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Elastic Theory of Nanomaterials
Based on Surface-Energy Density
Recent investigations into surface-energy density of nanomaterials lead to a ripe chance
to propose, within the framework of continuum mechanics, a new theory for nanomateri-
als based on surface-energy density. In contrast to the previous theories, the linearly
elastic constitutive relationship that is usually adopted to describe the surface layer of
nanomaterials is not invoked and the surface elastic constants are no longer needed in
the new theory. Instead, a surface-induced traction to characterize the surface effect in
nanomaterials is derived, which depends only on the Eulerian surface-energy density. By
considering sample-size effects, residual surface strain, and external loading, an explicit
expression for the Lagrangian surface-energy density is achieved and the relationship
between the Eulerian surface-energy density and the Lagrangian surface-energy density
yields a conclusion that only two material constants—the bulk surface-energy density
and the surface-relaxation parameter—are needed in the new elastic theory. The new
theory is further used to characterize the elastic properties of several fcc metallic
nanofilms under biaxial tension, and the theoretical results agree very well with existing
numerical results. Due to the nonlinear surface effect, nanomaterials may exhibit a nonli-
nearly elastic property though the inside of nanomaterials or the corresponding bulk one
is linearly elastic. Moreover, it is found that externally applied loading should be respon-
sible for the softening of the elastic modulus of a nanofilm. In contrast to the surface elas-
tic constants required by existing theories, the bulk surface-energy density and the
surface-relaxation parameter are much easy to obtain, which makes the new theory more
convenient for practical applications. [DOI: 10.1115/1.4028780]

Keywords: nanomaterials, surface effect, surface-energy density, surface-relaxation
parameter

1 Introduction

Although many physical mechanisms can induce size-
dependent phenomena in nanomaterials, one of the most impor-
tant mechanisms is the effect of free surfaces [1–3]. Compared
to large-scale bulk materials, nanomaterials exhibit a large surface-
to-volume ratio. Atoms at or near a free surface of a nanomaterial
may experience a different local environment compared with atoms
in the interior of the nanomaterial, inducing charge redistributions
and changes in the length of atomic bonds [4]. Consequently, the
equilibrium position and energy of each atom near the surface can
differ significantly from those in the interior. Such effects have
been identified as a main mechanism leading to the size effects
associated with the elastic moduli, resonant frequency, and thermal
conductivity of nanoscale materials [5–8].

Many experiments have explored the surface effect in nanoma-
terials, including characterizing surface atomic structures in vari-
ous nanomaterials by using electron diffraction and scanning-
probe microscopy [9–12] and by measuring the size-dependent
mechanical properties of nano-sized structural elements [13–17].
The experimental findings provide a convincing demonstration
that surface effects play an important role in the mechanical prop-
erties of nanomaterials.

The theoretical analysis of surface properties began about a
century ago. The approach then was to characterize the physical
changes of atoms at or near a solid surface by two continuum
quantities: the surface free energy and the surface stress [18,19].

Later, Gurtin and Murdoch established a rigorous mathematical
framework to model the surface elasticity (G–M theory) [20,21],
in which a linearized constitutive law was assumed to describe a
surface layer with vanishing thickness. A set of surface elastic
constants, analogous to the bulk elastic constants, were introduced
to characterize the surface properties, leading to a surface
stress–strain relationship similar in form to the generalized
Hooke’s law. The surface (or interface) stress–strain constitutive
expressions were further investigated by Nix and Gao [22] and
Haiss [23] from the atomic point of view. A detailed discussion of
surface elastic theory can be found in Refs. [3] and [24].

Based on surface elastic theory, a large number of theoretical
models have been successfully created to analyze surface effects
in nanomaterials. Steigmann and Ogden [25] and Chhapadia et al.
[26] modified G–M theory by introducing a surface flexural stiff-
ness into the constitutive model, with the aim being to character-
ize the dependence of surface energy on curvature due to bending
or wrinkling of nanowires (NWs). Wang and Feng [27,28] and He
and Lilley [29,30] adopted Young–Laplace (Y–L) equation to
study static and dynamic bending of NWs, where the effect of sur-
face stress induced by the curvature was taken into account. Song
et al. [31] further studied the same problem with a modified Y–L
model that considered the in-plane surface stress tangential to the
longitudinal surfaces of a NW. The mechanical behavior of a
nano-thin film was investigated by Lim and He [32], Lu et al.
[33], and Huang [34], incorporating the surface elasticity into
classical plate theory. Lachut and Sader [35] explored the effect
of surface stress on the stiffness of a cantilever nanoplate. Dingre-
ville et al. [36,37] formulated the surface elastic constants in ten-
sorial form and discussed the surface effect with respect to the
elastic properties of various nanostructures under general loading
conditions. Huang and Wang [38] proposed a hyperelastic surface
model to study how the surface effect induces radial shrinkage in
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a nanoparticle. G–M theory has also been successfully extended
to the interface effect in nanocomposites [39–47]. A comprehen-
sive review on the theory of surface elasticity and its applications
on nanostructured elements have been given by Wang et al.
recently [48].

In addition to the theoretical models that have been developed
to describe the surface effect of nanomaterials, numerical investi-
gations have also progressed greatly. These mainly focus on
molecular dynamics (MD) simulations to describe the inevitable
surface effect on the atomic scale. In two representative studies,
Miller and Shenoy [5] and Shenoy [49] calculated the surface
elastic constants of typically metallic materials. Other work in this
area was done by Streitz et al. [50,51], Diao et al. [52], Cao and
Chen [53], Mi et al. [54], On et al. [55], Pahlevani and Shodja
[56], Mohammadi and Sharma [57], Olsson and Park [58], and
others. Gao et al. [59], Park and Klein [60], and Liu et al. [61]
also developed the finite-element method to study surface effects.
From the numerical calculations, one can see that the required sur-
face elastic constants are a little bit difficult to determine
[5,26,49,54,58].

It is well known that the energy of each atom in the surface
region deviates significantly from those in the interior of a nano-
material, and this discrepancy has been identified as the main
cause of size effects of nanomaterials. Furthermore, in recent
years, the surface-energy density of nanomaterials was deeply
studied and clarified [22,62–67], which greatly facilitates investi-
gating surface effects in nanomaterials from the point of view of
energy.

In this paper, we propose a new elastic theory for nanomaterials
that is based on the surface-energy density. Only the bulk surface-
energy density and relaxation parameter are needed to character-
ize the surface properties of a nanosolid. Theoretical predictions
of the mechanical behavior of typical metallic nanofilms agree
well with existing numerical results. Furthermore, the stiffening
and softening mechanisms of a nanofilm subjected to a uniform
tension are also disclosed.

2 Nanomaterial Surface-Energy Density

2.1 Lagrangian Surface-Energy Density /0. Consider a
nanosolid with the initial (or reference) configuration shown in
Fig. 1, which consists of a domain V0 in a three-dimensional
Euclidean space bounded by the surface S0. The body force f and
the surface traction p induce a displacement u and strain e, which
lead to the present configuration that occupies the domain V
bounded by surface S. Transformation from the reference configu-
ration V0 to the present configuration V passes through an inter-
mediate configuration Vr, which corresponds to the nanosolid
experiencing a surface residual strain induced only by surface
relaxation. Assume that the material has an idealized crystal struc-
ture and that the reference configuration consists of a planar array
of atoms with a surface area A0, as shown in Fig. 2. A Lagrangian
coordinate system is embedded in the deformed surface and
attached to the atoms [22], with the principal axes 1 and 2 parallel
to the two basic vectors of the surface unit cell. The quantities a01,
a02, and N0 represent the lattice lengths in the two principal direc-
tions and the number of atoms, respectively. b denotes the angle
between the two basic vectors and is 90 deg in most cases. Trans-
forming V0 to Vr leads to an intermediate area Ar, with the atomic
spacings becoming ar1 and ar2. Under external loading, the atomic
spacings are further modified and become a1 and a2 in the present
surface element, which has surface area A. Without considering
any chemical reaction or phase transformation, the number N0 of
atoms and the angle b remain unchanged during the entire
process.

According to Nix and Gao [22], the excess free energy per sur-
face atom is g0

xs. Considering both the effect of surface relaxation
and that of external loading, the free energy per surface atom can
be written as

g1
xs ¼ g0

xs þ
1

2

X2

i¼1

ki ai � a0ið Þ2 (1)

where ki ði ¼ 1; 2Þ are spring constants in the two principal direc-
tions [22,64].

The surface-energy density in V0 (i.e., the Lagrangian surface-
energy density) is defined as

/0 ¼
N0g1

xs

A0

¼ N0g1
xs

N0a01a02 sin b
¼ /�0 þ

1

2

X2

i¼1

ki
ai � a0ið Þ2

a01a02 sin b
(2)

where /�0 ¼ g0
xs= a01a02 sin bð Þ.

The surface-energy density in V (i.e., the Eulerian surface-
energy density) is

/ ¼ N0g1
xs

A
¼ /0

A0

A
(3)

The ratio of A to A0 is

A

A0

¼ 1þ et1ð Þ 1þ et2ð Þ ¼ Js (4)

where et1 ¼ ða1 � a01Þ=a01 and et2 ¼ ða2 � a02Þ=a02 represent the
surface strains in the bond directions and Js is a Jacobian determi-
nant characterizing the deformation between V0 and V.

Thus, we have

/ ¼ /0=Js (5)

Fig. 1 Reference, intermediate, and present configurations of
a three-dimensional nanosolid with the corresponding volumes
and surface areas V0 and S0, Vr and Sr, V and S, respectively. P
is a surface traction that acts on the surface area SP , and f is a
body force. The quantities u and e are the displacement and
strain fields, respectively.
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(i) Considering the effect of surface relaxation alone, we have

ar1 ¼ k1a01; ar2 ¼ k2a02 (6)

where k1 and k2 are two surface relaxation parameters in the two
principal directions. ki > 1 denotes a surface stretched due to dila-
tion and ki < 1 denotes a surface compressed due to shrinkage.
The surface residual strains are defined as

eri ¼
ari � a0i

a0i
¼ ki � 1; ði ¼ 1; 2Þ (7)

(ii) Under external loading, the surface strains induced only by
external loading are defined as

esi ¼
ai � ari

ari
; ði ¼ 1; 2Þ (8)

Here, surface deformation of nanosolids in the present theory con-
sults Nix and Gao [22] and Ouyang et al. [64], where the concepts
of Lagrangian, intermediate, and Eulerian configurations are simi-
larly used as those in Huang and Wang [38]. Surface strains in
local coordinate system are related to the deformation of lattice
length in two directions [22]. It is reasonable for an elastic surface
with infinitesimal deformation from the atomic point of view,
though different from the continuum mechanics definition in
terms of displacement gradient [68]. Surface strain in the local
coordinate system can be transferred to the surface strain tensor in
a global coordinate system in G–M theory [20,21].

Next, the second term on the right side of Eq. (2) in directions 1
and 2 can be further written as

1

2
k1

ða1 � a01Þ2

a01a02 sin b
¼ k1

2 sin b
a01

a02

k2
1e

2
s1 þ 2k1ðk1 � 1Þes1 þ ðk1 � 1Þ2

h i

(9)

and

1

2
k2

ða2 � a02Þ2

a01a02 sin b
¼ k2

2 sin b
a02

a01

k2
2e

2
s2 þ 2k2ðk2 � 1Þes2 þ ðk2 � 1Þ2

h i

(10)

In a perfect-crystal lattice structure, interactions between atoms
can be characterized by a spring constant k0 [69], which is the
product of the bulk Young’s modulus and the bulk lattice constant
(i.e., k0 ¼ E0a0). Based on this, Sun et al. [62] and Ouyang et al.
[64] proposed the following similar expression for the spring con-
stants in the two principal directions of a surface unit cell:

ki ¼ EAia0i; ði ¼ 1; 2Þ (11)

where EAi is the Young’s modulus in each principal direction of
the surface unit cell. According to the model involving bond
order, bond length, and bond strength [62,63], EAi is written as

EAi ¼ E0

ai

a0i

� ��m

�3
ai

a0i

� �
þ 3

� �
; ði ¼ 1; 2Þ (12)

where m is a parameter describing the dependence of bond length
on the binding energy: m ¼ �4 for alloys or compounds and
m ¼ 1 for pure metals.

Thus, spring constants in the surface region can be written as

ki ¼ E0a0i ðki þ kiesiÞ�m � 3kið1þ esiÞ þ 3½ �; ði ¼ 1; 2Þ (13)

The Lagrangian surface energy density becomes

/0 ¼ /�0 þ
E0

2 sin b

X2

i¼1

a0igi ðki þ kiesiÞ�m � 3kið1þ esiÞ þ 3½ �

� k2
i e

2
si þ ðki � 1Þ2 þ 2kiðki � 1Þesi

h i
(14)

where g1 ¼ a01=a02 and g2 ¼ a02=a01.

Fig. 2 Schematic of a surface element in the reference, intermediate, and present
configurations
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2.2 Size-Dependent Characteristic of /�0. The second term
on the right of Eq. (2), as a structural part, is related to the surface
strain energy, whereas the first term /�0 on the right of Eq. (2), as
a chemical part, originates from the surface dangling-bond energy
[64–66]. Thus, we have [64,70,71]

/�0 ¼
Zb � Zs

Zb

UcohðDÞ
a01a02 sin b

(15)

where Zb and Zs are the coordination numbers per bulk and
surface atom, Zb � Zs denotes the number of broken bonds at the
surface (dangling bonds), a01a02 sin b represents the area of the
surface unit cell, and UcohðDÞ is the cohesive energy of an atom in
the nanocrystal, which depends on a characteristic scale D of the
nanostructure (e.g., thickness, diameter, etc.) [72].

The bulk surface-energy density /0b can be expressed as [70]

/0b ¼
Zb � Zs

Zb

Ub
coh

a01a02 sin b
(16)

where Ub
coh is the cohesive energy per bulk atom.

According to the classical thermodynamic models [73], the size
dependence of UcohðDÞ is

UcohðDÞ
Ub

coh

¼ 1� 1

w1D=D0 � 1

� �
exp � 3Sb

2R

1

w1D=D0 � 1

� �
(17)

where Sb and R represent the bulk melting entropy and the ideal
gas constant, respectively, and D0 is the critical size (D0 ¼ 3d0

and 2d0 for a nanoparticle and a nanothin film, respectively, where
d0 is the atomic diameter). The quantity w1 is a positive parameter
with different values for different nano-elements (particle, wire,
film, etc.).

Combining Eqs. (15)–(17) yields the size-dependent chemical
surface-energy density

/�0 ¼ /0b 1� 1

w1D=D0 � 1

� �
exp � 3Sb

2R

1

w1D=D0 � 1

� �
(18)

which can be approximated as [67,71]

/�0 ¼ /0b 1� D0

w2D

� �
; w2 ¼

3Rw1

2Sb

(19)

Equations (19) are analogous to the well-known Tolman equation
[74]. For most fcc metals, 3R=2Sb � 1:2 [75] and w2 depends on
w1, which is given in the literatures [64,65,67].

The Lagrangian surface-energy density in Eq. (14) can be fur-
ther written as

/0 ¼ /0b 1� D0

w2D

� �
þ E0

2 sin b

X2

i¼1

a0igi

�
n

3þ ðki þ kiesiÞ�m � 3ðki þ kiesiÞ½ �

�
h
k2

i e
2
si þ ðki � 1Þ2 þ 2kiðki � 1Þesi

io
(20)

Here, it is interesting that the Lagrangian surface-energy density
of a nanomaterial involves two material parameters: the bulk sur-
face energy density /0b and the surface relaxation parameters ki,
both of which have clear physical meanings and are very easy to
obtain by experiment or atomistic simulation.

3 New Elastic Theory Based on Surface-Energy

Density

3.1 Equilibrium Equations and Boundary Conditions. As
shown in Fig. 1, the relationship between the reference and

present configurations can be characterized by a mapping function
x ¼ vðXÞ, where x and X represent position vectors of a material
point in the present and reference configurations, respectively.

In the present configuration, the strain fields in the bulk and on
the surface can be expressed as

eðxÞ ¼ u�rþr� uð Þ=2; x 2 V � S

es ¼ eðxsÞ; xs ¼ x on Sj ¼ haea þ rn ða ¼ 1; 2; r ¼ constÞ
(21)

where r is a spatial gradient operator with respect to x, xs repre-
sents the position vector of a material point on S, ea, and ha denote
unit vectors and coordinates in two orthogonal principal directions
of S, respectively, n ¼ nðh1; h2Þ is the unit normal vector perpen-
dicular to S, and the normal coordinate r remains constant on S
[68]. The potential energy function P of the solid consists of three
parts: the bulk elastic strain energy U, the surface free energy U,
and the external work W, which can be written as [24,32,76]

PðuÞ ¼ U þ U�W

¼
ð

V�S

qwðeÞdV þ
ð

S

/ðesÞdS�
ð

V�S

f � udV �
ð

Sp

p � udS

(22)

where w is the elastic strain energy density and q is the mass den-
sity. The quantity / depends not only on the position vector xs but
also on the surface strain es; dV and dS are the infinitesimal vol-
ume and surface area, respectively, and Sp (Sp 	 S) represents the
region of the boundary where an external traction p acts.

Variational analysis of Eq. (22) yields [38]

r � r þ f ¼ 0 ðin V � SÞ
n � r � n ¼ p � nþ rs : b ðon SÞ
ðI� n� nÞ � r � n ¼ ðI� n� nÞ � pþ rs � rs ðon SÞ
rs � nl ¼ 0 ðon @SÞ

8>>><
>>>:

(23)

where r and rs are the bulk and the surface Cauchy stress tensors,
respectively, b is the curvature tensor of S, @S is a closed smooth
curve enclosing S with l and nl being its unit tangential and nor-
mal vectors, I is a unit tensor, and rs is a surface gradient opera-
tor with respect to xs on S. The derivation used the inner products
n � nl ¼ 0, n � ea ¼ 0, and n � dut ¼ 0.

The second and third equations in Eq. (23) denote the stress
boundary conditions in the normal and tangential directions of
surface S, respectively, and can be rewritten as

r � n ¼ p� c ðon SÞ
c ¼ cnnþ ct; cn ¼ �rs : b; ct ¼ �rs � rs

(24)

Here, it is interesting that, in contrast to the result with classical
continuum mechanics, an additional traction vector c is introduced
into the stress boundary conditions to account for the surface
effect of nanomaterials. Furthermore, the relationship between
cn and ct, and the surface stress rs abides by the generalized
Young–Laplace equations [38]. Here, we call c the “surface-
induced traction,” which is a force disturbance at a boundary due
to the surface effect.

Variation of the surface-free energy can be further expressed as

dU ¼
ð

S

rs : ðdu�rÞdS

¼ �
ð

S

dut � ðrs � rsÞ þ dunðrs : bÞ½ �dS ¼
ð

S

c � dudS (25)
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where du ¼ duðxsÞ represents the variational displacement of a
material point on surface S. Equation (25) indicates that the
surface-energy variation due to surface deformation equals the
work done by the surface-induced traction [77].

3.2 Surface-Induced Traction c. As shown in Fig. 3, an in-
finitesimal area element S1 is taken out of the present curved sur-
face S. The position of a material point on S1 is described by a
curvilinear coordinate system ðh1; h2; rÞ. Let L1 and L2 represent
the boundary arc lengths; the area of S1 is expressed as
A1 ¼ HL1L2, where H is a coefficient. With Eq. (24), the resultant
traction t on S1 can be obtained as [78,79]

t ¼ ½r� � n ¼ ðrþ � r�Þ � n ¼ p� r � n ¼ c (26)

where rþ and r� represent stresses above and below the surface
S1, respectively. Equation (26) gives a vanishing net force on S1 if
the surface effect is not considered. The surface-induced traction c
leads to a stress discontinuity across the surface.

Consider an admissible virtual displacement field ds ¼ ðDL1;
DL2;DRÞ on S1, where DL1 and DL2 are in-plane components of
ds in the two principal directions of S1 and DR denotes the normal
displacement of the curved surface (see Fig. 3). The virtual work
done by the external force on the element can be expressed as

DW ¼ tA1 � ds

¼ ts1DL1 þ ts2DL2 þ tnDRð ÞA1

¼ c1DL1 þ c2DL2 þ cnDRð ÞA1 (27)

where c1 and c2 denote the in-plane components of the surface-
induced traction vector c and cn is the normal component of the
surface-induced traction.

The surface deformation ds leads to changes in both the
surface-energy density / and the area of element A1, which are
denoted by d/ and dA1, respectively. Neglecting the infinitesimal
quantity, DU can be written as

DU ¼ ð/þ d/ÞðA1 þ dA1Þ � /A1 ¼ dð/A1Þ (28)

The change of A1 is

dA1 ¼ HðL1DL2 þ L2DL1Þ (29)

Using the energy-balance relationship, DW ¼ DU yields

c1DL1 þ c2DL2 þ cnDR ¼ /
DL1

L1

þ DL2

L2

� �
þ d/ (30)

According to Ref. [80], the in-plane stretching or shrinkage of a
curved surface will lead to changes of the principal radii of curva-
ture R1 and R2. The geometric relationship in Fig. 3 gives [80]

DL1=L1 ¼ DR=R1; DL2=L2 ¼ DR=R2 (31)

Considering the dependence of / on the position (h1; h2) yields

d/ ¼ @/
@h1

dh1 þ
@/
@h2

dh2 (32)

where dh1 and dh2 in the two orthogonal principal directions of
the surface are equivalent to the infinitesimal increments DL1 and
DL2, respectively. Substituting Eqs. (31) and (32) into Eq. (30)
leads to

c1 ¼
@/
@h1

; c2 ¼
@/
@h2

; cn ¼ /
1

R1

þ 1

R2

� �
(33)

For a curved surface, n � rs ¼ ð1=R1 þ 1=R2Þ. Then, we have

ct ¼ rs/; cnn ¼ /
1

R1

þ 1

R2

� �
n ¼ /ðn � rsÞn (34)

The surface-induced traction can thus be expressed as a function
of surface-energy density instead of surface stress as in G–M
theory, which is the main difference between the present theory
and the well-known continuum ones [3,20,36,38]. The tangential
component ct equals the gradient of the surface-energy density,
which is a general relationship between the potential energy and
the associated conservative forces. While the formula of cn is the
well-known Young–Laplace equation [80], which is responsible
for the normal surface dilatation or shrinkage with a nonzero
curvature.

Considering the relationship between the Eulerian and Lagran-
gian surface-energy densities leads to

ct ¼ rs/ ¼
rs/0

Js
� /0ðrsJsÞ

J2
s

; cnn ¼ /0ðn � rsÞn
Js

(35)

The equilibrium equations and boundary conditions can be further
written as

r � rþ f ¼ 0 ðin V � SÞ

n � r � n ¼ p � n�/0ðn � rsÞ
Js

ðon SÞ

ðI� n� nÞ � r � n ¼ ðI� n� nÞ � pþ/0ðrsJsÞ
J2

s

�rs/0

Js
ðon SÞ

8>>>>><
>>>>>:

(36)

In contrast to G–M theory [20,21], the Lagrangian surface-energy
density /0 in the reference configuration serves as a unique
quantity that characterizes the surface effect of nanomaterials. It
depends on both the bulk surface-energy density and the relaxa-
tion parameter.

4 Surface Effect of Nanofilm Under Biaxial Tension

Consider a square nanofilm of thickness h, as shown in Fig. 4.
A rectangular coordinate system fx1; x2; x3g is introduced, where
the x1Ox2 plane coincides with the midplane of the film. A uni-
form biaxial tension r is applied on both lateral surfaces x1 ¼ 0,
x1 ¼ b and x2 ¼ 0, x2 ¼ b, which induces a tensile strain field e.
The upper and lower boundary surfaces x3 ¼ 6h=2 are traction
free.

Fig. 3 Schematic of an infinitesimal area element after defor-
mation. The boundary lengths L1 and L2 change to become
L1 þ DL1 and L2 þ DL2. DR is the normal displacement of the
curved surface. The initial surface area A1 changes to become
A1 þ dA1.
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Within the framework of classical elastic theory, we have

r ¼ Ebe; Eb ¼
E0

1� �0

(37)

where Eb, E0, and �0 are the biaxial modulus, Young’s modulus,
and Poisson’s ratio of a bulk material, respectively.

Consider the surface effect of the nanofilm. Let r1; e1; u1 and
r2; e2; u2 denote the tensile stresses, strains, and displacements in
the x1 and x2 directions, respectively. We have

r1 ¼ r2 ¼ r; e1 ¼ e2 ¼ e; e1 ¼
@u1

@x1

; e2 ¼
@u2

@x2

(38)

The variation of the bulk strain energy is

dU ¼ bh

ðb

0

Eb
@u1

@x1

@ðdu1Þ
@x1

dx1 þ
ðb

0

Eb
@u2

@x2

@ðdu2Þ
@x2

dx2

� �
(39)

Since the thickness h of the nanofilm is much less than the width
b, only the surface effect on the upper and lower surfaces is con-
sidered [32,36].

The variation of the surface energy can be written as

dU ¼
ð

Sf

c � dudS ¼ 2b

ðb

0

c1du1dx1 þ
ðb

0

c2du2dx2

� �
(40)

where Sf represents the upper and lower surfaces, cn vanishes due
to a zero surface curvature, and

ci ¼
1

Js

@/0

@xi
� /0

J2
s

@Js

@xi
ði ¼ 1; 2Þ (41)

For simplicity, the upper and lower surfaces are assumed to be
symmetric and have equal atom spacings in both bond directions
(e.g., the (001) or (111) surfaces). As a result, a01 ¼ a02 ¼ a0s,
k1 ¼ k2 ¼ k, and esi ¼ e (i ¼ 1, 2) [51,52,64,65]. In addition, we
have D ¼ h, m ¼ 1 and the critical size D0 ¼ 2d0, where d0 is the
atomic diameter of the metallic material. For the present fcc
metallic-nanofilm case, w2 
 4 [81,82].

For this case, the Lagrangian surface-energy density can be
written as

/0 ¼ /0b 1� d0

2h

� �
þ E0a0s

sin b
3þ 1

kþ ke
� 3ðkþ keÞ

� �

� k2e2 þ 2kðk� 1Þeþ ðk� 1Þ2
h i

(42)

Ignoring the high-order terms, /0 can be further simplified to

/0 ¼ /0b 1� d0

2h

� �
þ E0a0s

sin b
ðk� 1Þ2 þ E0a0s

sin b

� 1� 10ðk� 1Þ � 17ðk� 1Þ2
h i

e2
n

þ 2ðk� 1Þ � 10ðk� 1Þ2
h i

e
o

(43)

and

@/0

@xi
¼ 2E0a0se

sin b
1� 10ðk� 1Þ � 17ðk� 1Þ2
h i @e

@xi

þ E0a0s

sin b
2ðk� 1Þ � 10ðk� 1Þ2
h i @e

@xi

i ¼ 1; 2

(44)

Within the scope of a small deformation, the Jacobian determinant
Js is

Js ¼ Js1Js2; Js1 ¼ ð1þ erÞ2; Js2 ¼ ð1þ es1Þð1þ es2Þ ¼ ð1þ eÞ2

(45)

Ignoring the high-order strain terms (n � 2) yields

Js 
 1þ 2ðer þ eÞ ¼ 1þ 2ðeþ k� 1Þ (46)

whose partial derivatives with respect to x1 and x2 are

@Js

@xi
¼ 2

@e
@xi

ði ¼ 1; 2Þ (47)

Applying the Taylor series approximation leads to

1

Js

 1� 1

J2
s

� �
Js¼1

ðJs � 1Þ ¼ 1� 2ðer þ eÞ

1

J2
s


 1� 2

J3
s

� �
Js¼1

ðJs � 1Þ ¼ 1� 4ðer þ eÞ
(48)

Next, the surface-induced tractions can be obtained as

ci ¼ ðf1 þ f2eÞ
@2ui

@x2
i

; ði ¼ 1; 2Þ

f1 ¼
E0a0s

sin b
2ðk� 1Þ � 10ðk� 1Þ2
h i

ð3� 2kÞ � 2/�0dð5� 4kÞ

f2 ¼ 8/�0d þ
2E0a0s

sin b
1� 16ðk� 1Þ þ 31ðk� 1Þ2
h i

/�0d ¼ /0b 1� d0

2h

� �
þ E0a0s

sin b
ðk� 1Þ2 (49)

Combining Eqs. (39), (40), and (49) yields

dP ¼ dU þ dU� dW

¼ bh

ðb

0

Eb
@u1

@x1

@ðdu1Þ
@x1

dx1 þ
ðb

0

Eb
@u2

@x2

@ðdu2Þ
@x2

dx2

� �

þ 2b

ðb

0

ðf1 þ f2eÞ
@2u1

@x2
1

du1dx1 þ
ðb

0

ðf1 þ f2eÞ
@2u2

@x2
2

du2dx2

� �

� bhðrdu1jx1¼0 þ rdu1jx1¼b þ rdu2jx2¼0 þ rdu2jx2¼bÞ
(50)

Fig. 4 Square-shaped nanofilm subjected to biaxial tension r.
The edge length is b and the thickness is h. As a result, the
strain due to external biaxial tension is e.
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which is further reduced to

dP ¼ �
ðb

0

½Ebbh� 2bðf1 þ f2eÞ�
@2u1

@x2
1

du1dx1

�
ðb

0

½Ebbh� 2bðf1 þ f2eÞ�
@2u2

@x2
2

du2dx2

þ bh

��
Eb
@u1

@x1

� r

�
du1

����
x1¼0

þ
�

Eb
@u1

@x1

� r

�
du1

����
x1¼b

þ
�

Eb
@u2

@x2

� r

�
du2

����
x2¼0

þ
�

Eb
@u2

@x2

� r

�
du2

����
x2¼b

� ¼ 0 (51)

The equilibrium equation for a nanofilm under a biaxial tension
can be obtained as

Eb 1� 2ðf1 þ f2eÞ
Ebh

� �
@2ui

@x2
i

¼ 0 (52)

Comparing Eq. (52) to the classical equilibrium equation for a
thin film under a biaxial tension leads to

Eeff

@2ui

@x2
i

¼ 0 ði ¼ 1; 2Þ (53)

where the effective biaxial modulus Eeff is

Eeff ¼ Eb 1� 2f1

Ebh
� 2f2e

Ebh

� �
(54)

From Eqs. (49) and (54), it is interesting to find that the
effective biaxial modulus of a nanofilm depends not only on the
thickness but also on the surface relaxation parameter and
the externally applied load. It means that the surface layer of
nanomaterials may be nonlinearly elastic though the inside of
nanomaterials is elastic as a bulk elastic material. As a result, the
whole property may exhibit a nonlinearly elastic one for nanoma-
terials. Generally, in the case without an external loading, surface
relaxation (or residual stress) will influence the lattice length of
atoms near the surface, which results in significant size effect in
nanomaterials due to the large surface-to-volume ratio. With an
external loading, the lattice length will be further influenced,
which will show obvious effects on the whole mechanical proper-
ties of nanomaterials. In contrast, for a bulk elastic material, the
effect of surface is very weak and can be neglected. The nonlinear
elasticity of nanomaterials is due to the nonlinearly elastic bound-
ary condition on surfaces. Actually, such a conclusion is consist-
ent well with the results of existing MD simulations [51,52,83], in
which the numerically obtained moduli of nanofilms and NWs
exhibit obvious dependence on externally applied strains. When
the surface effect is weakened with an increasing characteristic
size (e.g., the film thickness h), the effect of strain on the elastic
modulus of materials tends to vanish, and a linearly elastic prop-
erty is exhibited in a bulk state. Therefore, the surface effect at
nanoscale can induce not only a size effect but also a nonlinearly
elastic property of nanomaterials. It can be inferred that the nonli-
nearly elastic property of nanomaterials would become strong
under a relatively large loading or for a small characteristic size.
A theory of hyperelasticity should be adopted if surface effect of
nanomaterials is considered from the surface elastic theory point
of view [38].

5 Results and Discussion

We now use the new theory to predict the biaxial moduli of
copper, silver, and gold nanofilms with (001) or (111) surface
orientation. The atomic spacing of the surface unit cell is
a0s ¼

ffiffiffi
2
p

a0=2, where a0 is the bulk lattice constant of a material.
On the (001) surface, b ¼ 90 deg, whereas b ¼ 60 deg for the
(111) surface. It is proven that the surface residual strain er is
inversely proportional to the film’s thickness (i.e., er ¼ �c1=h
(c1 > 0)) [50,52], which leads to k ¼ 1� c1=h. The bulk surface-
energy density and c1 for the (001) and (111) surfaces are listed in
Table 1 [49,51]. The other material parameters involved in our
model are given in Table 2 [64,84].

5.1 Theoretical Versus MD Results Without External
Loading. In previous atomistic simulations, the biaxial modulus
of a nanofilm was always obtained without external loading
[51,52]. Accordingly, Eeff in Eq. (54) reduces to

Eeff ¼ Eb 1� 2f1

Ebh

� �
(55)

Based on Eq. (55), Figs. 5 and 6 present the size-dependent biaxial
moduli of copper, silver, and gold nanofilms for (001) and (111)
surface orientations, respectively. In these figures, MD results are
also shown for comparisons [51,52]. Both the theoretical predic-
tions and the MD results show a monotonic decrease of the nano-
films’ biaxial modulus with an increasing film thickness. The
modulus approaches the bulk modulus when the film thickness h
exceeds about 3 nm. The results show that, for a load-free nano-
film with a contractive surface relaxation (k < 1 and er < 0),
reduction of the film thickness leads to stiffening of the
nanostructure.

5.2 Effect of External Loading. Consider the effect of exter-
nal loading, which has always been neglected in the previously
theoretical and numerical studies. Figure 7 shows the relationship
between the normalized biaxial moduli of copper and silver metal-
lic nanofilms and the film thickness under differently external
loading strains. It is interesting that, for small external strain e, the
nanofilm stiffens with decreasing film thickness. For relatively
large e, the nanofilm becomes softer with a decreasing film thick-
ness. It is easy to show that the interesting transition between stiff-
ening and softening results from competition between the residual
surface strain induced by surface relaxation and the excess surface
strain due to external loading. For small external tensile loading,
the residual compressive strain governs the elastic behavior of the
copper or silver nanofilm. However, for large external tensile
loading, the excess surface strain induced by tensile loading is the
dominant factor and results in an increase in the interatomic

Table 1 Bulk surface-energy density /0b and c1 [49,51]

/0b(001) (N/m) /0b(111) (N/m) c1(001) (nm) c1(111) (nm)

Cu 1.33 1.24 0.012 0.009
Ag 0.87 0.8 0.016 0.013
Au 0.8 0.7 0.025 0.019

Table 2 Atomic diameter, lattice constant, Young’s modulus,
Poisson’s ratio, and biaxial modulus of bulk fcc metals [64,84]

d0 (nm) a0 (nm) E0 (GPa) �0 Eb (GPa)

Cu 0.255 0.3615 110 0.34 166.7
Ag 0.2889 0.418 78 0.37 123.8
Au 0.2884 0.42 79 0.42 136.2
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distance and a reduction of the atomic bonding force and energy
[85]. All the results demonstrate that the present theory can pre-
dict not only the stiffening of a nanomaterial but also its
softening.

5.3 Comparison of Present Theory to Existing Theories

5.3.1 Effective Young’s Modulus. To compare the present
theory to the existing theories, we focus on the effective Young’s
modulus of a nanomaterial.

In Dingreville et al. [36], the effective biaxial modulus of a
metal nanofilm was expressed as

Eeff ¼ Eb þ
1

a
ð2Ks þ C11vÞ (56)

where Eb is the bulk biaxial modulus, Ks, C11, and v are parame-
ters related to the surface elastic constants and surface residual
stress of a nanomaterial, and a is the nanofilm thickness. To pre-
dict the effective biaxial modulus, the surface elastic constants
that are used in surface elastic theory must first be determined by
MD simulations.

In Chhapadia et al. [26], the effective Young’s modulus of a
nanowire was given as

Fig. 5 Normalized biaxial moduli of different metallic nano-
films with {001} free surface as a function of film thickness: (a)
copper, (b) silver, and (c) gold

Fig. 6 Normalized biaxial moduli of different metallic nano-
films with {111} free surface as a function of film thickness: (a)
copper, (b) silver, and (c) gold
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Eeff ¼ Eb 1þ EsIs

EbI
þ DsIc

EbI

� �
(57)

where Es and Ds are the surface elastic and bending moduli,
respectively, Eb is the Young’s modulus of the corresponding
bulk material, and I and Is are the moment and perimeter moment
of inertias of the nanowire’s cross section, respectively. The quan-
tity Ic is given by Ic ¼

Ð
Cnw

n2
vdC, where nv is the vertical compo-

nent of the unit normal vector perpendicular to the deflected
nanowire and Cnw denotes the perimeter of the nanowire. For the-
oretical predictions, MD simulation was used to obtain
Es ¼ �6:07N=m and Ds ¼ �6:77� 10�18N �m.

To predict the interface effect on the mechanical property
of a nanocomposite, discontinuous conditions of interface
stresses were introduced into the mesomechanics model in Duan
et al. [40].

n � ½r� � n ¼ �rs : ðn�rsÞ
ðI� n� nÞ � ½r� � n ¼ �rs � rs

(58)

where ½r� ¼ rþ � r� denotes the stress difference across an inter-
face, n is a unit vector in the normal direction of the interface, and
rs is an interface gradient operator. The stress tensor rs at the
interface was assumed to satisfy a linearly elastic constitutive
relation [20].

rs ¼ r0Iþ Cs : es (59)

where r0 is the surface residual stress, es is a surface strain tensor,
and Cs is a fourth-order tensor of surface or interface elastic
constants.

For a nanofilm under a biaxial tension, the biaxial modulus pre-
dicted by the present theory is

Eeff ¼ Eb 1� 2f1

Ebh
� 2f2e

Ebh

� �
(60)

Fig. 7 Normalized biaxial moduli of different metallic nano-
films subjected to biaxial tension as a function of film thick-
ness: (a) copper film with a {001} free surface and (b) silver film
with a {111} free surface

Fig. 8 Schematic of a nanosolid surface. (a) Zero-thickness surface defined in surface elastic
theory. (b) Top surface layer and a transition zone (physical surface) in atomistic simulations.
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where the bulk surface-energy density /0b and surface relaxation
parameter ki are involved, both of which are easy to determine via
experiments and simple atomistic calculations.

5.3.2 Determination of Surface Parameters. According to
Shenoy [49], the surface elastic tensor Cs

ijkl can be formulated in
terms of the Eulerian surface energy density /

Cs
ijkl ¼ �2/dikdjl þ dij

@/
@ekl
þ @2/
@eij@ekl

� �����
e¼0

(61)

where dik is the Kronecker delta symbol and the subscripts i, j, k, l
range from 1 to 2; e is the strain tensor induced by an external load-
ing with eij denoting its components. Based on Eq. (61), the surface
elastic constants can be obtained by calculating the surface energy
density / as a function of strain eij. However, the first and second
derivatives of / with respect to eij are rather cumbersome to
achieve. Moreover, determinations of the 16 components of the sur-
face elastic tensor Cs

ijkl require high computational costs [49,54].
The surface parameters involved in our theory are the bulk

surface-energy density and the surface-relaxation parameter, both
of which can be obtained from experiments [86,87] or simple den-
sity functional theory (DFT) and MD simulations [54,88,89].
Moreover, the two involved quantities are scalars, which are
much easier to determine than the fourth-rank tensor Cs

ijkl in sur-
face elastic theory.

5.3.3 Difference in Theoretical and Numerical Models. Both
the existing surface elastic theories and the present one assume
that the surface of a nanomaterial has a vanishing thickness
[20,21,36,37]. It is usually regarded as a planar array of atoms
attached to a nanosolid. A set of surface elastic constants are used
to characterize its stiffness. A discontinuous interface exists artifi-
cially between the zero-thickness surface and the inside, as shown
schematically in Fig. 8(a). The stiffness jumps from the inside to
the surface at the interface.

In the atomic model, a transition zone consisting of several
atomic layers should exist between the top atomic layer and the
inside region. The elastic constants in the atomic model vary con-
tinuously through the transition zone from the top atomic layer to
the inside layers, as shown schematically in Fig. 8(b).

By comparing the surface definitions in the theoretical models
and the atomic simulation models, we find that the surface elastic
constant in the previous theoretical models is really an effective
parameter because it includes contributions from both the top
atomic layer and from the transition zone in an atomic simulation
model.

6 Conclusions

A new theory that considers surface effect of nanomaterials
within the framework of continuum mechanics is established in
this paper. The assumption of a linearly elastic constitutive rela-
tionship is not required any more. The surface-induced traction is
found to be a function of surface-energy density instead of being
a function of surface stress. With the relationship between
the Eulerian description and the Lagrangian description of the
surface-energy density and considering the influence of external
loading on surface strain, we find that only two independent
parameters, the surface-energy density of a bulk material and the
surface relaxation parameter, are needed to characterize the sur-
face effect in nanomaterials. Both parameters have clear physical
meanings and are also very easy to determine by experiment or
simple MD simulation. The theoretical prediction of the effective
biaxial modulus of an fcc metallic nanofilm subjected to biaxial
tension agrees very well with the existing MD result. An interest-
ing finding is that the whole property of nanomaterials may
exhibit nonlinearly elastic due to the nonlinear boundary condi-
tions on surface though the inside of nanomaterials is linearly

elastic. It can be inferred that the nonlinearly elastic property of
nanomaterials may become stronger and stronger when the
external loading increases or the characteristic size of nanomate-
rials decreases. Furthermore, it is found that the stiffening or
softening behavior of a nanofilm results essentially from the
competition between the residual surface strain induced by the
surface relaxation and the excess surface strain caused by exter-
nal loading. The present theory should be much convenient for
predicting the mechanical behavior of nanomaterials, since the
involved parameters are easy to ascertain. Further studies on
surface and interface effects in many other nanosystems are
forthcoming.
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