the “dissipative scale in LES” since the dissipa-
tive information is lost. This “LES” Reynolds number
describes the ratio of energy-containing scale to the filter
size, and therefore includes the energy-containing infor-
mation. Compared to the classical SGS models such as
Chollet [42], importing the concept of ReΔ would allow
detailed description of the resolved field and avoid the
sensitivity of the energy truncation near filter wave num-
ber. It is found that the scaling laws vary with different
ReΔ and could be considered in SGS modeling to take
account of the energy-containing information.

(3) Type of filter. In the present paper we disucss three typ-
ical filters (cutoff, tophat and Gaussian) and show their
influence on the resolved scaling laws. In addition, an
analytical model on the resolved-scale second-order scal-
ing law is introduced to consider the influence of r/Δ and
ReΔ.

These results are then employed in SGS models. The
CZZS model is taken as an example to simulate the free-
decay homogeneous isotropic turbulence at high Reynolds
number, and its performance is assessed by referring to the
Métais–Lesieur model. Results show that the application of
the 2/3 full-scale scaling law in LES is essentially wrong
and should be corrected. The CZZS model with the fixed
resolved-scale scaling law derived in the present paper per-
forms well, and the −5/3 power law behavior in inertial
range could be clearly observed from the spectra. In con-
trast, when employed with a dynamically-determined scaling
law, the CZZS model becomes unstable and yields unsatis-
factory results. This phenomenon might be explained by the
instability caused by the dynamically determined multi-scale
interaction involved in SGS models.
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