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Abstract A multifractal model is developed to connect
the Lagrangian multifractal dimensions with their Eulerian
counterparts. We propose that the characteristic time scale of
a Lagrangian quantity should be the Lagrangian time scale,
and it should not be the Eulerian time scale which was widely
used in previous studies on Lagrangian statistics. Using the
present model, we can obtain the scaling exponents of La-
grangian velocity structure functions from the existing data
or models of scaling exponents of Eulerian velocity structure
functions. This model is validated by comparing its predic-
tion with the results of experiments, direct numerical simula-
tions, and the previous theoretical models. The comparison
shows that the proposed model can better predict the scaling
exponents of Lagrangian velocity structure functions, espe-
cially for orders larger than 6.

Keywords Lagrangian multifractal · Eulerian multifractal ·
Intermittency · Velocity structure functions

1 Introduction

Understanding the statistical properties of fully developed
turbulent flows from the Lagrangian viewpoint is natu-
rally connected with the problems of turbulent dispersion
of contaminants and turbulent mixing of passive scalars [1,
2]. However, investigation of turbulent flows from the La-
grangian viewpoint is a challenging problem in both experi-
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ments and direct numerical simulations (DNS) since it needs
to follow the trajectories of tracer particles and resolve time
scales ranging from Kolmogorov time scale τη to integral
time scale T [3]. The ratio of the largest time scale to the
smallest one is T/τη ∼ Re1/2 which increases with Reynolds
number, where Re is the Reynolds number based on the in-
tegral length scale L. In addition, the width of Lagrangian
inertial range T/τη ∼ Re1/2 is smaller than the Eulerian iner-
tial range L/ηK ∼ Re3/4 (here ηK is the Kolmogorov length
scale), which implies that higher Reynolds numbers flows
are needed to investigate the Lagrangian statistics of turbu-
lence [2]. This requirement raises challenges to current DNS
and particle detection techniques in experiments. However,
the Eulerian quantities have been intensively studied [4–8].
Therefore, it is of great significance to build a bridge between
the easily measured or known Eulerian statistics and the dif-
ficultly measured or unknown Lagrangian statistics. The re-
cent development on space-time correlation models [9–12]
is the work aligned in this direction.

In recent years, progresses have been made in ex-
perimental measurements [13–17] and numerical simula-
tions [18–23] of Lagrangian statistics (see Ref. [3] for a re-
view and comparison of experimental and numerical data).
These experimental and DNS results provide theorists the
chance to study the Lagrangian properties of turbulence, and
motivate a number of theoretical studies on Lagrangian tur-
bulence [24–31]. Under this background, Borgas [24], Bof-
fetta et al. [25], and Biferale et al. [26] have bridged the La-
grangian and Eulerian velocity increments statistics by using
the multifractal formalism [32]. Schmitt [33] reviewed these
Lagrangian multifractal formalism: Borgas used a corollary
of ergodic hypothesis [24, 34] and assumed the characteris-
tic time scale of fluid particles along trajectories is the Eu-
lerian decorrelation time scale τE = (ν/ε̄ )1/2 (which is iden-
tical to the Kolmogorov time scale), where ε̄ is the globally
mean energy dissipation rate per unit mass, ν is the kine-
matic viscosity; Boffetta et al. [25] and Biferale et al. [26]
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assumed the time lag τ in Lagrangian velocity structure func-
tions 〈(δτvi)p〉 ≡ 〈[vi(t + τ) − vi(t)]p〉 has the same order
as Eulerian characteristic time scale, i.e., τ ∼ r/δru, and
δru ∼ δτvi, where δru ≡ [uuu(xxx + rrr) − uuu(xxx)] · rrr/r, r = |rrr|, vi

(i = x, y, z) is the velocity component along a single particle
trajectory, and the average 〈·〉 is defined over the ensemble of
trajectories of fluid particles. Due to isotropy and stationar-
ity, the Lagrangian velocity structure functions 〈(δτvi)p〉 are
only dependent on the time lag τ.

In the studies of Borgas, Boffetta et al. and Biferale
et al. [24–26], a physical assumption that the Lagrangian
characteristic time scale is approximately equal to the Eule-
rian characteristic time scale has been used. However, one
can find that the ratio of the Lagrangian time microscale
τL = V(ν/ε̄ 3)1/4 (here V is the root-mean-square of Eule-
rian velocity fluctuations which is independent of Reynolds
number) [35, 36] to its Eulerian counterpart τE, τL/τE ∼
ν−1/4 ∼ Re1/4, increases with Reynolds number. Therefore,
the assumption that the Lagrangian characteristic time scale
approximates to its Eulerian counterpart may cause errors
in building the bridge between the Lagrangian and Eulerian
statistics, especially at high Reynolds numbers.

In this paper, we propose a group of more reasonable
assumptions, instead of the assumptions that were used in
Refs. [24–26], to develop a new model for linking the La-
grangian and Eulerian velocity structure functions. Our as-
sumptions are based on that the characteristic time scale of
Lagrangian quantities should be the Lagrangian decorrela-
tion time scale, not be the Eulerian decorrelation time scale.
Those assumptions are used to develop Lagrangian multi-
fractal models for dissipation rates (Sect. 2) and velocity in-
crements (Sect. 3). The model for dissipation rates can be
transformed to the model for velocity increments (Sect. 4).
The results obtained are validated by comparing their pre-
diction with the experimental and DNS results.

2 A Lagrangian multifractal model for dissipation rates

In this section, we will develop a Lagrangian multifractal
model for dissipation rates. It is assumed in the multifrac-
tal model for dissipation rates that the local dissipation rate
εα at viscous length scale ηα, the local dissipation rate εκ at
viscous time scale τκ, and their probability density functions
(PDFs) are scaled as

εα ∼ ε̄
(
ηα
L

)α−1

, P(εα) ∼
(
ηα
L

)1− f (α)

,

εκ ∼ ε̄
(
τκ
T

)κ−1

, P(εκ) ∼
(
τκ
T

)1− f̃ (κ)

,

(1)

where f (α) is the Eulerian fractal dimension spectrum, and
f̃ (κ) is the Lagrangian fractal dimension spectrum [24, 32].

To relate Lagrangian multifractal with Eulerian multi-
fractal, Borgas assumed that

〈(εα)q〉 = 〈(εκ)q〉, (2)

ηα = (ν3/εα)1/4, (3)

τκ = (ν/εκ)1/2. (4)

Equation (2) is the consequence of the ergodic hypothesis
(see Ref. [24] or [34]); Equation (3) is based on the Kol-
mogorov length scale ηK = (ν3/ε̄)1/4; Equation (4) is based
on the Eulerian decorrelation time scale τE = (ν/ε̄)1/2, which
is also identical to the Kolmogorov time scale [35, 36]. Equa-
tions (3) and (4) lead to

ηα = LRe−3/(3+α), (5)

τκ = TRe−1/(κ+1). (6)

Borgas uses Eqs. (5) and (6) and the saddle-point ap-
proximation to evaluate 〈(εα)q〉 and 〈(εκ)q〉
〈(εα)q〉 ∼ ε̄ qRe−3[(α−1)q+1− f (α)]/(3+α) ,

〈(εκ)q〉 ∼ ε̄ qRe−[(κ−1)q+1− f̃ (κ)]/(κ+1).

Substituting the above results into Eq. (2) and comparing the
exponents of Re in the expressions of 〈(εα)q〉 and 〈(εκ)q〉, Bor-
gas obtained a one-to-one relation between Lagrangian mul-
tifractal dimension spectrum f̃ (κ) and Eulerian multifractal
dimension spectrum f (α)

f̃ (κ) = −1
2
κ +
(
1 +

1
2
κ
)

f (α),

α =
3κ
κ + 2

.

We propose that the characteristic time scale of La-
grangian velocity structure functions should be the La-
grangian characteristic time scale instead for the Eulerian
characteristic time scale. Noting the Lagrangian character-
istic time scale τL = V(ν/ε̄ 3)1/4, we assume

τκ = V(ν/ε3κ )
1/4 (7)

to replace Eq. (4). Equation (7) can be rewritten as the func-
tion of Re

τκ = TRe−1/(3κ+1). (8)

We use Eq. (8) and the saddle-point approximation to obtain

〈(εκ)q〉 ∼ ε̄ qRe−[(κ−1)q+1− f̃ (κ)]/(3κ+1).

Comparing the exponents of Re in the expressions of 〈(εα)q〉
and 〈(εκ)q〉, we finally obtain a model that connects the La-
grangian multifractals with the Eulerian multifractals

f̃ (κ) = −2κ + (2κ + 1) f (α), (9)

α =
3κ

2κ + 1
. (10)

3 A Lagrangian multifractal model for velocity incre-
ments

The Lagrangian multifractal model in last section is for dissi-
pation rates. In this section, we will use velocity increments
to develop the Lagrangian multifractal model. It is assumed
that
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δru ∼ V
( r

L

)hE

, P(δru) ∼
( r

L

)3−DE(hE)

,

δτvi ∼ V
(
τ

T

)hL

, P(δτvi) ∼
(
τ

T

)1−DL(hL)

.

(11)

Here, hE and hL are Eulerian and Lagrangian Hölder expo-
nents that characterize the velocity increments, δru and δτvi,
respectively; DE(hE) and DL(hL) are the Eulerian and La-
grangian fractal dimensions that characterize the PDFs of
the Eulerian and Lagrangian velocity increments, P(δru) and
P(δτvi), respectively.

In the following part, we will derive the Lagrangian
multifractal model for velocity increments. Equation (10) in
combination with Eqs. (1), (3), and (7) implies that εα = εκ
in the dissipation range. Borgas [24] gives a simple physi-
cal interpretation of this identity that the dissipation rate at
one point, εα (say), must occur at some instant (with value
εκ) in a sufficiently long Lagrangian record (see page 397
of Ref. [24]). Following this ergodic hypothesis, we assume
that, in the inertial range

εr = ετ. (12)

Here, εr is the local average of energy dissipation rate over
a volume of typical size r [24, 32, 37], ετ is the local en-
ergy dissipation rate averaged along the trajectory over a
time interval of scale τ [24, 37], r and τ are spatial and
temporal separations in the inertial range. Equation (12) in
combination with Kolmogorov’s refined similarity hypoth-
esis εr ∼ (δru)3/r (see page 164 of Ref. [32]) and its La-
grangian counterpart ετ ∼ (δτvi)2/τ [37] could provide a con-
nection between Eulerian velocity increment and Lagrangian
velocity increment

(δru)3

r
=

(δτvi)2

τ
⇒ r3hE−1 ∼ τ2hL−1. (13)

Here, we still need a relationship between r and τ [33].
Instead for Biferale’s assumption τ ∼ r/δru, we assume that

τ2

r/δru
∼ V2

εr
. (14)

Equation (14) is based on the relationship between La-
grangian time scale τL = V(ν/ε̄ 3)1/4 and Eulerian time scale
τE = (ν/ε̄)1/2

τ2
L

τE
∼ V2

ε̄
. (15)

According to Eq. (14) and Kolmogorov’s refined similarity
hypothesis εr ∼ (δru)3/r, we obtain

τ ∼ r
(δru)2

∼ r1−2hE . (16)

From Eqs. (13) and (16), we could obtain

hE =
2hL

4hL + 1
, (17)

and
δτvi

V
∼
(
τ

T

)hL ∼
( r

L

)hE/2 ∼
(
δru
V

)1/2
. (18)

Equation (18) in combination with Eq. (16) implies that

〈(δτvi)p〉 ∼ 〈(δru)p/2〉
∼
∫ ( r

L

)(p/2)hE+3−DE(hE)

dhE

∼
∫ (
τ

T

)[(p/2)hE+3−DE(hE)]/(1−2hE)

dhE. (19)

According to Eq. (19), we could obtain 〈(δτvi)p〉 ∼ τζL
p with

ζL
p = inf

hE

[ (p/2)hE + 3 − DE(hE)
1 − 2hE

]
. (20)

Equation (20) in combination with the Eulerian fractal di-
mension spectrum DE(hE) could provide a model for scaling
exponents of Lagrangian velocity structure functions.

In Lagrangian multifractal theory, the scaling expo-
nents of Lagrangian velocity structure functions, ζL

p , are re-
lated to the Lagrangian fractal dimension spectrum, DL(hL),
by the Legendre transform [17]

ζL
p = inf

hL

[phL + 1 − DL(hL)]. (21)

Comparing Eqs. (20) and (21), we finally obtain

DL(hL) = −4hL + (4hL + 1)[DE(hE) − 2]. (22)

Equations (22) and (17) provide a model for connection be-
tween Lagrangian and Eulerian multifractals for velocity in-
crements.

4 Transformation between multifractal formalism for
dissipation rates and velocity increments

The multifractal formalism for dissipation rates and velocity
increments could be related by Kolmogorov’s refined simi-
larity hypothesis. The transformation between the two types
of Eulerian multifractal formalism for dissipation rates and
velocity increments are as follows (for details of Eulerian
transformation, see page 164 of Ref. [32])

f (α) = DE(hE) − 2, hE =
α

3
. (23)

Using Lagrangian counterpart of Kolmogorov’s refined sim-
ilarity hypothesis, ετ ∼ (δτvi)2/τ [37], we can obtain the fol-
lowing transformation between the two types of Lagrangian
multifractal formalism for dissipation rates and velocity in-
crements

f̃ (κ) = DL(hL), hL =
κ

2
. (24)

According to Eqs. (23) and (24), we can rewrite our
model which is for dissipation rates, Eqs. (9) and (10), as

DL(hL) = −4hL + (4hL + 1)(DE(hE) − 2),

hE =
2hL

4hL + 1
.

While Borgas’ model is transformed into

DL(hL) = −hL + (hL + 1)(DE(hE) − 2),

hE =
hL

hL + 1
.

We can see from the transformation that Borgas’ model
is equivalent to the model proposed by Boffetta et al. [17, 24–
26]. Actually, both the assumption of Borgas, τκ = (ν/εκ)1/2,
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and the assumption of Boffetta et al., τ = r/δru, have the
same physical meaning: the Lagrangian time scale is ap-
proximately equal to the Eulerian time scale. We can also
see from the transformation that our model for dissipation
rates, Eqs. (9) and (10), is equivalent to the one for velocity
increments, Eqs. (22) and (17).

5 Discussions

The Eulerian fractal dimension DE(hE) in Eq. (22) is related
to the Eulerian structure functions scaling exponents ζE

p by
the Legendre transform [32] DE(hE) = inf

p
(phE + 3 − ζE

p ),

where ζE
p can be obtained from experimental data [4] or

theoretical models, such as She–Leveque (S–L) model [5]

ζE
p = p/9 + 2[1 − (2/3)p/3]. Combining the S–L model with

the present model, we obtain the scaling exponents of La-
grangian velocity structure functions which are listed in Ta-
ble 1.

We compare the prediction of our model with the re-
sults of experiments, DNS, and previous theoretical mod-
els (see Table 1 and Fig. 1). Figure 1 shows that the DNS
and experimental data support both the present model and
the model proposed by Borgas and Boffetta et al. [24–26],
for order p < 6. However, for order p � 6, the DNS
of Benzi et al. [21] and experiment of Mordant et al. [14]
support only the present model which is constructed based
on the Lagrangian characteristic time scale rather than the
model based on Eulerian characteristic time scale [24–26].

Table 1 Data of the scaling exponents of Lagrangian velocity structure functions from DNS, experiments and model prediction

EXP1 EXP2 DNS1 DNS2 DNS3 M1 M2 M3

ζL
1 /ζ

L
2 0.56 ± 0.01 0.56 ± 0.01 0.57 ± 0.09 0.60 0.55

ζL
3 /ζ

L
2 1.34 ± 0.02 1.34 ± 0.02 1.35 ± 0.13 1.31 1.38

ζL
4 /ζ

L
2 1.56 ± 0.06 1.58 ± 0.06 1.6 ± 0.1 1.66 ± 0.02 1.65 ± 0.17 1.58 1.71 1.66

ζL
5 /ζ

L
2 1.8 ± 0.2 1.76 ± 0.1 1.80 2.00

ζL
6 /ζ

L
2 1.9 ± 0.2 2.0 ± 0.1 2.10 ± 0.10 2.00 2.26 2.14

ζL
7 /ζ

L
2 2.18 2.50

ζL
8 /ζ

L
2 2.33 ± 0.17 2.35 2.72 2.45

ζL
9 /ζ

L
2 2.50 2.93

ζL
10/ζ

L
2 2.45 ± 0.35 2.64 3.12 2.64

EXP1 (Reλ = 740, 10τη < τ < T , Mordant et al. [13]); EXP2 (Reλ = 1 000, 10τη < τ < T , Mordant et al. [14]); DNS1 (Reλ = 284,
10τη � τ � 50τη, Biferale et al. [20]); DNS2 (Reλ = 600, 10τη < τ < T , Benzi et al. [21]); DNS3 (Reλ = 400, 10τη < τ < 100τη, Huang
et al. [22]); M1 (Present model combined with S–L model [5]); M2 (Model by Borgas et al. [24–26] combined with S–L model [5]); M3
(Model by Zybin et al. [30] combined with DNS data of Benzi et al. [21])

Fig. 1 Normalized scaling exponents ζL
p /ζ

L
2 of the Lagrangian ve-

locity structure functions as a function of order p

6 Summary

In this paper, we develop a model to connect Lagrangian
multifractal dimensions with Eulerian ones. Since the mul-

tifractal dimensions can be used to calculate the scaling ex-
ponents of velocity structure functions, we use the present
model to calculate the scaling exponents of Lagrangian ve-
locity structure functions from Eulerian velocity structure
functions. The proposed model and assumptions are vali-
dated by comparing their prediction with experiments, DNS
and previous theoretical models. The comparison shows that
the scaling exponents predicted by the present model are in
good agreement with the ones by experiments and DNS up
to order 10, while the model based on Eulerian characteristic
time scale [24–26] gives increasing deviations from experi-
ments and DNS for orders larger than 6. The results obtained
in this paper can be used to investigate the Eulerian time cor-
relation models for turbulence-generated noise [38, 39] and
Lagrangian time correlation models for particle-laden turbu-
lence [40–42].
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14 Mordant, N., Lévêque, E., Pinton, J.F.: Experimental and nu-
merical study of the Lagrangian dynamics of high Reynolds
turbulence. New J. Phys. 6, 116 (2004)

15 Bourgoin, M., Ouellette, N.T., Xu, H., et al.: The role of pair
dispersion in turbulent flow. Science 311, 835–838 (2006)

16 Xu, H., Bourgoin, M., Ouellette, N.T., et al.: High order La-
grangian velocity statistics in turbulence. Phys. Rev. Lett. 96,
024503 (2006)

17 Xu, H., Ouellette, N.T., Bodenschatz, E.: Multifractal dimen-
sion of Lagrangian turbulence. Phys. Rev. Lett. 96, 114503
(2006)

18 Biferale, L., Boffetta, G., Celani, A., et al.: Particle trapping in
three-dimensional fully developed turbulence. Phys. Fluids 17,
021701 (2005)

19 Bec, J., Biferale, L., Cencini, M., et al.: Effects of vortex fil-
aments on the velocity of tracers and heavy particles in turbu-
lence. Phys. Fluids 18, 081702 (2006)

20 Biferale, L., Bodenschatz, E., Cencini, M., et al.: Lagrangian
structure functions in turbulence: A quantitative comparison
between experiment and direct numerical simulation. Phys.
Fluids 20, 065103 (2008)

21 Benzi, R., Biferale, L., Fisher, R., et al.: Inertial range Eule-
rian and Lagrangian statistics from numerical simulations of
isotropic turbulence. J. Fluid Mech. 653, 221–244 (2010)

22 Huang, Y., Biferale, L., Calzavarini, E., et al.: Lagrangian
single-particle turbulent statistics through the Hilbert-Huang
transform. Phys. Rev. E 87, 041003 (2013)

23 Homann, H., Grauer, R., Busse, A., et al.: Lagrangian statistics
of Navier–Stokes and MHD turbulence. J. Plasma Phys. 73,
821–830 (2007)

24 Borgas, M.S.: The multifractal Lagrangian nature of turbu-
lence. Phil. Trans. R. Soc. Lond. A 342, 379–411 (1993)

25 Boffetta, G., De Lillo, F., Musacchio, S.: Lagrangian statis-
tics and temporal intermittency in a shell model of turbulence.
Phys. Rev. E 66, 066307 (2002)

26 Biferale, L., Boffetta, G., Celani, A., et al.: Multifractal statis-
tics of Lagrangian velocity and acceleration in turbulence.
Phys. Rev. Lett. 93, 064502 (2004)

27 Chevillard, L., Roux, S.G., Levêque, E., et al.: Lagrangian ve-
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