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A nonlinear theory is developed to describe the cylindrical Richtmyer-Meshkov instability (RMI) of an

impulsively accelerated interface between incompressible fluids, which is based on both a technique of

Padé approximation and an approach of perturbation expansion directly on the perturbed interface

rather than the unperturbed interface. When cylindrical effect vanishes (i.e., in the large initial radius of

the interface), our explicit results reproduce those [Q. Zhang and S.-I. Sohn, Phys. Fluids 9, 1106

(1996)] related to the planar RMI. The present prediction in agreement with previous simulations

[C. Matsuoka and K. Nishihara, Phys. Rev. E 73, 055304(R) (2006)] leads us to better understand the

cylindrical RMI at arbitrary Atwood numbers for the whole nonlinear regime. The asymptotic growth

rate of the cylindrical interface finger (bubble or spike) tends to its initial value or zero, depending

upon mode number of the initial cylindrical interface and Atwood number. The explicit conditions,

directly affecting asymptotic behavior of the cylindrical interface finger, are investigated in this paper.

This theory allows a straightforward extension to other nonlinear problems related closely to an

instable interface.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883222]

I. INTRODUCTION

When an incident shock collides with a corrugated interface

separating two fluids of different densities, the interface is with

Richtmyer-Meshkov instability (RMI).1,2 Another wide class of

RMI, not related to the shock-interface interaction, is driven by

the nonuniform vorticity on the interface, either initially depos-

ited or supplied by external sources.3 RMI has great relevance to

inertial confinement fusion (ICF) and astrophysical problems.4,5

As the incident shock collides with the material interface,

it bifurcates into a transmitted shock and a reflected wave.

The reflected wave can be either a shock wave or a rarefaction

wave, which depends on the material properties of the fluids

across the interface and the incident shock strength. When the

shock collides with the material interface from the light fluid

phase to the heavy fluid phase, the reflected wave is a shock;

otherwise, it is a rarefaction wave. See Ref. 6 for further

details of the reflected wave types. For the case of the

reflected shock, the perturbed interface grows linearly at first,

and then exhibits in the shapes of bubbles, and spikes in its

weakly nonlinear regime. The bubbles (spikes) refer to the

portions of the light (heavy) fluid entering the heavy (light)

fluid. For this case, the fluids near the material interface can

be approximated to be incompressible after both the transmit-

ted shock and reflected one depart from the interface.

Some experiments7–9 and numerical simulations10–15 on

the growth rate of the RMI interface have been performed, and

several theories16–22 have been predicted by different

approaches. Most of these theoretical literatures just concerned

with the linear growth rate of the interface at earlier stage. For

several decades, theories could not give a quantitatively correct

prediction for the growth rate of RMI interface in the nonlinear

regime until Zhang’s nonlinear theory23 was published. The

theory provided a pretty result for the planar RMI interface.

The prediction of this theory, based on the case of a reflected

wave, is in excellent agreement with the results of full nonlin-

ear numerical simulations, and with experimental data from

the earlier linear stage to the later nonlinear stage. In this

theory, the perturbation solutions in weakly nonlinear regime

led to a perfect Padé approximation which gave the final result

by matching the linear solution and the asymptotic solution. In

addition, Velikovich and Dimonte24 successfully investigated

the incompressible RMI by using the Padé approximation

based on nonlinear perturbation theory.

Most previous works focused on the planar RMI, however,

only a few3,24–29 dealt with the cylindrical RMI which is much

closer to the applications, such as ICF. For cylindrical RMI,

scaling laws for unstable interfaces driven by strong shocks

were researched numerically.27 The effect of convergence on

the interface growth rate was studied experimentally on the

OMEGA laser.28 In Ref. 29, the dependence of growth rates of

a bubble and spike on the fluid densities and on mode number

involved in the initial perturbations was seeded analytically by

employing the method used in the investigation.23 A crucial

step of the method is based on the fact that the physical quanti-

ties on the perturbed interface are expanded into Taylor series

indirectly on the unperturbed interface. This step is consider-

ably complex, especially to the cylindrical system. In this pa-

per, for the case of the reflected shock, we employ a simple
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method based directly on the perturbed interface to solve the

cylindrical RMI problem in weakly nonlinear regime by con-

sidering the nonlinear correction up to fourth order. Applying

the technique of the Padé approximation results in the growth

rates of the interface fingers for the whole nonlinear regime.

II. THEORETICAL FRAMEWORK AND EXPLICIT
RESULTS

Our insight starts from the time when the reflected and

transmitted shocks leave the interface and the fluids in the vi-

cinity of the interface can be regarded as impressible ones.

In the cylindrical geometry (r, h, z), the initial interface is

given to be located at

r ¼ aðh; t ¼ 0Þ ¼ r0 þ a0 cosðnhÞ; (1)

where n¼ 2pr0/k is mode number, r0 is the initial radius of

the interface, k is perturbation wavelength, and a0 is the per-
turbation amplitude of the interface (a0 � minfk; r0g). The
initial velocity distribution of the interface is

@aðh; tÞ
@t

����
t¼0

¼ v0 cosðnhÞ; (2)

where v0 is proportional to a0 in the magnitude. The interface

a(h, t), due to the cylindrical RMI, evolves with time. It is

dominated by

@
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þ f ðtÞ ¼ 0 at r ¼ aðh; tÞ; (3d)

where Atwood number A¼ (q1� q2)/(q1þ q2) with q1 and q2
being fluid densities, and /i is velocity potential function of the

fluid, and f(t) is an arbitrary function of time. Throughout this

paper, we determine the subscripts 1 and 2 corresponding to the

physical quantities at the inner and outer regions of the inter-

face, respectively. Accordingly, A> 0 corresponds to a case of

an incident shock traveling from the lighter fluid outsider the

interface to the heavy one insider the interface, and A< 0 means

a case of an incident shock advancing from the lighter fluid

insider the interface to the heavy fluid outsider the interface.

The interface and velocity potentials at time t can be

expressed as

aðh; tÞ ¼ fðtÞr0 þ
XL
l¼1

aðlÞðh; tÞ ¼ r0 1þ
XbL2c
l¼1

e2la2l;0ðtÞ
0
@

1
A

þ
XL
l¼1

el
Xb l2c�1

m¼0

al;l�2mðtÞcosðl� 2mÞnhþ OðeLþ1Þ;

(4a)

/1ðr; h; tÞ ¼
XL
l¼1

/ðlÞ
1 ðr; h; tÞ ¼

XL
l¼1

el
XbL2c
m¼0

/1;l;l�2mðtÞrðl�2mÞn

� cosðl� 2mÞnhþ OðeLþ1Þ; (4b)

/2ðr; h; tÞ ¼
XL
l¼1

/ðlÞ
2 ðr; h; tÞ ¼

XL
l¼1

el
Xb l2c
m¼0

/2;l;l�2mðtÞr�ðl�2mÞn

� cosðl� 2mÞnhþ OðeLþ1Þ; (4c)

where the parameter e¼ a0/j with j ¼ minfr0; kg is much

less than 1 and L¼ 4 is selected. Gauss symbol bl=2c denotes
the maximum integer which is less than or equal to l/2. The
time function f(t) determines whether the unperturbed inter-

face moves with time: the interface will keep resting when

f(t): 1; otherwise, it will move from the initial position r
(t¼ 0)¼ r0. Unknowns al;l�2mðtÞ; /1;l;l�2mðtÞ, and

/2;l;l�2mðtÞ ½l ¼ 1; 2; � � � ; m ¼ 0; 1; � � � ; bl=2c� always need

to be ascertained. Note that velocity potentials /1ðr; h; tÞ and
/2ðr; h; tÞ have satisfied the Laplace equation (3a) and condi-

tions r/1ðr; h; tÞjr!0 ¼ 0 and r/2ðr; h; tÞjr!þ1 ¼ 0.

We substitute Eqs. (4a)–(4c) into Eqs. (3b)–(3d) and

then replace r in these three resulting equations with a(h, t)
expressed by Eq. (4a). The final equations containing h and e
are obtained. To further obtain the lth (l> 0) order equations

just including the terms of el, we need to expand the left

hand sides of these three final equations in Maclaurin series

of e. Here, the zeroth order equations, considering the effect

of arbitrary function f(t), can be satisfied automatically.

Therefore, the first-, second-, third-, and fourth-order equa-

tions together with the initial conditions (1) and (2) can be

solved successively.

The results related to perturbed interface are

að1Þ ¼ a0 þ tv0ð ÞcosðnhÞ; (5a)

að2Þ ¼ t2v20ð2An� 1Þ
4r0

cosð2nhÞ � tv0 2a0 þ tv0ð Þ
4r0

; (5b)

að3Þ ¼ t2v20 a0 �2An� 3n2 þ 1ð Þ þ tv0 4A2n2 � 4An� n2 þ 1ð Þ� �
8r20

cosð3nhÞ

� t2v20 3a0 2Anþ n2 � 7ð Þ þ tv0 4A2n2 þ 4Anþ n2 � 9ð Þ� �
24r20

cosðnhÞ; (5c)
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að4Þ ¼ at2v20
192r30

cosð4nhÞ � bt2v20
48r30

cosð2nhÞ þ ct2v20
192r30

; (5d)

where

a ¼ �8ta0v0 14A2n2 þ A 16n2 � 13ð Þn� 14n2 þ 3
� �

þ 12a20

� 2A 2n3 þ nð Þ þ 7n2 � 1½ � þ t2v20 128A3n3 � 188A2n2 � 64An3 þ 92Anþ 44n2 � 15ð Þ;

b ¼ 2ta0v0 4A
2n2 � 24An� 16n2 þ 21½ � þ 12a20 A n3 þ nð Þ � 3n2 þ 2½ �

þ t2v20 16A3n3 � 4A2n2 � 22An� 8n2 þ 15ð Þ;

and

c ¼ 8ta0v0 2 A2 þ 1ð Þn2 þ 5An� 18½ � þ 12a20 2Anþ n2 � 9ð Þ þ t2v20½4nðA2nþ 7Aþ nÞ � 45�:

Taking wave number k¼ 2p/k and mode number n¼ 2pr0/k
into account, one obtains n¼ kr0. Replacing n in Eqs.

(5a)–(5d) with kr0, and taking the limit r0 ! þ1, the results

corresponding to the planar geometry predicted by Ref. 23

are reproduced. That is, in the condition of large r0, the cy-

lindrical RMI problem is reduced to the planar one.

III. PADÉ APPROXIMATION AND DISCUSSION

To probe into growth rates of spikes and bubbles for

A> 0 case, we select a spike located at h¼ 0 and a bubble at

h¼p/n. Letting vsp and vbb denote the growth rates at the

tips of spike and bubble, respectively, one has

vsp ¼ _aoð0; tÞ þ _aeð0; tÞ; (6a)

vbb ¼ � _aoð0; tÞ þ _aeð0; tÞ; (6b)

where the dot over a letter denotes the time derivative. The

ao and ae result from odd and even (including the nonoscilla-

tion terms, i.e., zeroth harmonic) cosine Fourier modes,

respectively. The _ao represents the overall growth rate

defined as

voverall ¼ ðvsp � vbbÞ=2 ¼ ð _rmax � _rminÞ=2 ; (7)

and _ae means ðvsp þ vbbÞ=2. They are

_aoð0; tÞ � v0 þ �Ana0v20 � n2a0v20 þ 2a0v20
� �

r20
t

þ 2A2n2v30 � 4Anv30 � n2v30 þ 3v30
� �

2r20
t2;

(8a)

_aeð0; tÞ��a0v0
2r0

þ
v20 a20 10n2�9ð Þþ4r20ðAn�1Þ
h i

4r30
t

�a0v30 8A
2n2þA 8n2�21ð Þn�16n2þ21½ �

4r30
t2

þ v40 8A3n3�21A2n2�8An3þ26Anþ10n2�15ð Þ
6r30

t3:

(8b)

As is well known, above solutions can just serve to

describe the interface movement in the weakly nonlinear re-

gime. For the stage of the nonlinear regime prior to turbulent

mixing, these weakly nonlinear solutions fail to play a cor-

rect role. One of the standard methods to extend the range of

validity beyond the range of the finite Taylor series expan-

sion is a Padé approximation.23,24,30,31 Applying the Padé to

Eq. (8a), one has

_aoð0; tÞ ¼ v0

1þ a0v0 Anþ n2 � 2ð Þ
r20

tþmax 0;
2a20 Anþ n2 � 2ð Þ2 þ r20 �2A2n2 þ 4Anþ n2 � 3ð Þ

2r40

( )
v20t

2

: (9)

Equation (9) is selected as P0
2 or P0

1 Padé approximation

according to the fact that the overall growth rate decays at

large times predicted in Ref. 3. For Eq. (8b), the P1
2 Padé

approximation is constructed as

_aeð0; tÞ ¼ 1v0 þ sv20t

4r30 nþ .a0v0tþ vv20t
2

� � ; (10)

where
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1 ¼ 12a30r
4
0 8A2n2 � 32An3 þ 15Anþ 24n2 � 15ð Þ � 96a0r

6
0ðAn� 1Þ2 � 6a50 9� 10n2ð Þ2r20;

s ¼ 24a40r
2
0 10n2 � 9ð Þ �4A2n2 þ A 11n2 � 3ð Þn� 7n2 þ 3

� �
� 8a20r

4
0 40A3n3 þ A2 9n2 � 132n4ð Þ þ 14A 16n2 � 7ð Þn� 94n2 þ 51
� �

þ 3a60 10n2 � 9ð Þ3 þ 192r60ðAn� 1Þ3;

n ¼ �6a20r
2
0 8A2n2 � 32An3 þ 15Anþ 24n2 � 15ð Þ þ 3a40 9� 10n2ð Þ2 þ 48r40ðAn� 1Þ2;

. ¼ 3a20 10n2 � 9ð Þ 8A2n2 þ A 8n2 � 21ð Þn� 16n2 þ 21
� �

þ 8r20 8A3n3 þ 3A2 4n2 � 11ð Þn2 þ A 50n� 32n3ð Þ þ 19n2 � 24
� �

;

and

v ¼ a20 192A4n4 þ 32A3 7n2 � 27ð Þn3 þ 3A2 64n4 � 452n2 þ 651ð Þn2
� �

þ Aa20 �608n5 þ 2360n3 � 2178nð Þ þ 568n4 � 1536n2 þ 1053½ �
� 8r20 8A4n4 � 29A3n3 þ A2 47n2 � 8n4ð Þ þ A 18n2 � 41ð Þn� 10n2 þ 15

� �
:

It is worth noting that the expressions of Padé (9) and

(10) obtained for the cylindrical geometry can be reduced to

Eqs. (53) and (54)23 when n¼ kr0 and in the limit of large r0.
Thus, the growth rates of the spike tip (6a), bubble tip (6b),

and the overall interface (7) based on Padé approximations (9)

and (10) are formulated for A> 0 case. For A< 0 case, the

positions of a bubble and a spike need to be exchanged each

other. In addition, based on the singularity of Padé approxima-

tion, Eqs. (9) and (10) are available for the physical parameter

space n2þAn� 2> 0, ./n> 0, and v/n> 0 with n= 0.

In fact, when a0 is much smaller than k or r0, the fully

nonlinear evolution of the interface does not much depend

on the initial amplitude a0.
32 As a result, under the condition

a0¼ 0, expressions (9) and (10) normalized by r0 and v0 can
be reduced to

_̂aoð0; t̂Þ ¼ 1

1þmax 0;� 1
2
2A2n2 � 4An� n2 þ 3ð Þ	 


t̂
2
;

(11a)

_̂a eð0; t̂Þ ¼ ðAn�1Þt̂
1þ 8A3n3� 21A2n2� 8An3þ 26Anþ 10n2� 15

6ð1�AnÞ t̂
2

;

(11b)

where symbol^denotes the normalized physical quantity.

To confirm the validity of the theoretical prediction, we

show the normalized growth rates of the bubble and spike

against normalized time at A¼�0.2 [A¼ 0.2] for variable

mode numbers in Fig. 1(i) [Fig. 1(ii)]. The corresponding

growth rates with the same mode numbers as ours can be

seen in Figs. 2(a)–2(d) in Matsuoka’s simulation work,3

where A¼60.2 corresponds to A¼+0.2 of this paper.

Their Figs. 2(a)–2(d), based on a nonphysical parameter

d¼ 0 for n¼ 1 and d¼ 0.1 for other mode numbers, show

the growth rates at early times and at fully nonlinear stage,

respectively. Note that, in their Figs. 2(a) and 2(b), only the

partial curves of the growth rates are plotted before the

calculations break down. These factors result in the

FIG. 1. Normalized growth rates of bubble and spike, vbb/v0 and vsp/v0, vs normalized time, v0t/r0, at A¼�0.2 (i) and A¼ 0.2 (ii). Different mode numbers

n¼ 1, 2, 3, and 8 are, separately, denoted by lines, dashed lines, dotted-dashed lines, and dotted lines. The initial perturbation amplitude is fixed as a0/r0¼ 0.

062119-4 Liu et al. Phys. Plasmas 21, 062119 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.231.80 On: Tue, 02 Sep 2014 07:37:27



small difference between their Figs. 2(a) and 2(c) [Figs. 2(b)

and 2(d)] and Fig. 1(i) [Fig. 1(ii)] in this paper. However, the

trends of the growth rates of the bubble and spike are the

same.

Figure 1 shows that for smaller Atwood number (i.e.,

A¼60.2), the normalized growth rate v/v0 of outgoing bub-

ble (spike) or ingoing spike (bubble) tends to different values

with time, depending on mode number. When mode number

is larger, the v/v0 of the bubble and spike approaches zero.

The larger the mode number is, the faster the v/v0 reaches

zero. For the smaller mode number (e.g., n¼ 1), the move-

ment of outgoing bubble (spike) becomes slowly with time,

while the ingoing spike (bubble) accelerates its speed toward

to the center of the inner fluid. It is evident that mode num-

ber directly influences the evolution behavior of the bubble

and spike.

To seek effect of Atwood number on the bubble and

spike, we show the v/v0 of bubble and spike for A¼60.8

with normalized time in Fig. 2. Atwood number has a dra-

matic influence on the evolution of the bubble and spike,

especially on outgoing bubble and ingoing spike in Fig. 2(i),

where the v/v0 does not tend to zero for mode number n¼ 1,

2, 3, or 8. As a result, it is necessary to investigate asymp-

totic behavior of the bubble and spike. From expressions

(11a) and (11b), we have

_̂aoð0; t̂ ! þ1Þ ¼ 0; 2A2n2 � 4An� n2 þ 3 < 0;
1; otherwise:

�
(12a)

_̂a eð0; t̂ ! þ1Þ ¼ 0: (12b)

In accordance with growth rates (6a) and (6b), we can get

v̂spðt̂ ! þ1Þ ¼ 0; 2A2n2 � 4An� n2 þ 3 < 0;
1; otherwise;

�
(13)

and

v̂bbðt̂ ! þ1Þ ¼ 0; 2A2n2 � 4An� n2 þ 3 < 0;
�1; otherwise:

�
(14)

These expressions show that for the case of 2A2n2 � 4An
�n2 þ 3 < 0, the normalized asymptotic growth rates of out-

going spike and ingoing bubble are both zero; otherwise, they,

respectively, tend to 1 and �1. Relationship 2A2n2 � 4An�
n2 þ 3 < 0 means mode number n between A

ð1Þ
c and A

ð2Þ
c ,

in which A
ð1Þ
c ¼ 2Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2A2

p� �
= 2A2 � 1ð Þ and A

ð2Þ
c

¼ 2A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2A2

p� �
= 2A2 � 1ð Þ. That is to say, when mode

number is between A
ð1Þ
c and A

ð2Þ
c corresponding to region II

shown in Fig. 3, the asymptotic growth rate of neither out-

going (ingoing) bubble or ingoing (outgoing) spike tends to

rest; otherwise (i.e., regions I and III shown in Fig. 3), it does

to its initial value. Especially for the ingoing spike, shown in

Figs. 1(i) and 2(i), the asymptotic growth rate profoundly

influences the time evolution of the spike. For calculation sim-

ulations, the prompt acceleration of ingoing spike directly

makes the calculation break down easily.

FIG. 2. Normalized growth rates of bubble and spike, vbb/v0 and vsp/v0, vs normalized time, v0t/r0, at A¼�0.8 (i) and A¼ 0.8 (ii). Different mode numbers

n¼ 1, 2, 3, and 8 are, separately, denoted by lines, dashed lines, dotted-dashed lines, and dotted lines. The initial perturbation amplitude is fixed as a0/r0¼ 0.

FIG. 3. Parameter space: region II corresponds to 2A2n2 � 4An� n2

þ3 < 0; regions I and III correspond to 2A2n2 � 4An� n2 þ 3 � 0.
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IV. CONCLUSION

In summary, we apply an approach of the perturbation

expansion to explore the problem of cylindrical RMI in

incompressible, inviscid, and irrotational fluids directly at

the perturbed interface rather than the unperturbed one and

obtain the explicit solutions up to the fourth order in the

weakly nonlinear regime. Padé approximation employed in

the perturbation solutions results in the nonlinear results

which are valid for the full nonlinear regime before turbu-

lence mixing. In the limit of large initial interface radius, our

results reproduce the previous work23 which is extremely

valid for the planar case. Comparison between the fully non-

linear simulation from Matsuoka and Nishihara3 and our

explicit prediction is manipulated, and the qualitative agree-

ment denotes that the theoretical results are helpful to better

understand cylindrical RMI. The asymptotic growth rate of

outgoing bubble (spike) or ingoing spike (bubble) tends to

either its initial velocity or zero, depending on mode number

and Atwood number. This theory provided here allows a

straightforward extension to other nonlinear problems related

closely to an instable interface.
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